Supporting Information

for

Synthesis of the pentasaccharide repeating unit of the *O*-antigen of *E. coli* O117:K98:H4

Pintu Kumar Mandal*

Address: Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute,

BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, Lucknow, 226 031, India.

Email: Pintu Kumar Mandal* - pintuchem06@gmail.com

Experimental part

Table of Contents	Page No.
Experimental procedure	S2-S11
1D and 2D NMR spectra of compounds 1, 5, 8, 9, 10, 11, 12, 13, 15	S12-S28

^{*} Corresponding author

General methods

All reactions were monitored by thin-layer chromatography over silica gel-coated TLC plates. The spots on TLC were visualized by warming ceric sulfate [2% $Ce(SO_4)_2$ in 5% H_2SO_4 in EtOH]-sprayed plates on a hot plate. Silica gel 230–400 mesh was used for column chromatography. ¹H and ¹³C NMR, DEPT 135, 2D COSY, HSQC spectra were recorded on Brucker DPX 400 MHz spectrometers using CDCl₃and D₂O as solvents and TMS as internal reference unless stated otherwise. Chemical shift values are expressed in δ ppm. ESI-MS were recorded on a JEOL spectrometer. Elementary analysis was carried out on Carlo ERBA analyzer. IR spectra were recorded on Shimadzu Spectrophotometers. Optical rotations were determined on Autopol III polarimeter. Commercially available grades of organic solvents of adequate purity are used in all reactions.

p-Methoxyphenyl 3-*O*-acetyl-6-*O*-benzyl-2-deoxy-2-phthalimido-β-D-galactopyranoside (5): A solution of compound **7** (3 g, 5.96 mmol) in acetic anhydride (6 mL) and pyridine (6 mL) was allowed to stir at room temperature for 2 h. The solvents were removed under reduced pressure to give the acetylated product. A solution of the acetylated product in anhydrous THF (50 mL) were added NaBH₃CN (0.75 g, 11.92 mmol) and MS 3 Å (1 g) and the reaction mixture was allowed to stir at 0 °C for 15 min. To the cooled reaction mixture was added dropwise HCl/Et₂O (~10 mL) until the pH of the solution became ~2. After stirring the reaction mixture at 5 °C for 2 h, it was poured into a satd. NaHCO₃ solution and extracted with CH₂Cl₂ (150 mL). The organic layer was washed with water, dried (Na₂SO₄), and concentrated to give the crude product, which was purified over SiO₂ using hexane/ EtOAc (3:1) as eluant to give pure compound **5** (2.5 g, 77%). Colorless oil; [α]_D²⁵+10 (*c* 1.0, CHCl₃); IR (neat): 3064, 2865, 1772, 1710, 1609, 1507, 1090, 880 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 87.85 (brs, 2 H, Ar-H), 7.78-7.72 (m, 2 H, Ar-H), 7.36-7.28 (m, 5 H, Ar-H), 6.87 (d, J = 9.1 Hz, 2 H, Ar-H), 6.70 (d, J = 9.1 Hz, 2 H, Ar-H), 5.81(d, J = 8.5 Hz, 1 H, H-1_D), 5.71

(dd, J = 11.1, 3.3 Hz, 1 H, H-3_D), 4.87 (dd, J = 11.2, 8.5 Hz, 1 H, H-2_D), 4.59 (ABq, 2 H, PhC H_2), 4.31 (brs, 1 H, H-5_D), 3.98-3.95 (m, 1 H. H-4_D), 3.88-3.80 (m, 2 H, H-6_{abD}), 3.71 (OC H_3), 1.97 (s, 3 H, COC H_3); ¹³C NMR (100 MHz, CDCl₃): δ 169.9 (COCH₃), 168.0, 167.7 (COPhth), 155.5-114.4 (Ar-C), 97.7 (C-1_D), 73.8 (C-5_D), 73.4 (C-3_D), 70.6 (PhCH₂), 69.5 (C-6_D), 67.5 (C-4_D), 55.6 (OCH₃), 51.2 (C-2_D), 20.8 (COCH₃); ESI-MS: m/z 570.1 [M+Na]⁺; Anal. Calcd.for C₃₀H₂₉NO₉ (547.18): C, 65.81; H 5.34%; found C, 65.67; H, 5.48%.

3-Azidopropyl (2,3-di-O-benzyl-4,6-O-benzylidene- β -D-glucopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-benzyl-β-D-galactopyranoside (8): To a solution of compound 2 (5 g, 9.38 mmol) and compound 3 (5.54 g, 11.251 mmol) in anhydrous CH₂Cl₂ (80.0 mL) was added MS 4 Å (3.0 g) and the reaction mixture was stirred under argon at room temperature for 30 min and cooled to -30 °C. To the cooled reaction mixture were added NIS (3.04 g, 13.50 mmol) and TMSOTf (50µL) and it was stirred at same temperature for 1 h. The reaction mixture was filtered through a Celite® bed and washed with CH₂Cl₂ (200 mL). The combined organic layer was successively washed with 5% Na₂S₂O₃, satd. NaHCO₃ and water, dried (Na₂SO₄) and concentrated. The crude product was purified over SiO₂ using hexane/EtOAc (5:1) as eluant to give pure compound 8 (6.5g, 72%). Colorless oil; $[\alpha]_D^{25}$ –27 (c 1.0, CHCl₃); IR (neat): 3725, 3417, 2144, 1742, 1666, 1629, 1517, 1061, 741cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta 7.56-7.24$ (m, 30 H, Ar-H), 5.57 (s, 1 H, PhCH), 5.04 (d, J = 3.6 Hz, 1 H, H-1_B), 5.03 (d, J = 11.1 Hz, 1 H, PhC H_2), 4.96 (d, J = 11.8 Hz, 1 H, PhC H_2), 4.88 (dd, J = 11.8 Hz, 2 H, PhC H_2), 4.82(d, J = 11.7 Hz, 1 H, PhC H_2), 4.72 (dd, J = 11.8 Hz, 2 H, PhC H_2), 4.62 (d, J = 11.8 Hz, 1 H, PhC H_2), 4.51 (d, J = 11.9 Hz, 1 H, PhC H_2), 4.38 (d, J = 7.6 Hz, 1 H, H-1_A), 4.34 (brs, 1 H, PhC H_2), 4.33-4.29 (m, 1 H, H- 4_B), 4.24 (dd, J = 9.9, 8.4 Hz, 1 H, H- 2_A), 4.09 $(d, J = 2.8 \text{ Hz}, 1 \text{ H}, H-4_A), 4.07-3.98 \text{ (m}, 2 \text{ H}, H-6_{aB}, -OCH_2-), 3.93 \text{ (dd}, J = 9.8, 7.8 \text{ Hz}, 1 \text{ H},$ $H-6_{aA}$), 3.78 (dd, J = 10.2, 9.9 Hz, 1H, $H-3_{B}$), 3.69-3.63 (m, 3 H, $H-3_{A}$, $H-5_{B}$, -OC H_{2} -), 3.62-3.54 (m, 3 H, H- 2_B , H- 6_{bA} , H- 6_{bB}), 3.49-3.46 (m, 1 H, H- 5_A), 3.44 (t, J=6.8 Hz, 2 H,

 CH_2N_3), 1.98-1.87 (m, 2 H, - CH_2 -); ¹³C NMR (100 MHz, CDCl₃): δ 137.7-126.0 (Ar-C), 103.9 (C-1_A), 101.1 (Ph*C*H), 100.5 (C-1_B), 82.9 (C-5_B), 80.6 (C-5_A), 79.7 (C-3_A), 78.8 (C-3_B), 78.7 (C-2_A), 75.6 (C-4_A), 75.1 (Ph*C*H₂), 75.0 (Ph*C*H₂), 73.9 (Ph*C*H₂), 73.4 (C-2_B), 73.1 (Ph*C*H₂), 72.7 (Ph*C*H₂), 69.0 (C-6_A), 67.9 (C-6_B), 66.5 (-O*C*H₂-), 62.9 (C-4_B), 48.3 (*C*H₂N₃), 29.3 (-*C*H₂-); ESI-MS: m/z986.2 [M+Na]⁺; Anal. Calcd.for C₅₇H₆₁N₃O₁₁ (963.43): C, 71.01;H6.38%; found C, 70.91; H, 6.51%.

