Supporting information

for

Stereoselective synthesis of perillaldehyde-based chiral β-amino acid derivatives through conjugate addition of lithium amides

Zsolt Szakonyi¹, Reijo Sillanpää², Ferenc Fülöp^{1,3,\$}*

Address: ¹Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös utca 6, Hungary, ²Department of Chemistry, University of Jyväskylä, POB 35, 40351 Jyväskylä, Finland and ³Stereochemistry Research Group of the Hungarian Academy of Sciences, H-6720 Szeged, Eötvös u. 6, Hungary

Email: <u>fulop@pharm.u-szeged.hu</u>

*Corresponding author

^{\$}Tel.: +36-62-545564; Fax: +36-62-545705

General information, experimental details, characterization data and copies of ¹H and ¹³C NMR spectra

Contents

Preparation and characterization data of compounds 6–14	
References	
¹ H, ¹³ C NMR and HMBC spectra of new compounds	

General informations

¹H NMR spectra were recorded on a Bruker Avance DRX 400 spectrometer at 400.13 MHz (¹H) and 100.61 MHz (¹³C) [$\delta = 0$ (TMS)] in CDCl₃, DMSO-d₆ or D₂O in a 5-mm tube. Chemical shifts are expressed in ppm (δ) relative to TMS as internal reference. *J* values are given in Hz. Microanalyses were performed on a Perkin-Elmer 2400 elemental analyser. Optical rotations were obtained with a Perkin-Elmer 341 polarimeter. Melting points were determined on a Kofler apparatus and are uncorrected. Chromatographic separations were carried out on Merck Kieselgel 60 (230-400 mesh ASTM). Reactions were monitored with Merck Kieselgel 60 F₂₅₄-precoated tlc plates (0.25 mm thickness).

(-)-(4S)-Perillaldehyde and (+)-(1R)-N-benzylphenylethylamine are commercially available. THF and toluene were dried over Na wire; all other chemicals and solvents were used as supplied. (-)-(4S)-Perillic acid and (4S)-4-isopropylcyclohex-1-enecarboxylic acid ((4S)-phellandric acid) were prepared by literature methods, and were identical with those reported therein [1-4].

Experimental details

(-)-(4*S*)-*tert*-Butyl perillate (3)

To a solution of (–)-perillic acid (7.20 g, 43.3 mmol) in dry toluene (60 mL), trifluoroacetic anhydride (16.4 mL, 24.47 g, 116.4 mmol) was added at room temperature. The resulting homogeneous solution was stirred for 40 min and then treated with *t*BuOH (52.0 g, 696 mmol) with ice-bath cooling. The solution was stirred for 4 h at room temperature, and the mixture was then diluted with toluene (200 mL), cooled to 0 °C and extracted, first with 10% aqueous NaOH solution (100 mL), then with H₂O (100 mL) and finally with brine (100 mL). The organic phase was dried (Na₂SO₄), filtered and concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel (*n*-hexane–Et₂O = 14:1), resulting in compound **3** as a colourless oil (5.10 g, 53%); $[\alpha]_D^{20} = -86.0$ (*c* = 0.25, MeOH); δ_H (400 MHz, CDCl₃) 1.38–1.47 (1H, *m*), 1.48 (9H, *s*), 1.74 (3H, *s*), 1.83–1.91 (1H, *m*), 2.02–2.24 (3H, *m*), 2.26–2.35 (1H, *m*), 2.39–2.48 (1H, *m*), 4.69–4.73 (1H, *m*), 4.74–4.76 (1H, *m*),

6.86–6.91 (1H, *m*); δ_C (100 MHz, CDCl₃) 21.1, 25.1, 27.6, 28.5, 31.5, 40.6, 80.1, 109.4, 131.5, 138.1, 148.9, 166.7. Anal. Calcd. for C₁₄H₂₄O₂ (222.32): C, 75.63; H, 9.97; Found: C, 75.90; H, 10.19.