(2,3-di-O-benzyl-β-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-3-Azidopropyl galactopyranoside (9): To a solution of compound 8 (4 g, 4.15 mmol) in CH₃CN (50 mL) was added HClO₄/SiO₂ (0.5 g) and the reaction mixture was allowed to stir at room temperature for 20 min. The reaction mixture was filtered and the filtrate was evaporated to dryness. The crude product was purified over SiO₂ using hexane/EtOAc (2:1) to give pure compound **9** (3.08 g, 85%); $[\alpha]_D^{25}$ –22 (c 1.0, CHCl₃); IR (neat): 3407, 2917, 2324, 1536, 1425, 1352, 1216, 1161, 1048, 742, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ7.43-7.25 (m, 25 H, Ar-H), 5.02 (d, J = 11.6 Hz, 1 H, PhC H_2), 5.01 (d, J = 2.8 Hz, 1 H, H-1_B), 4.91 (d, J =11.9 Hz, 1 H, PhC H_2), 4.82 (dd, J = 11.9 Hz, 4 H, PhC H_2), 4.72 (dd, J = 12.0 Hz, 2 H, $PhCH_2$), 4.39 (d, J = 7.6 Hz, 1 H, H-1_A), 4.36 (brs, 2 H, $PhCH_2$), 4.08-4.01 (m, 3 H, H-2_B, H- $3_{\rm B}$, -OC H_2 -), 3.98-3.94 (m, 2 H, H- $3_{\rm A}$, H- $6_{\rm aB}$), 3.76 (dd, J=9.8, 7.5 Hz, 1 H, H- $2_{\rm A}$), 3.72-3.64 (m, 2 H, H-6_{bB}, -OCH₂-), 3.61-3.51 (m, 5 H, H-4_A, H-4_B, H-5_B,H-6_{abA}), 3.48-3.47 (m, 1 H, H-5_A), 3.46 (t, J = 6.7 Hz, 2 H, CH_2N_3), 1.97-1.87 (m, 2 H, $-CH_2$ -); ^{13}C NMR (100 MHz, CDCl₃): δ 138.8-127.6 (Ar-C), 103.9 (C-1_A), 99.6 (C-1_B), 81.3(C-3_B), 80.8 (C-5_A), 80.4 (C-4_A), 79.0 (C-2_A), 76.0 (C-3_A), 75.3 (PhCH2), 75.2 (PhCH₂), 73.6 (C-5_B), 73.4 (PhCH₂), 73.2 $(PhCH_2)$, 72.8 $(PhCH_2)$, 71.8 $(C-2_B)$, 70.9 $(C-4_B)$, 68.4 $(C-6_B)$, 66.6 $(-OCH_2-)$, 62.2 $(C-6_A)$, 48.3 (CH_2N_3), 29.3 ($-CH_2$ -); ESI-MS: m/z 898.2 [M+Na]⁺; Anal. Calcd.for $C_{50}H_{57}N_3O_{11}$ (875.40): C, 68.55; H, 6.56%; found C, 68.41; H, 6.71%.

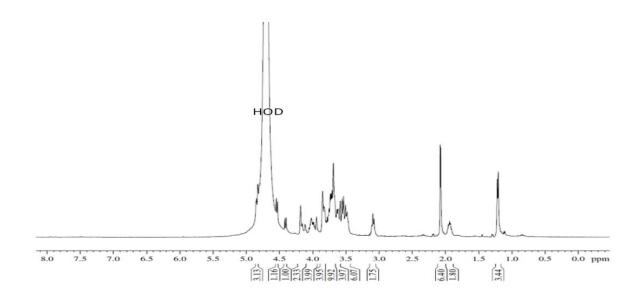
3-Azidopropyl (6-O-benzoyl-2,3-di-O-benzyl-β-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-benzoyl-2,3-di-O-benzyl-β-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranosylbenzyl-β-D-galactopyranoside (10): To a solution of compound 9 (3 g, 3.43 mmol) in CH₂Cl₂ (30 mL) were added pyridine (5 mL) and benzoyl cyanide (0.49 g, 3.77 mmol) and the reaction mixture was stirred at room temperature for 2 h. The reaction mixture was diluted with CH₂Cl₂ (100 mL) and successively washed with 1 M HCl, satd NaHCO₃ and water, dried (Na₂SO₄), and concentrated. The crude product was purified over SiO₂ using hexane/Et₂O (3:1) as eluant to give pure compound **10** (2.7g, 80%); $[\alpha]_D^{25}$ -15 (c 1.0, CHCl₃);IR (neat):2917, 2140, 1721, 1597, 1503, 1451, 1276, 1221, 1066, 750cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.93-7.91 (d, J = 8.2 Hz, 2 H, Ar-H), 7.41-7.08 (m, 28 H, Ar-H), 4.96 $(d, J = 2.9 \text{ Hz}, 1 \text{ H}, H-1_B), 4.82 (dd, J = 11.9 \text{ Hz}, 3 \text{ H}, PhCH_2), 4.73 (d, J = 12.0 \text{ Hz}, 1 \text{ H}, 1 \text{ H})$ $PhCH_2$), 4.69 (d, J = 11.8 Hz, 1 H, $PhCH_2$), 4.68 (d, J = 11.8 Hz, 1 H, $PhCH_2$), 4.59 (dd, J = 11.8 Hz, 1 H, $PhCH_2$), 4.59 (dd, J = 11.8 Hz, 1 H, $PhCH_2$), 4.59 (dd, J = 11.8 Hz, 1 H, $PhCH_2$), 4.59 (dd, J = 11.8 Hz, 1 H, $PhCH_2$), 4.59 (dd, J = 11.8 Hz, 1 H, $PhCH_2$), 4.59 (dd, J = 11.8 Hz, 1 H, $PhCH_2$), 4.59 (dd, J = 11.8 Hz, 1 H, $PhCH_2$), 4.59 (dd, J = 11.8 Hz, 1 H, $PhCH_2$), 4.59 (dd, J = 11.8 Hz, 1 H, $PhCH_2$), 4.59 (dd, J = 11.8 Hz, 1 H, $PhCH_2$), 4.59 (dd, J = 11.8 Hz, 1 H, $PhCH_2$), 4.59 (dd, J = 11.8 Hz, 1 H, $PhCH_2$), 4.59 (dd, J = 11.8 Hz, 1 H, $PhCH_2$), 4.59 (dd, J = 11.8 Hz, 1 H, $PhCH_2$), 4.59 (dd, J = 11.8 Hz, I =11.8 Hz, 2 H, PhC H_2), 4.39 (dd, J = 12.3, 1.3 Hz, 1H, H- θ_{aA}), 4.22 (d, J = 7.7 Hz, 1 H, H- θ_{aA}), 4.21-4.19 (m, 3 H, H-2_B, PhC H_2), 3.99 (d, J = 2.1 Hz, 1 H, H-4_A), 3.92-3.86 (m, 4 H, H-2_A, $H-6_{bA}$, $H-6_{aB}$, $-OCH_2$ -), 3.63 (dd, J=9.8, 7.5 Hz, 1 H, $H-3_A$), 3.56-3.52 (m, 1 H, $-OCH_2$ -), 3.51-3.39 (m, 4 H, H-3_B,H-4_B, H-5_B, H-6_{bB}), 3.36-3.33 (m, 1 H, H-5_A), 3.30 (t, J = 6.7 Hz, 2 H, CH_2N_3), 1.82-1.77 (m, 2 H, $-CH_2$ -); ¹³C NMR (100 MHz, CDCl₃): δ 167.2 (COPh), 138.7-127.6 (Ar-C), 103.9 (C-1_A), 99.6 (C-1_B), 80.9 (C-2_A), 80.5 (C-5_A), 80.2 (C-3_B), 78.9 (C-3_A), 75.5 (C-4_A), 75.4 (PhCH₂), 75.2 (PhCH₂), 73.5 (C-5_B), 73.4 (PhCH₂), 73.1 (PhCH₂), 72.8 $(PhCH_2)$, 70.6 $(C-2_B)$, 70.4 $(C-4_B)$, 67.9 $(C-6_B)$, 66.6 $(-OCH_2-)$, 63.2 $(C-6_A)$, 48.4 (CH_2N_3) , 29.3 (- CH_2 -); ESI-MS: m/z1002.2 [M+Na]⁺; Anal. Calcd.for $C_{57}H_{61}N_3O_{12}$ (979.43): C, 69.85; H, 6.27%; found C, 69.71; H, 6.41%.

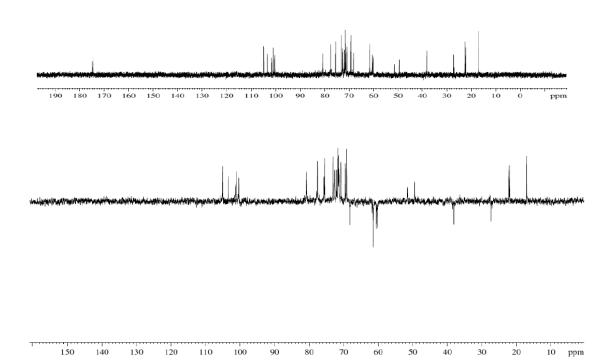
3-Azidopropyl (2-*O*-acetyl-4-*O*-benzyl-α-L-rhamnopyranosyl)-(1 \rightarrow 4)-(6-*O*-benzoyl-2,3-di-*O*-benzyl-β-D-glucopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-*O*-benzyl-β-D-galactopyranoside (11): To a solution of compound **10** (2 g, 2.04 mmol) and compound **4** (1.1 g, 2.45 mmol) in anhydrous CH₂Cl₂ (10 mL) was added MS 4 Å (2 g) and the reaction mixture was stirred