(4S)-tert-Butyl 4-isopropylcyclohex-1-enecarboxylate (6)

Starting from **5** (3.64 g, 21.6 mmol), the synthesis of **6** was accomplished analogously as prescribed for **3**, furnishing unsaturated ester **6** as a colourless oil (2.33 g (48%); $[\alpha]_D^{20} = -96.0$ (*c* 0.25 in MeOH); δ_H (400 MHz, CDCl₃) 0.93 (3H, *d*, *J* = 6.6 Hz), 0.94 (3H, *d*, *J* = 6.6 Hz), 1.22 (1H, *ddd*, *J* = 5.1, 11.5, 23.8 Hz), 1.27–1.38 (1H, *m*), 1.48–1.58 (1H, *m*), 1.52 (9H, *s*), 1.82–1.97 (2H, *m*), 2.08–2.31 (2H, *m*), 2.41–2.50 (1H, *m*), 6.88–6.92 (1H, *m*); δ_C (100 MHz, CDCl₃) 20.0, 20.2, 25.3, 26.2, 28.6, 29.8, 32.4, 39.7, 80.1, 132.2, 138.8, 167.4. Anal. Calcd. for C₁₄H₂₄O₂ (224.34): C, 74.95; H, 10.78; Found: C, 75.24; H, 10.87.

Syntheses of amino esters 7A–D and 11: general procedure 1

n-BuLi solution (27 mL of a 1.6 M solution in *n*-hexane) was added dropwise to a stirred solution of secondary amine (45.1 mmol) in dry THF at -78 °C under an argon atmosphere, followed by stirring for 30 min prior to the addition of acceptor **3** or **6** (18.0 mmol) in dry THF (25 mL) at -78 °C. After the appropriate reaction time (6 h), saturated aqueous NH₄Cl solution (100 mL) was added and the solution was warmed to room temperature, partitioned between Et₂O (3x200 mL) and brine, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by column chromatography gave the desired products (the diastereomeric ratio of the crude product was determined by ¹H NMR measurement to be **7A:7B:7C:7D** = 76:17:6:1; **11** was obtained as a single diastereoisomer).

(1S,2R,4S)-tert-Butyl 2-dibenzylamino-4-isopropenylcyclohexane-1-carboxylate (7A)

According to *General procedure 1*, **7A** was prepared from **3** with dibenzylamine. Purification was accomplished by column chromatography on silica gel: the mixture of **7A** and **7B** was first separated from the mixture of **7C** and **7D** with *n*-hexane– $Et_2O = 19:1$; repeated chromatography with a mixture of *n*-hexane– Et_2O –AcOH = 94:5:1 then resulted in isolated compound **7A** (4.99 g, 66.1%). An oil;

 $[\alpha]_{D}^{20} = +15.0 \ (c \ 0.25 \ in \ MeOH); \ \delta_{H} \ (400 \ MHz, \ CDCl_{3}) \ 1.33-1.54 \ (2H, m), \ 1.44 \ (9H, s), \ 1.67 \ (3H, s), \ 1.71-1.89 \ (2H, m), \ 1.93-2.02 \ (1H, m), \ 2.30-2.38 \ (1H, m), \ 2.44-2.52 \ (1H, m), \ 2.60 \ (1H, dt, J = 4.8, \ 8.9 \ Hz), \ 3.33 \ (1H, dt, J = 4.6, \ 6.3 \ Hz), \ 3.67 \ (2H, d, J = 13.9 \ Hz), \ 3.78 \ (2H, d, J = 13.9 \ Hz), \ 4.66 \ (2H, d, J = 25.4 \ Hz), \ 7.16-7.36 \ (10H, m); \ \delta_{C} \ (100 \ MHz, \ CDCl_{3}) \ 21.9, \ 24.9, \ 28.0, \ 28.5, \ 30.3, \ 39.9, \ 46.7, \ 54.7, \ 55.5, \ 80.4, \ 109.7, \ 127.0, \ 128.4, \ 129.3, \ 140.5, \ 149.0, \ 174.6. \ Anal. \ Calcd. \ for \ C_{28}H_{37}NO_2 \ (419.60): \ C, \ 80.15; \ H, \ 8.89; \ N, \ 3.34; \ Found: \ C, \ 80.23; \ H, \ 9.06; \ N, \ 3.11.$

(1S,2S,4S)-tert-Butyl 2-dibenzylamino-4-isopropenylcyclohexane-1-carboxylate (7B)