under argon at room temperature for 30 min and cooled to −30 °C. To the cooled reaction mixture were added NIS (0.66 g, 2.94 mmol) and TfOH (30 µL) and it was stirred at the same temperature for 1 h. The temperature of reaction mixture was raised to 0 °C and it was stirred at 0 °C for another 1 h. The reaction mixture was filtered through a Celite® bed and washed with CH₂Cl₂ (100 mL). The combined organic layer was successively washed with 5% Na₂S₂O₃, satd. NaHCO₃ and water, dried (Na₂SO₄) and concentrated. The crude product was purified over SiO₂ using hexane/EtOAc (4:1) as eluant to give pure compound 11 (1.97 g, 77%). Yellow oil; $[\alpha]_D^{25}$ +23 (c 1.0, CHCl₃); IR (neat): 3418, 2911, 2769, 2141, 1591, 1354, 1066, 762cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 8.2 Hz, 2 H, Ar-H), 7.23-6.99 (m, 33 H, Ar-H), 4.85 (d, J = 2.4 Hz, 1 H, H-1_B), 4.84 (brs, 1 H, H-1_C), 4.83 (brs, 2 H, H-2_C, $PhCH_2$), 4.72 (dd, J = 11.8 Hz, 2 H, $PhCH_2$), 4.62 (dd, J = 11.9 Hz, 4 H, $PhCH_2$), 4.51 (d, J = 11.8 Hz), 4.72 (dd, J = 11.8 Hz), 4.73 (dd, J = 11.8 Hz), 4.72 (dd, J = 11.8 Hz), 4.7 12.0 Hz, 1 H, PhC H_2), 4.48 (dd, J = 11.2 Hz, 2 H, PhC H_2), 4.30 (dd, J = 12.3, 1.3 Hz, 1 H, $H-6_{aA}$), 4.18 (d, J = 7.4 Hz, 1 H, $H-1_A$), 4.17-4.14 (m, 1 H, $H-2_B$), 4.10 (brs, 2 H, $PhCH_2$), 3.97-3.93 (m, 1 H, H-3_C), 3.87-3.81 (m, 5 H, H-3_B, H-4_A, H-5_C, H-6_{bA},-OCH₂-), 3.73-3.69 $(m, 2 H, H-4_B, H-6_{aB}), 3.58-3.47 (m, 2 H, H-3_A, -OCH_2-), 3.39-3.32 (m, 3 H, H-2_A, H-5_B, H-1_A, H 6_{\text{bB}}$), 3.30-3.27 (m, 1 H, H-5_A), 3.25 (t, J = 6.7 Hz, 2 H, CH_2N_3), 3.13 (t, J = 9.4 Hz, 1 H, H- $4_{\rm C}$), 1.86 (s, 3 H, COC H_3), 1.81-1.72 (m, 2 H, -C H_2 -), 0.91 (d, J=6.1 Hz, 3 H, CC H_3); 13 C NMR (100 MHz, CDCl₃): δ170.6 (COCH₃), 166.0 (COPh), 104.1 (C-1_A), 98.7 (C-1_B), 97.6 $(C-1_C)$, 81.7 $(C-4_C)$, 81.2 $(C-2_A)$, 80.3 $(C-5_A)$, 79.5 $(C-3_B)$, 78.9 $(C-3_A)$, 75.6 $(C-4_A)$, 75.4 (PhCH₂), 75.2 (C-4_B), 75.1 (PhCH₂), 75.0 (PhCH₂), 73.6 (PhCH₂), 73.5 (C-5_B), 73.2 (PhCH₂), 72.9 (PhCH₂), 72.8 (C-2_C), 69.9 (C-3_C), 69.5 (C-2_B), 68.2 (C-5_C), 68.0 (C-6_B), 66.7 (-OCH₂-), 62.7 (C-6_A), 48.4 (CH₂N₃), 29.3 (-CH₂-), 20.9 (COCH₃), 17.9 (CCH₃); ESI-MS: m/z1280.3 [M+Na]⁺; Anal. Calcd.for C₇₂H₇₉N₃O₁₇ (1257.54): C, 68.72; H, 6.33%; found C, 68.58; H, 6.45%.

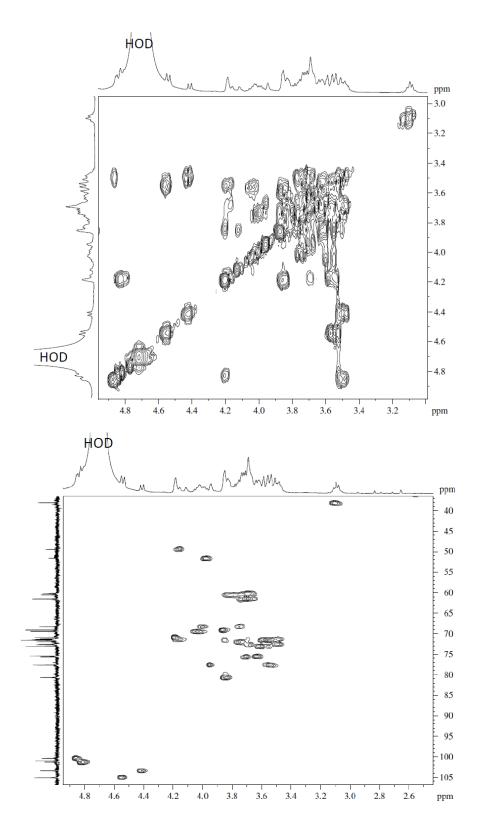
p-Methoxyphenyl (3,4,6-tri-*O*-acetyl-2-azido-2-deoxy- α -D-galactopyranosyl)-(1 \rightarrow 4)-(3-O-acetyl-6-O-benzyl-2-deoxy-2-phthalimido-β-D-galactopyranoside (12): To a solution of compound 5 (2 g, 3.66 mmol) and trichloroacetimidate donor 6 (2.08 g, 4.39 mmol) in dry Et₂O/CH₂Cl₂ (50 mL; 3:1; v/v) was cooled to -15 °C. To the cooled reaction mixture was added NOBF₄ (400 mg, 3.42 mmol) and the reaction mixture was allowed to stir at the same temperature for 1 h. When TLC showed complete consumption of the acceptor 5 then the reaction mixture was diluted with CH₂Cl₂ (100 mL) and the organic layer was washed with satd. NaHCO₃ and water, dried (Na₂SO₄) and evaporated to dryness. The crude product was purified over SiO₂ using hexane/EtOAc (5:1) as eluent to furnish pure compound 12 (2.35 g, 75%); yellow oil; $[\alpha]_D^{25} + 18$ (c 1.0, CHCl₃); IR (neat): 3429, 2927, 2369, 2111, 1752, 1717, 1635, 1574, 1377, 1228, 1070, 906cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ7.88 (brs, 2 H, Ar-H), 7.77-7.76 (m, 2 H, Ar-H), 7.74-7.31 (m, 5 H, Ar-H), 6.75 (d, J = 9.1 Hz, 2 H, Ar-H), 6.76 (d, $J = 9.1 \text{ Hz}, 2 \text{ H}, \text{ Ar-H}, 5.92 (d, <math>J = 8.1 \text{ Hz}, 1 \text{ H}, \text{ H-1}_{D}), 5.72 (dd, <math>J = 9.2, 1.9 \text{ Hz}, 1 \text{ H}, \text{ H-3}_{D}),$ 5.65 (dd, J = 2.2 Hz, 1 H, H-4_E), 5.53 (dd, J = 10.5, 2.6 Hz, 1 H, H-3_E), 5.06 (d, J = 2.7 Hz, 1 H, H-1_E), 4.84 (dd, J = 9.2, 6.8 Hz, 1 H, H-2_D), 4.72-4.69 (m, 1 H, H-4_D), 4.63-4.60 (m, 2 H, $PhCH_2$),4.41 (d, J = 2.2 Hz, 1 H, H-5_E), 4.22-4.13 (m, 2 H, H-6_{abE}), 4.09-4.03 (m, 3 H, H-5_D) $H-6_{aD}$), 3.91-3.87 (m, 1 H, H-2_E), 3.86-3.73 (m, 1 H, H-6_{bD}), 3.74 (s, 3 H, OC H_3), 2.20 (s, 3 H, $COCH_3$), 2.13 (s, 3 H, $COCH_3$), 2.09 (s, 3 H, $COCH_3$), 1.94 (s, 3 H, $COCH_3$); ¹³C NMR (100 MHz, CDCl₃): δ170.4 (COCH₃), 170.1, (COCH₃), 170.0 (COCH₃), 169.6 (COCH₃), 168.0, 167.7 (COPhth), 155.5-114.2 (Ar-C), 99.1 (C-1_E), 97.7 (C-1_D), 74.9 (C-5_E), 73.6 (C- 5_{D}), 73.4 (PhCH₂), 70.2 (C-3_D), 68.9 (C-3_E), 67.4 (2 C, C-4E, C-6_D), 67.0(C-4_D), 60.8(C-6_E), 58.6 (C-2_E), 55.6 (OCH₃), 51.5 (C-2_D), 20.7 (4 C, COCH₃); ESI-MS: m/z 883.1 [M+Na]⁺; Anal. Calcd.for C₄₂H₄₄N₄O₁₆ (860.28): C, 58.60; H, 5.15%; found C, 58.47; H, 5.33%.