According to *General procedure 1*, **7B** was prepared from **3** with dibenzylamine. Purification was accomplished by column chromatography on silica gel: the mixture of **7A** and **7B** was first separated from the mixture of **7C** and **7D** with *n*-hexane–Et₂O = 19:1; repeated chromatography with a mixture of *n*-hexane–Et₂O–AcOH = 94:5:1 then resulted in isolated compound **7B** (1.12 g, 14.8%). An oil; $[\alpha]_D^{20} = -8.0$ (*c* 0.255 in MeOH); δ_H (400 MHz, CDCl₃) 1.38–1.49 (2H, *m*), 1.46 (9H, *s*), 1.66–1.77 (2H, *m*), 1.73 (3H, *s*), 1.80–1.93 (2H, *m*), 2.23 (1H, *dd*, *J* = 12.0, 24.1 Hz), 2.70–2.82 (1H, *m*), 2.84–2.93 (1H, *m*), 3.74 (4H, *br s*), 4.70 (2H, *d*, *J* = 8.8 Hz), 7.14–7.42 (10H, *m*); δ_C (100 MHz, CDCl₃) 21.0, 26.8, 28.5, 29.0, 29.4, 43.2, 46.0, 55.0, 60.3, 80.1, 109.0, 127.0, 128.5, 128.8, 140.6, 149.9, 174.8. Anal. Calcd. for C₂₈H₃₇NO₂ (419.60): C, 80.15; H, 8.89; N, 3.34; Found: C, 80.31; H, 9.07; N, 3.20.

(1R,2S,4S)-tert-Butyl 2-dibenzylamino-4-isopropenylcyclohexane-1-carboxylate (7C)

According to *General procedure 1*, **7C** was prepared from **3** with dibenzylamine. Purification was accomplished by column chromatography on silica gel: the mixture of **7C** and **7D** was first separated from the mixture of **7A** and **7B** with *n*-hexane–Et₂O = 19:1; repeated chromatography with a mixture of *n*-hexane–Et₂O–AcOH = 94:5:1 then resulted in isolated compound **7C** (0.39 g, 5.2%). An oil; $[\alpha]_D^{20} = +64.0$ (*c* 0.255 in MeOH); δ_H (400 MHz, CDCl₃) 1.04–1.23 (2H, *m*), 1.41–1.50 (1H, *m*), 1.47 (9H, *s*), 1.67–1.76 (1H, *m*), 1.72 (3H, *s*), 1.81–1.95 (2H, *m*), 1.97–2.01 (1H, *m*), 2.47 (1H, *dt*, *J* = 3.7, 11.6 Hz), 2.95 (1H, *dt*, *J* = 3.4, 11.6 Hz), 3.42 (2H, *d*, *J* = 13.5 Hz), 3.82 (2H, *d*, *J* = 13.5 Hz), 4.68–

4.72 (2H, *m*), 7.17–7.34 (10H, *m*); δ_C (100 MHz, CDCl₃) 21.3, 28.5, 29.5, 30.0, 30.8, 44.5, 49.4, 54.1, 59.5, 80.1, 108.9, 127.1, 128.3, 129.5, 140.3, 150.1, 174.9. Anal. Calcd. for C₂₈H₃₇NO₂ (419.60): C, 80.15; H, 8.89; N, 3.34; Found: C, 80.39; H, 9.09; N, 3.14.

(1R,2R,4S)-tert-Butyl 2-dibenzylamino-4-isopropenylcyclohexane-1-carboxylate (7D)

Method A: According to *General procedure 1*, **7D** was prepared from **3** with dibenzylamine. Purification was accomplished by column chromatography on silica gel: the mixture of **7C** and **7D** was first separated from the mixture of **7A** and **7B** with *n*-hexane–Et₂O = 19:1; repeated chromatography with *n*-hexane–Et₂O–AcOH = 94:5:1 then resulted in isolated compound **7D** (66 mg, 0.9%).

Method B: According to General procedure 3, 7D was prepared from 7A (6.12 g, 93%).

An oil; $[\alpha]_D^{20} = -32.0$ (*c* 0.25 in MeOH); δ_H (400 MHz, CDCl₃) 1.35–1.60 (4H, *m*), 1.47 (9H, *s*), 1.62–1.71 (1H, *m*), 1.64 (3H, *s*), 1.86–1.94 (1H, *m*), 2.42–2.47 (1H, *m*), 2.51 (1H, *dt*, *J* = 4.2, 11.0 Hz), 3.13 (1H, *dt*, *J* = 3.4, 11.7 Hz), 3.46 (2H, *d*, *J* = 13.6 Hz), 3.82 (2H, *d*, *J* = 13.6 Hz), 4.59 (1H, *s*), 4.73–4.76 (1H, *m*), 7.15–7.34 (10H, *m*); δ_C (100 MHz, CDCl₃) 22.9, 26.0, 27.0, 27.5, 28.5, 39.2, 49.5, 54.1, 54.7, 80.0, 111.5, 127.1, 128.2, 129.5, 140.5, 146.1, 175.0. Anal. Calcd. for C₂₈H₃₇NO₂ (419.60): C, 80.15; H, 8.89; N, 3.34; Found: C, 80.37; H, 9.11; N, 3.10.