p-Methoxyphenyl (2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-α-D-galactopyranosyl)- $(1\rightarrow 4)$ -(3-O-acetyl-6-O-benzyl-2-deoxy-2-phthalimido-β-D-galactopyranoside (13): A solution of the azidodisaccharide 12 (2 g, 2.33 mmol) and PPh₃ (0.73 g, 2.79 mmol) in THF (20 mL) and trace amount of water was stirred to rt for 6 h. The solvent was evaporated and co-evaporated with toluene. A solution of the crude product in pyridine (5 mL) and acetic anhydride (5 mL) was kept at room temperature for 1 h. The solvents were evaporated and the crude product was purified over SiO₂ usinghexane-EtOAc (5:1) as eluent to furnish pure compound **13** (1.7 g, 84%); yellow oil; $[\alpha]_D^{25}$ +22 (c 1.0, CHCl₃); IR (neat): 3057, 2990, 2829, 1695, 1602, 1508, 1466, 1369, 1341, 1170, 1125, 1055, 992, 857, 746cm^{-1} ; $^{1}\text{H NMR}$ (400 MHz, CDCl₃): δ 7.65 (brs, 1 H, Ar-H), 7.55-7.54 (m, 1 H, Ar-H), 7.47-7.45 (m, 2 H, Ar-H) H), 7.36-7.27 (m, 5 H, Ar-H), 6.92 (d, J = 9.1 Hz, 2 H, Ar-H), 6.76 (d, J = 9.1 Hz, 2 H, Ar-H), 5.45 (d, J = 2.3 Hz, 1 H, H-4_E), 5.33 (dd, J = 9.2, 1.9 Hz, 1 H, H-3_D), 5.26 (dd, J = 11.3, 3.2 Hz, 1 H, H-3_E), 5.11 (d, J = 8.2 Hz, 1 H, H-1_D), 5.07 (d, J = 3.6 Hz, 1 H, H-1_E), 4.66-4.60 $(m, 2 H, H-2_E, H-4_D), 4.59 (d, J = 11.8 Hz, 1 H, PhCH₂), 4.43 (d, J = 11.8 Hz, 1 H, PhCH₂).$ 4.33-4.29 (m, 1 H, H-2_D), 4.28 (d, J = 2.4 Hz, 1 H, H-5_E), 4.15-4.14 (m, 2 H, H-6_{abE}), 3.85-4.153.82 (m, 1 H, H-5_D), 3.74 (s, 3 H, OC H_3) 3.62-3.53 (m, 2 H, H-6_{abD}), 2.16 (s, 3 H, COC H_3), 2.09 (s, 3 H, COCH₃), 2.02 (s, 3 H, COCH₃), 1.99 (s, 3 H, COCH₃), 1.89 (s, 3 H, COCH₃); ¹³C NMR (100 MHz, CDCl₃): δ170.7 (2 C, COCH₃), 170.6, (COCH₃), 170.4 (COCH₃), 170.3(COCH₃), 169.0, 168.8 (COPhth), 155.5-114.5 (Ar-C), 100.9 (C-1_D), 97.8 (C-1_E), 73.4 (PhCH₂), 73.1 (C-5_D), 71.5 (C-5_E), 71.2 (C-3_D), 68.1 (C-3_E), 66.9 (C-4_E), 66.8 (C-6_D), 66.6 (C-4_D), 61.2 (C-6_E), 55.6 (OCH₃), 51.9 (C-2_D), 47.6 (C-2_E), 23.1 (NHCOCH₃), 20.8 (2 C, COCH₃), 20.7 (2 C, COCH₃); ESI-MS: m/z 899.1 [M+Na]⁺; Anal. Calcd.for C₄₄H₄₈N₂O₁₇ (876.29): C, 60.27; H, 5.52%; found C, 60.12; H, 5.65%.

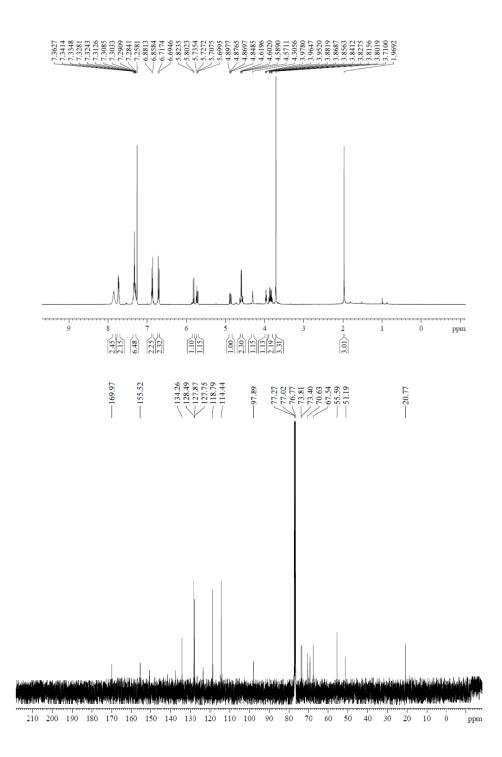

3-Azidopropyl (2-acetamido-3,4,6-tri-O-acetyl-2-deoxy- α -D-galactopyranosyl)-(1 \rightarrow 4)-(3-O-acetyl-6-O-benzyl-2-deoxy-2-phthalimido- β -D-galactopyranosyl)-(1 \rightarrow 3)-(2-O-acetyl-4-O-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 4)-(6-O-benzoyl-2,3-di-O-benzyl- β -D-

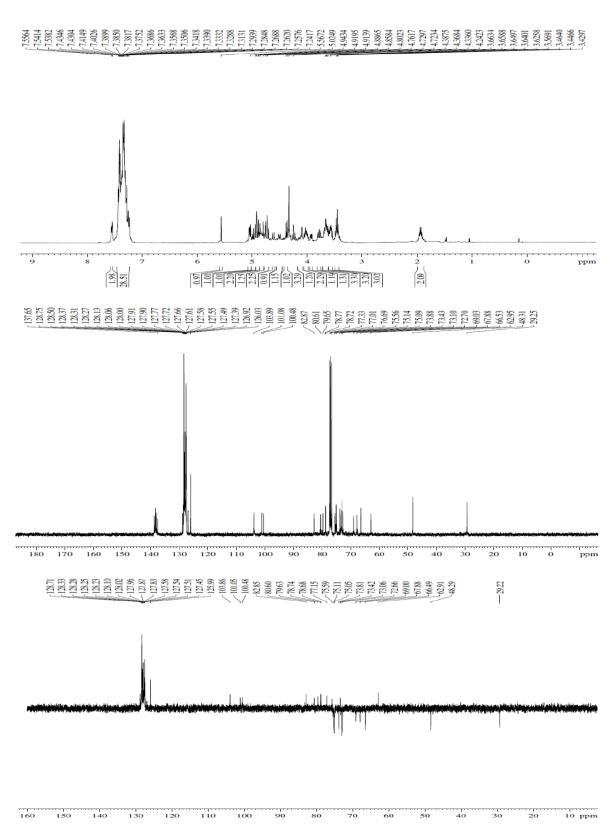

glucopyranosyl)- $(1\rightarrow 4)$ -2,3,6-tri-O-benzyl-β-D-galactopyranoside (15): To a solution of compound 13 (1 g, 1.14 mmol) in CH₃CN/H₂O (20 mL, 4:1 v/v) was added ammonium cerium nitrate (CAN, 0.94 g, 1.71mmol) and the reaction mixture was allowed to stir at room temperature for 2 h. The reaction mixture was diluted with CH₂Cl₂ (50 mL) and the organic layer was washed with satd NaHCO₃ (50 mL) and water (50 mL), dried (Na₂SO₄), and evaporated to dryness to give the disaccharide hemiacetal. To a solution of the hemiacetal in anhydrous CH₂Cl₂ (20 mL) was added trichloroacetonitrile (0.16 mL, 1.69 mmol) and the reaction mixture was cooled to -10 °C. To the cooled reaction mixture was added DBU (0.2 mL, 1.3 mmol) and it was allowed to stir at -10 °C for 1 h. The reaction mixture was evaporated to dryness and the crude product was passed through a short pad of SiO₂ to furnish compound 14 (0.80 g, 77%). A solution of compound 11 (0.80 g, 0.64 mmol) and compound 14 (0.70 g, 0.76 mmol) in anhydrous CH₂Cl₂ (15 mL) was cooled to −15 °C. To the cooled reaction mixture was added NOBF₄ (90 mg, 0.77 mmol) and it was allowed to stir at -15 °C for 1 h. The reaction mixture was diluted with CH₂Cl₂ (30 mL) and the organic layer was washed with satd NaHCO₃ (20 mL) and water (20 mL) in succession, dried (Na₂SO₄), and evaporated to dryness. The crude product was purified over SiO₂ using hexane/EtOAc (4:1) as eluent to give pure **15** (0.90 g, 70%); yellow oil; $[\alpha]_D^{25}$ +28 (c 1.0, CHCl₃);IR (neat): 3027, 2890, 2329, 2144, 1602, 1508, 1456, 1321, 1150, 1055, 992, 867 $cm^{-1}; \ ^{1}H\ NMR\ (400\ MHz,\ CDCl_{3}):\ \delta\ 8.04-8.03\ (m,\ 2\ H,\ Ar-H),\ 7.39-7.17\ (m,\ 42\ H,\ Ar-H),$ 5.51 (dd, J = 11.3, 2.2 Hz, 1 H, H-3_E), 5.46 (d, J = 2.3 Hz, 1 H, H-4_E), 5.42 (brs, 1 H, H-2_C), 5.39 (dd, J = 9.1, 1.8 Hz, 1 H, H-3_D), 5.10 (d, J = 3.3 Hz, 1 H, H-1_E), 5.00 (d, J = 2.4 Hz, 1 H, H-1_B), 4.99-4.97 (m, 1 H, PhCH₂), 4.92 (brs, 1 H, H-1_C), 4.90-4.80 (m, 4 H, PhCH₂), 4.774.74 (m, 1 H, PhC H_2), 4.73-4.71 (d, J = 11.3 Hz, 1 H, PhC H_2), 4.69 (d, J = 7.7 Hz, 1 H, H- 1_D), 4.68-4.64 (m, 1 H, PhC H_2), 4.61-4.54 (m, 2 H, H- 6_{aA} , PhC H_2), 4.45 (dd, J = 11.7 Hz, 2 H, PhC H_2), 4.40 (d, J = 11.7 Hz, 1 H, PhC H_2), 4.39-4.36 (m, 2 H, H-2_E, H-4_D), 4.35 (d, J =7.8 Hz, 1 H, H-1_A), 4.33 (brs, 2 H, PhCH₂), 4.22-4.19 (m, 1 H, H-2_B), 4.13-4.03 (m, 7 H, H- 2_D , $H-3_B$, $H-3_C$, $H-5_C$, $H-5_E$, $H-6_{abE}$), 4.00-3.95 (m, 3 H, $H-4_A$, $H-6_{bA}$, $H-6_{aD}$), 3.90-3.83 (m, 2 H, H-6_{aB}, -OC H_2 -), 3.74 (dd, J = 9.6, 4.4 Hz, 1 H, H-3_A), 3.67-3.53 (m, 4 H, H-4_B, H-6_{bB}, H- 6_{bD} , $-OCH_2$ -), 3.51-3.48 (m, 4 H, H-2_A, H-4_C, H-5_A, H-5_B), 3.45-3.43 (m, 1 H, H-5_D), 3.41 (t, $J = 6.6 \text{ Hz}, 2 \text{ H}, \text{ NC}H_2$, 2.15 (s, 3 H, NHCOCH₃), 2.06 (s, 9 H, COCH₃), 2.04 (s, 6 H, $COCH_3$), 1.99-1.88 (m, 2 H, $-CH_2$ -), 1.27 (d, J = 6.1 Hz, 3 H, CCH_3); ¹³C NMR (100 MHz, CDCl₃): δ170.3 (2 C, COCH₃), 170.2 (COCH₃), 169.9 (2 C, COCH₃), 169.5 (COCH₃), 169.1, 168.9 (COPhth), 166.8 (COPh), 161.1-126.9 (Ar-C), 104.0 (C-1_A), 101.2 (C-1_D), 98.9 (C-1_B), 98.3 (C-1_C), 97.4 (C-1_E), 81.6 (C-4_C), 81.2 (C-2_A), 80.2 (C-5_A), 79.2 (C-3_B), 78.9 (C-3_A), 75.8 $(C-4_A)$, 75.3(PhCH₂), 74.9 (PhCH₂), 74.8 (PhCH₂), 73.7 (PhCH₂), 73.6(PhCH₂), 73.1 $(PhCH_2)$, 72.9 $(PhCH_2)$, 72.7 $(C-4_B)$, 72.4 $(C-5_D)$, 72.0 $(C-5_E)$, 71.7 $(C-5_B)$, 71.1 $(C-2_C)$, 69.7 $(C-3_C)$, 69.3 $(C-3_D)$, 68.7 $(C-3_E)$, 68.3 $(C-2_B)$, 68.2 $(C-5_C)$, 67.9 $(C-6_B)$, 67.2 $(-OCH_2-)$, 66.7 $(C-4_E)$, 66.3 $(C-6_D)$, 64.5 $(C-4_D)$, 62.3 $(C-6_A)$, 60.7 $(C-6_E)$, 57.9 $(C-2_D)$, 48.4 $(C-2_E)$, 48.2 (CH₂N₃), 29.2 (-CH₂-), 21.1 (NHCOCH₃), 20.7 (3 C, COCH₃), 20.6 (2 C, COCH₃),17.8 (CCH_3) ; ESI-MS: m/z 2032.5 $[M+Na]^+$; Anal. Calcd. for $C_{109}H_{119}N_5O_{32}(2009.78)$: C, 65.10; H, 5.96; found: C,64.93; H, 6.09.

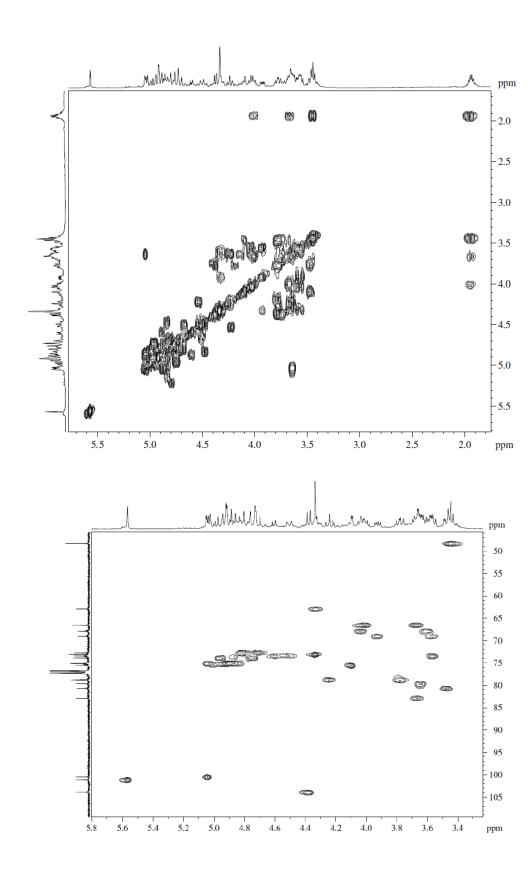
3-Aminopropyl (2-acetamido-2-deoxy- α -D-galactopyranosyl)-(1 \rightarrow 4)-(2-acetamido-2-deoxy- β -D-galactopyranosyl)-(1 \rightarrow 3)-(α -L-rhamnopyranosyl)-(1 \rightarrow 4)-(β -D-

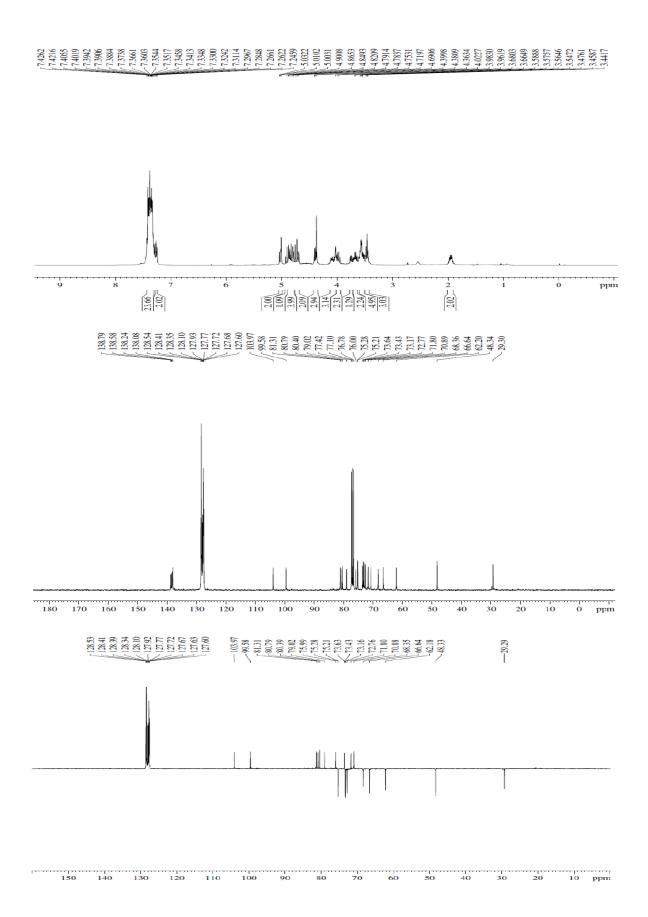

glucopyranosyl)- $(1\rightarrow 4)$ - β -D-galactopyranoside (1): To a solution of compound 15 (0.80 g, 0.39 mmol) in EtOH (20 mL) was added hydrazine hydrate (2 mL) and the mixture was allowed to stir at 80 °C for 8 h. The solvents were removed under reduced pressure and a solution of the crude mass in pyridine (5 mL) and acetic anhydride (5 mL) was kept at room