(1S,2R,4S)-tert-Butyl 2-[benzyl-(1-(1R')-phenylethyl)-amino]-4-isopropenyl-1-

cyclohexanecarboxylate (11)

According to *General procedure 1*, **11** was prepared from **3** and (1*R*)-phenylethylamine. Purification was accomplished by column chromatography on silica gel (*n*-hexane–Et₂O = 19:1), resulting in compound **11** (7.10 g, 88%) as an oil; $[\alpha]_D^{20} = +93.0$ (*c* 0.25 in MeOH); δ_H (400 MHz, CDCl₃) 1.29 (3H, *d*, *J* = 6.8 Hz), 1.41–1.59 (4H, *m*), 1.45 (9H, *s*), 1.70 (3H, *s*), 1.78–1.94 (2H, *m*), 2.36–2.50 (3H, *m*), 3.04–3.11 (1H, *m*), 3.94 (2H, *dd*, *J* = 15.0, 27.7 Hz), 4.07 (1H, *dd*, *J* = 6.8, 13.5 Hz), 4.67 (1H, *s*), 4.79 (1H, *s*), 7.14–7.44 (10H, *m*); δ_C (100 MHz, CDCl₃) 16.7, 22.8, 24.4, 25.3, 28.5, 29.6, 40.0, 46.1, 51.4, 54.0, 58.2, 80.2, 110.7, 126.6, 126.8, 128.1, 128.2, 128.3, 128.4, 143.2, 145.0, 147.5, 175.3. Anal. Calcd. for C₂₉H₃₉NO₂ (433.63): C, 80.33; H, 9.07; N, 3.23; Found: C, 80.47; H, 9.18; N, 3.01.

(1R,2R,4S)-tert-Butyl 2-[benzyl-(1-(1R')-phenylethyl)-amino]-4-isopropenyl-1-

cyclohexanecarboxylate (13): General procedure 3

To a solution of **11** (7.0 g, 15.68 mmol) in *t*BuOH (150 mL), KO*t*Bu (0.69 g, 6.15 mmol) was added and the solution was stirred at 40 °C for 24 h. The solution was evaporated to one-tenth volume, diluted with Et₂O (200 mL) and extracted with ice-cold water (3x150 mL). The organic phase was dried (Na₂SO₄) and concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel (*n*-hexane–Et₂O = 19:1), resulting in compound **13** (6.39 g, 91%); an oil; $[\alpha]_D^{20} = -13.0$ (*c* 0.25 in MeOH); δ_{t1} (400 MHz, CDCl₃) 1.25–1.38 (2H, *m*), 1.36 (3H, *d*, *J* = 6.8 Hz), 1.46 (9H, *s*), 1.50–1.72 (3H, *m*), 1.62 (3H, *s*), 1.75–1.83 (1H, *m*), 1.94–2.02 (1H, *m*), 2.32 (1H, *dt*, *J* = 4.5, 9.9 Hz), 2.36–2.42 (1H, *m*), 3.29 (1H, *dt*, *J* = 3.5, 10.7 Hz), 3.71 (1H, *d*, *J* = 14.8 Hz), 3.85 (1H, *d*, *J* = 14.8 Hz), 4.12 (1H, *dd*, *J* = 6.8, 13.9 Hz), 4.67 (1H, *s*), 4.61 (1H, *s*), 4.75–4.78 (1H, *m*), 7.13–7.35 (10H, *m*); δ_{c} (100 MHz, CDCl₃) 18.7, 22.7, 25.9, 27.4, 28.5, 31.0, 39.6, 49.4, 50.4, 55.9, 59.3, 79.9, 111.1, 126.7, 126.8, 128.1, 128.2, 128.5, 128.8, 142.7, 145.4, 146.8, 175.2. Calcd. for C₂₉H₃₉NO₂ (433.63): C, 80.33; H, 9.07; N, 3.23; Found: C, 80.51; H, 9.21; N, 2.97.

Syntheses of amino esters 8A-D, 12 and 14: general procedure 2

To a suspension of platinum-on-carbon (5% Pt/C, 0.180 g) in a 1:1 mixture of *n*-hexane–EtOAc (160 mL), the appropriate amino ester **7A–D**, **11** or **13** (3.15 mmol) in a 1:1 mixture of *n*-hexane–EtOAc (10 mL) was added, and the resulting mixture was stirred under a H₂ atmosphere (1 atm) at room temperature for 16 h. The suspension was filtered through a Celite pad and the solvent was evaporated off. The oily crude product obtained was purified by column chromatography (silica gel, *n*-hexane–Et₂O = 19:1), affording a colourless oily product.