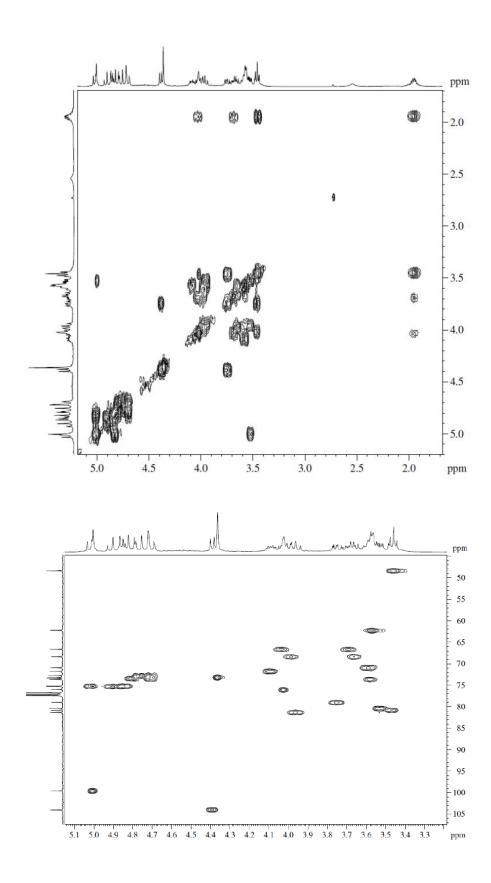
temperature for 1 h. The solvents were evaporated and co-evaporated with toluene under reduced pressure. To a solution of the acetylated product in CH₃OH (20 mL) was added 20% Pd(OH)₂/C (200 mg) and the reaction mixture was stirred at room temperature under a positive pressure of H₂ for 24 h. The reaction mixture was filtered through a Celite[®] bed, the filtering bed was washed with CH₃OH (10 mL) and the combined filtrate was concentrated under reduced pressure. A solution of the hydrogenated product in 0.1 M CH₃ONa in CH₃OH (10 mL) was allowed to stir at room temperature for 3 h. The reaction mixture was neutralized with Dowex 50W-X8 (H⁺) resin, filtered and concentrated. The crude product was passed through a Sephadex[®] LH-20 column using CH₃OH/H₂O (3:1) as eluant to give pure compound 1 (220 mg, 58%). White powder; $[\alpha]_D^{25} + 12$ (c 1.0, H₂O); IR (KBr): 3456, 2935, 1622, 1356, 1236, 1165, 1067, 697 cm⁻¹; H NMR (400 MHz, D₂O): δ 4.86 (brs, 1 H, $H-1_E$), 4.85 (brs, 1 H, $H-1_B$), 4.83 (brs, 1 H, $H-1_C$), 4.54 (d, J=7.6 Hz, 1 H, $H-1_A$), 4.41 (d, J=7.6 Hz, 1 H, J=7.6 Hz, 1 $= 7.8 \text{ Hz}, 1 \text{ H}, \text{H}-1_{\text{D}}), 4.18-4.11 \text{ (m, 2 H, H}-2_{\text{E}},\text{H}-5_{\text{D}}), 4.06-3.94 \text{ (m, 4 H, H}-2_{\text{D}}, \text{H}-4_{\text{A}}, \text{H}-5_{\text{C}} -$ OCH₂-), 3.86-3.82 (m, 4 H, H-3_B, H-3_C, H-4_E, H-6_{aB}), 3.77-3.67 (m, 10 H, H-2_C, H-3_E, H-6_{abA}, H-6_{bB}, H-6_{abD}, H-6_{abE}, -OCH₂-), 3.64-3.46 (m, 10 H, H-2_A, H-2_B, H-3_A, H-3_D, H-4_B, H-4_C, H-4_D, H-5_A, H-5_B, H-5_E), 3.13-310 (m, 2 H, NCH₂), 2.01 (s, 6 H, NHCOCH₃), 1.97-1.91 (m, 2 H, $-CH_2$ -), 1.21 (d, J = 6.1 Hz, 3 H, CCH_3); 13 C NMR (100 MHz, D_2O): δ 175.1, 174.9 (NHCOCH₃), 105.0 (C-1_A), 103.4 (C-1_D), 101.2 (C-1_C), 101.1 (C-1_B), 100.3 (C-1_E), 80.7 (C-1_C) $3_{\rm C}$), 77.6 (2 C, C-4_A, C-4_B), 75.7 (C-3_E), 75.5 (C-4_D), 73.1 (2 C, C-5_A, C-5_D), 72.7 (C-2_C), $72.6 (C-3_A)$, $71.9 (C-5_B)$, $71.6 (2 C, C-2_A, C-2_B)$, $71.4 (C-5_E)$, $71.3 (2 C, C-3_B, C-3_D)$, 70.8 $(C-4_C)$, 69.5 $(C-5_C)$, 69.1 $(C-4_E)$, 68.2 $(-OCH_{2-})$, 61.5 $(2 C, C-6_D, C-6_E)$, 60.5 $(C-6_B)$, 60.2 $(C-6_C)$ 6_A), 51.9 (C-2_D), 49.4 (C-2_E), 38.1 (NCH₂), 27.3 (-CH₂-), 22.1 (2 C, NHCOCH₃), 17.1 (CCH_3) ; ESI-MS: m/z 952.2 $[M+H]^+$; Anal. Calcd. for $C_{37}H_{65}N_3O_{25}(951.39)$: C, 46.68; H, 6.88; found: C,46.53; H, 6.99.



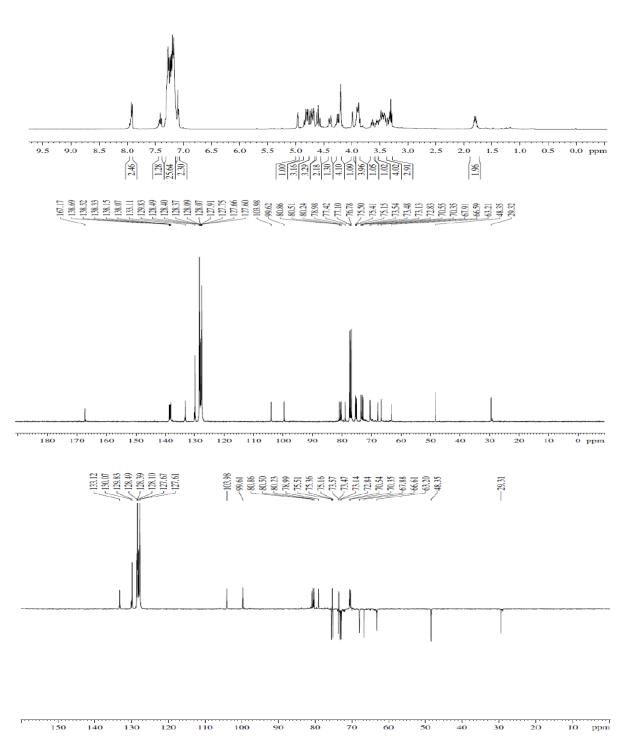

 1 H, 13 C and DEPT 135 NMR spectra of 3-aminopropyl (2-acetamido-2-deoxy- α -D-galactopyranosyl)-(1 \rightarrow 4)-(2-acetamido-2-deoxy- β -D-galactopyranosyl)-(1 \rightarrow 3)-(α -L-rhamnopyranosyl)-(1 \rightarrow 4)-(β -D-glucopyranosyl)-(1 \rightarrow 4)- β -D-galactopyranoside (1) (D₂O).


2D COSY and HSQC NMR spectra (selected regions) of 3-aminopropyl (2-acetamido-2-deoxy- α -D-galactopyranosyl)-(1 \rightarrow 4)-(2-acetamido-2-deoxy- β -D-galactopyranosyl)-(1 \rightarrow 3)-(α -L-rhamnopyranosyl)-(1 \rightarrow 4)-(β -D-glucopyranosyl)-(1 \rightarrow 4)- β -D-galactopyranoside (1) (D₂O).

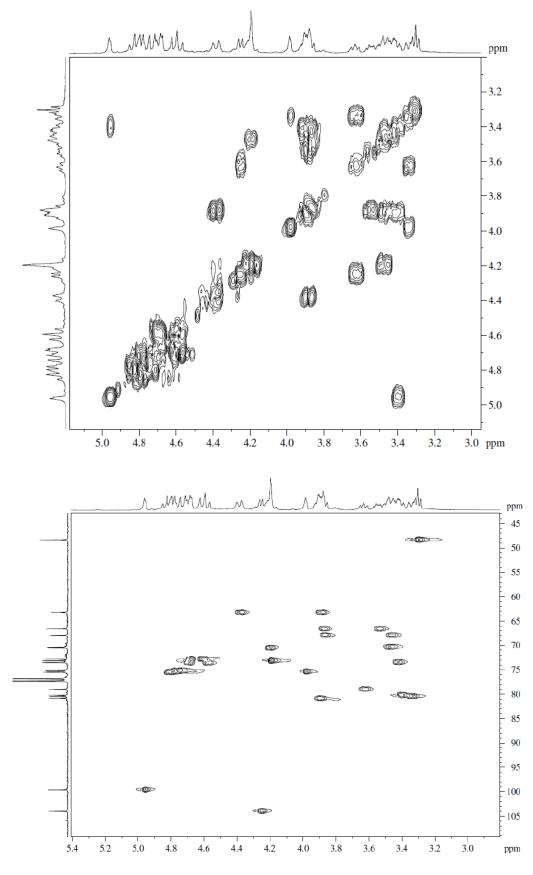

 1 H, 13 C and DEPT 135 NMR spectra of *p*-methoxyphenyl 3-*O*-acetyl-6-*O*-benzyl-2-deoxy-2-phthalimido-β-D-galactopyranoside (**5**) (CDCl₃).


¹H, ¹³C and DEPT 135 NMR spectra of 3-azidopropyl (2,3-di-O-benzyl-4,6-O-benzylidene-β-D-glucopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-benzyl-β-D-galactopyranoside (**8**) (CDCl₃).

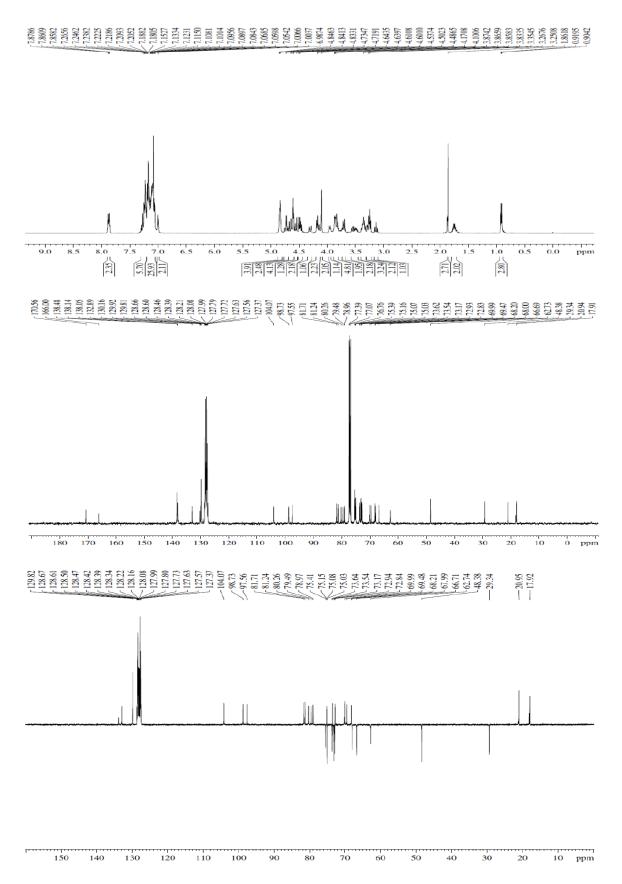
2D COSY and HSQC NMR spectra (selected regions) of 3-azidopropyl (2,3-di-O-benzyl-4,6-O-benzylidene- β -D-glucopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- β -D-galactopyranoside (8) (CDCl₃).

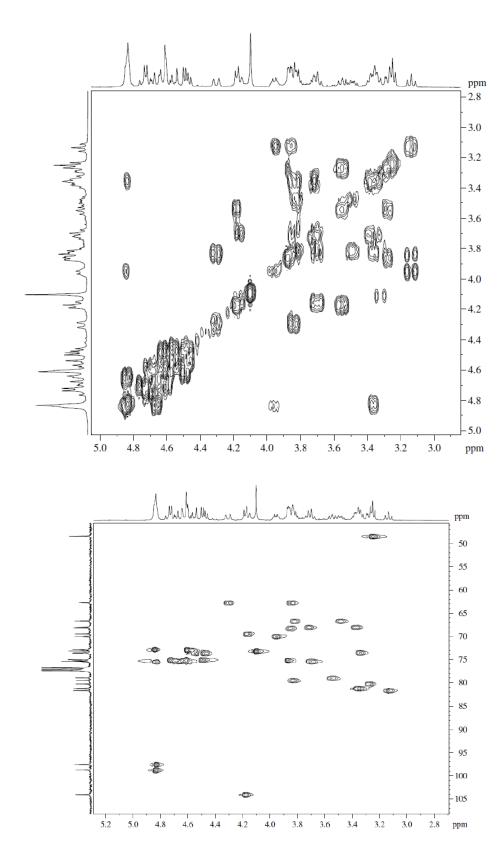


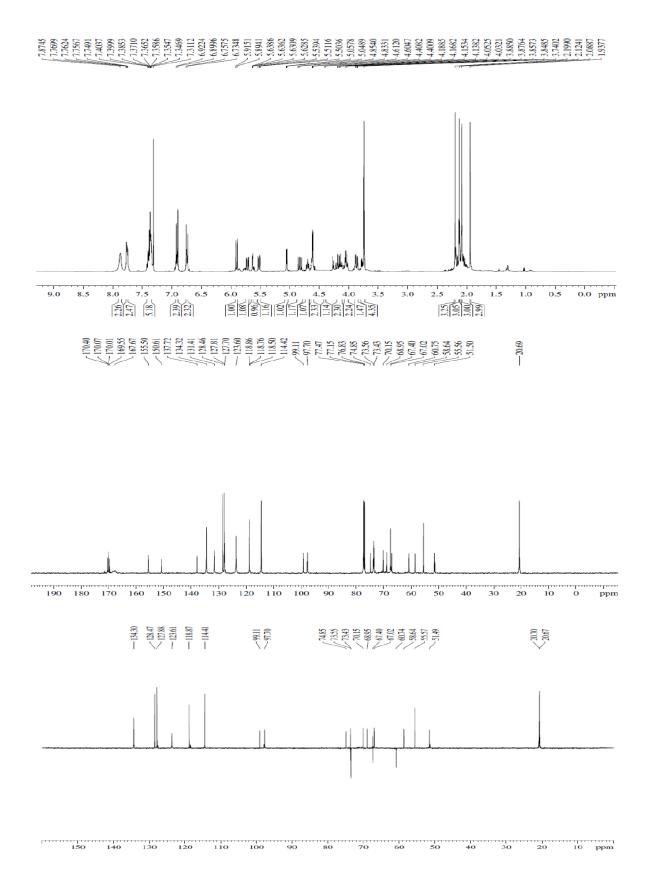
 1 H, 13 C and DEPT 135 NMR spectra of 3-azidopropyl (2,3-di-*O*-benzyl-β-D-glucopyranosyl)- (1 \rightarrow 4)-2,3,6-tri-*O*-benzyl-β-D-galactopyranoside (9) (CDCl₃).

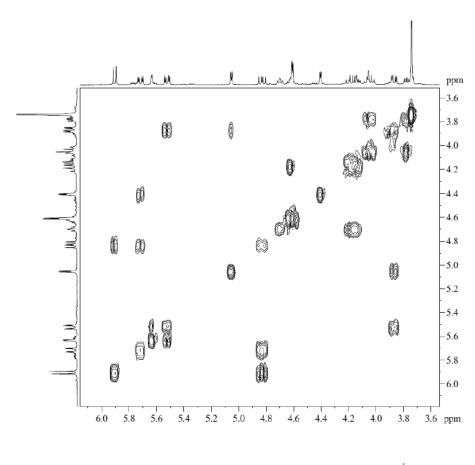


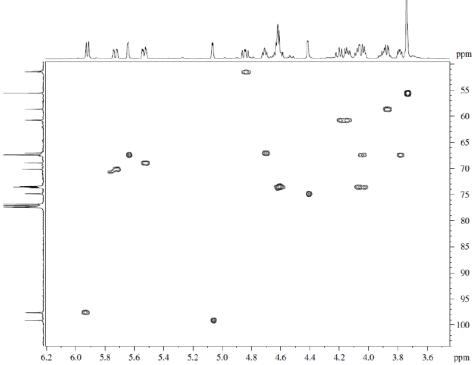
2D COSY and HSQC NMR spectra (selected regions) of 3-azidopropyl (2,3-di-O-benzyl- β -D-glucopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- β -D-galactopyranoside (9) (CDCl₃).