(1S,2R,4S)-tert-Butyl 2-dibenzylamino-4-isopropylcyclohexane-1-carboxylate (8A)

According to *General procedure 2*, **8A** was prepared from **7A** (1.28 g, 91%); an oil; $[\alpha]_D^{20} = -35.0$ (*c* 0.125 in MeOH); δ_H (400 MHz, CDCl₃) 0.82 (3H, *d*, *J* = 6.5 Hz), 0.84 (3H, *d*, *J* = 6.5 Hz), 1.13–1.24

(1H, *m*), 1.30–1.41 (2H, *m*), 1.44 (9H, *s*), 1.47–1.56 (1H, *m*), 1.64–1.92 (3H, *m*), 2.18–2.27 (1H, *m*); 2.58 (1H, *dt*, J = 5.0, 9.6 Hz); 3.25 (1H, *dt*, J = 4.5, 7.1 Hz); 3.64 (2H, *d*, J = 13.9 Hz), 3.78 (2H, *d*, J = 13.9 Hz), 7.15–7.36 (10H, *m*); δ_{C} (100 MHz, CDCl₃) 20.7, 20.8, 24.8, 26.5, 28.5, 28.8, 30.2, 40.0, 46.8, 54.6, 55.6, 80.3, 127.0, 128.4, 129.2, 140.7, 174.8. Anal. Calcd. for C₂₈H₃₉NO₂ (421.61): C, 79.76; H, 9.32; N, 3.32; Found: C, 79.93; H, 9.55; N, 3.01.

(1S,2S,4S)-tert-Butyl 2-dibenzylamino-4-isopropylcyclohexane-1-carboxylate (8B)

According to *General procedure 2*, **8B** was prepared from **7B** (1.25 g, 90%); an oil; $[\alpha]_D^{20} = -4.0$ (*c* 0.125 in MeOH); δ_H (400 MHz, CDCl₃) 0.87 (3H, *d*, *J* = 6.5 Hz), 0.88 (3H, *d*, *J* = 6.5 Hz), 0.98–1.10 (1H, *m*), 1.26–1.52 (4H, *m*), 1.45 (9H, *s*), 1.62–1.69 (1H, *m*), 1.77–1.85 (1H, *m*), 1.95 (1H, *dd*, *J* = 12.2, 24.4 Hz); 2.63–2.73 (1H, *m*); 2.83–2.92 (1H, *m*), 3.73 (4H, *dd*, *J* = 14.6, 17.7 Hz), 7.15–7.40 (10H, *m*); δ_C (100 MHz, CDCl₃) 20.1, 20.3, 24.6, 28.3, 28.5, 29.4, 33.3, 43.5, 44.6, 55.0, 60.6, 80.3, 126.9, 128.4, 128.8, 141.2, 175.3. Anal. Calcd. for C₂₈H₃₉NO₂ (421.61): C, 79.76; H, 9.32; N, 3.32; Found: C, 79.89; H, 9.69; N, 3.21.

(1R,2S,4S)-tert-Butyl 2-dibenzylamino-4-isopropylcyclohexane-1-carboxylate (8C)

According to *General procedure 2*, **8**C was prepared from **7**C (1.29 g, 92%); an oil; $[\alpha]_D^{20} = +51.0$ (*c* 0.25 in MeOH); δ_H (400 MHz, CDCl₃) 0.80–0.85 (1H, *m*), 0.85 (3H, *d*, *J* = 2.3 Hz), 0.87 (3H, *d*, *J* = 2.3 Hz), 0.93 (1H, *dd*, *J* = 12.0, 23.7 Hz); 0.99–1.09 (1H, *m*), 1.34–1.47 (2H, *m*), 1.46 (9H, *s*), 1.60–1.68 (1H, *m*), 1.84–1.95 (2H, *m*), 2.41 (1H, *dt*, *J* = 3.8, 11.7 Hz); 2.88 (1H, *dt*, *J* = 3.6, 11.6 Hz); 3.42 (2H, *d*, *J* = 13.5 Hz), 3.81 (2H, *d*, *J* = 13.5 Hz), 7.16–7.33 (10H, *m*); δ_C (100 MHz, CDCl₃) 20.0, 20.1, 27.6, 28.5, 28.8, 30.1, 33.1, 43.4, 49.8, 54.1, 59.9, 79.9, 127.0, 128.2, 129.6, 140.4, 175.1. Anal. Calcd. for C₂₈H₃₉NO₂ (421.61): C, 79.76; H, 9.32; N, 3.32; Found: C, 79.85; H, 9.47; N, 3.19.