7,0255 7,0060 7,0060 7,1236 7,

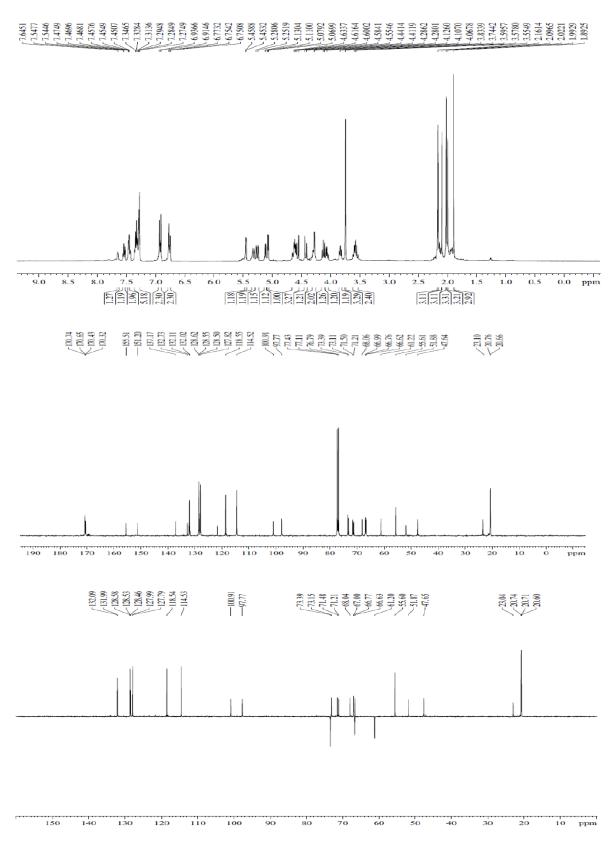

 1 H, 13 C and DEPT 135 NMR spectra of 3-azidopropyl (6-*O*-benzoyl-2,3-di-*O*-benzyl-β-D-glucopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-*O*-benzyl-β-D-galactopyranoside (**10**) (CDCl₃).


2D COSY and HSQC NMR spectra (selected regions) of 3-azidopropyl (6-O-benzoyl-2,3-di-O-benzyl- β -D-glucopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- β -D-galactopyranoside (10) (CDCl₃).

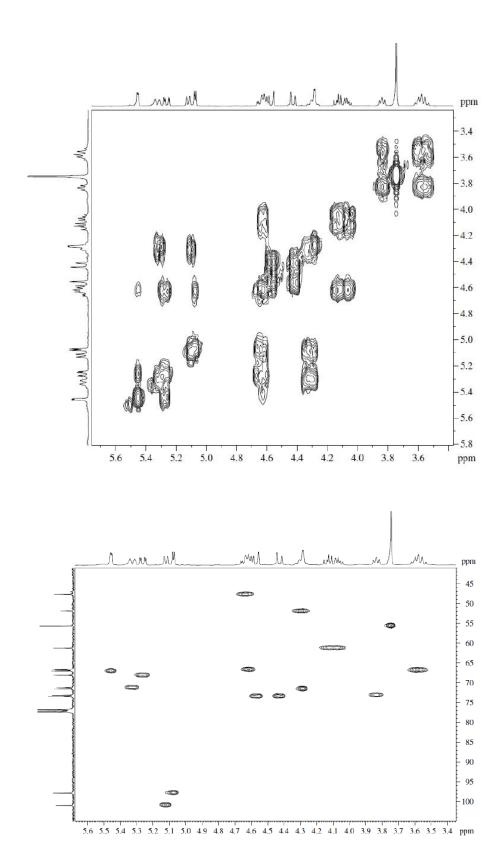

 1 H, 13 C and DEPT 135 NMR spectra of 3-azidopropyl (2-*O*-acetyl-4-*O*-benzyl-α-L-rhamnopyranosyl)-(1 \rightarrow 4)-(6-*O*-benzoyl-2,3-di-*O*-benzyl-β-D-glucopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-*O*-benzyl-β-D-galactopyranoside (**11**) (CDCl₃).

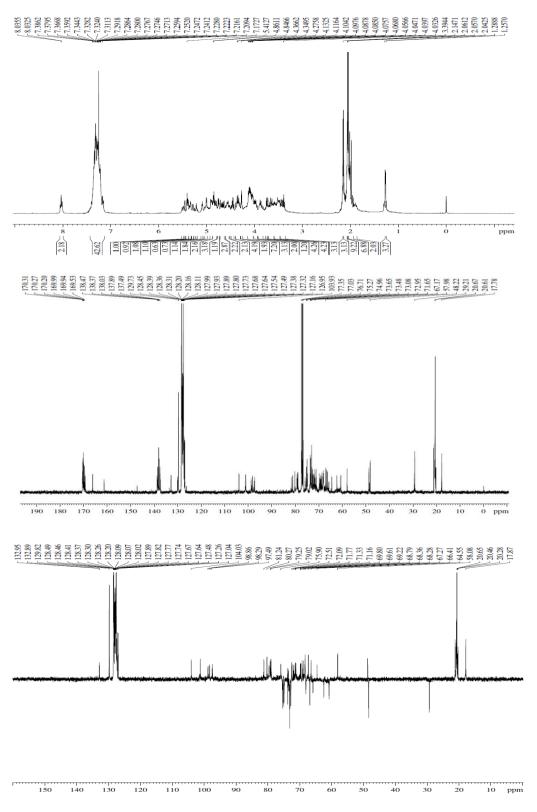


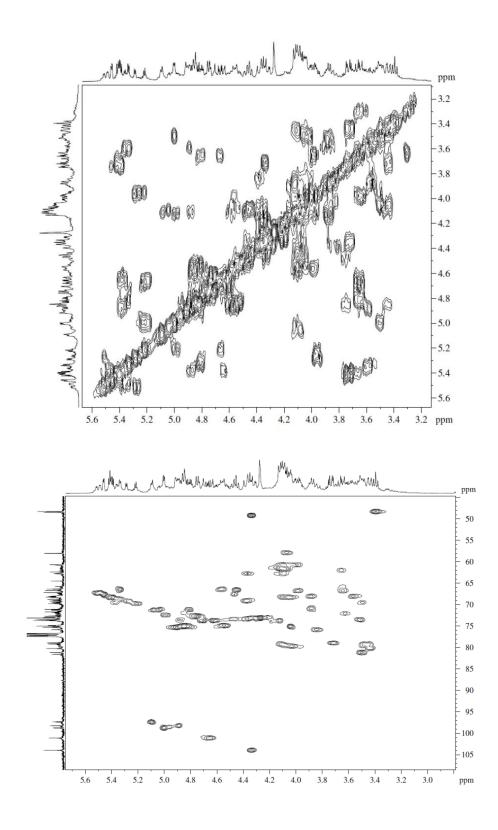
2D COSY and HSQC NMR spectra (selected regions) of 3-azidopropyl (2-O-acetyl-4-O-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 4)-(6-O-benzoyl-2,3-di-O-benzyl- β -D-glucopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- β -D-galactopyranoside (11) (CDCl₃).



¹H, ¹³C and DEPT 135 NMR spectra of *p*-methoxyphenyl (3,4,6-tri-*O*-acetyl-2-azido-2-deoxy- α -D-galactopyranosyl)-(1 \rightarrow 4)-(3-*O*-acetyl-6-*O*-benzyl-2-deoxy-2-phthalimido- β -D-galactopyranoside (12) (CDCl₃).




2D COSY and HSQC NMR spectra (selected regions) of p-methoxyphenyl (3,4,6-tri-O-acetyl-2-azido-2-deoxy- α -D-galactopyranosyl)-(1 \rightarrow 4)-(3-O-acetyl-6-O-benzyl-2-deoxy-2-phthalimido- β -D-galactopyranoside (12) (CDCl₃).


¹H, ¹³C and DEPT 135 NMR spectra of *p*-methoxyphenyl (2-acetamido-3,4,6-tri-*O*-acetyl-2-deoxy- α -D-galactopyranosyl)-(1 \rightarrow 4)-(3-*O*-acetyl-6-*O*-benzyl-2-deoxy-2-phthalimido- β -D-galactopyranoside (**13**) (CDCl₃).

2D COSY and HSQC NMR spectra (selected regions) of *p*-methoxyphenyl (2-acetamido-3,4,6-tri-O-acetyl-2-deoxy- α -D-galactopyranosyl)-(1 \rightarrow 4)-(3-O-acetyl-6-O-benzyl-2-deoxy-2-phthalimido- β -D-galactopyranoside (13) (CDCl₃).

 1 H, 13 C and DEPT 135 NMR spectra of 3-azidopropyl (2-acetamido-3,4,6-tri-O-acetyl-2-deoxy- α -D-galactopyranosyl)-(1 \rightarrow 4)-(3-O-acetyl-6-O-benzyl-2-deoxy-2-phthalimido- β -D-galactopyranosyl)-(1 \rightarrow 3)-(2-O-acetyl-4-O-benzyl- α -L-rhamnopyranosyl)-(1 \rightarrow 4)-(6-O-benzyl-2,3-di-O-benzyl- β -D-glucopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- β -D-galactopyranoside (**15**) (CDCl₃).

2D COSY and HSQC NMR spectra (selected regions) of 3-azidopropyl (2-acetamido-3,4,6-tri-O-acetyl-2-deoxy- α -D-galactopyranosyl)- $(1\rightarrow 4)$ -(3-O-acetyl-6-O-benzyl-2-deoxy-2-phthalimido- β -D-galactopyranosyl)- $(1\rightarrow 3)$ -(2-O-acetyl-4-O-benzyl- α -L-rhamnopyranosyl)- $(1\rightarrow 4)$ -(6-O-benzyl-2,3-di-O-benzyl- β -D-glucopyranosyl)- $(1\rightarrow 4)$ -2,3,6-tri-O-benzyl- β -D-galactopyranoside (15) (CDCl₃).