(1R,2R,4S)-tert-Butyl 2-dibenzylamino-4-isopropylcyclohexane-1-carboxylate (8D)

According to *General procedure 2*, **8D** was prepared from **7D** (1.25 g, 90%); an oil; $[\alpha]_D^{20} = -46.0$ (*c* 0.125 in MeOH); δ_H (400 MHz, CDCl₃) 0.81 (3H, *d*, *J* = 6.3 Hz), 0.86 (3H, *d*, *J* = 6.3 Hz), 1.20–1.41

(4H, *m*), 1.48 (9H, *s*), 1.42–1.69 (3H, *m*), 2.05–2.13 (1H, *m*), 2.49 (1H, *dt*, J = 4.3, 11.6 Hz); 3.02 (1H, *dt*, J = 3.5, 11.6 Hz); 3.40 (2H, *d*, J = 13.5 Hz), 3.80 (2H, *d*, J = 13.5 Hz), 7.15–7.35 (10H, *m*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 21.5, 21.7, 25.5, 26.2, 26.5, 27.5, 28.5, 41.1, 49.5, 54.1, 54.2, 80.0, 127.1, 128.2, 129.5, 140.6, 174.6. Anal. Calcd. for C₂₈H₃₉NO₂ (421.61): C, 79.76; H, 9.32; N, 3.32; Found: C, 79.90; H, 9.52; N, 3.13.

(1S,2R,4S)-tert-Butyl 2-[benzyl-(1-(1R')-phenylethyl)-amino]-4-isopropyl-1-

cyclohexanecarboxylate (12)

According to *General procedure 2*, **12** was prepared from **11** (1.28 g, 91%); an oil; $[\alpha]_D^{20} = +66.0$ (*c* 0.255 in MeOH); δ_H (400 MHz, CDCl₃) 0.80 (3H, *d*, *J* = 6.7 Hz), 0.83–0.89 (1H, *m*), 0.91 (3H, *d*, *J* = 6.6 Hz), 1.24–1.30 (1H, *m*), 1.29 (3H, *d*, *J* = 6.8 Hz), 1.32–1.53 (4H, *m*), 1.45 (9H, *s*), 1.66–1.78 (2H, *m*), 1.64–1.92 (3H, *m*), 2.28 (1H, *dt*, *J* = 4.5, 12.9 Hz); 2.36–2.43 (1H, *m*); 2.99 (1H, *dt*, *J* = 4.5, 12.2 Hz); 3.88 (1H, *d*, *J* = 14.7 Hz), 3.98–4.09 (2H, *m*); 7.15–7.48 (10H, *m*); δ_C (100 MHz, CDCl₃) 16.0, 21.6, 21.7, 23.7, 24.8, 26.9, 28.5, 29.0, 41.5, 46.3, 51.5, 53.3, 58.0, 80.1, 126.6, 126.8, 128.1, 128.2, 128.3, 128.5, 143.3, 145.2, 175.4. Calcd. for C₂₉H₄₁NO₂ (435.64): C, 79.95; H, 9.49; N, 3.22; Found: C, 80.11; H, 9.69; N, 3.03.

(1R,2R,4S)-tert-Butyl 2-[benzyl-(1-(1'R)-phenylethyl)-amino]-4-isopropyl-1-

cyclohexanecarboxylate (14)

According to *General procedure 2*, **14** was prepared from **13** (1.28 g, 91%); an oil; $[\alpha]_D^{20} = -29.0$ (*c* 0.265 in MeOH); δ_H (400 MHz, CDCl₃) 0.80 (3H, *d*, *J* = 6.4 Hz), 0.81 (3H, *d*, *J* = 6.4 Hz), 1.13–1.22 (1H, *m*), 1.28–1.35 (1H, *m*), 1.37 (3H, *d*, *J* = 7.0 Hz), 1.41–1.51 (2H, *m*), 1.46 (9H, *s*), 1.53–1.71 (3H, *m*), 1.84–1.90 (1H, *m*); 2.27 (1H, *dt*, *J* = 4.3, 10.8 Hz); 3.23 (1H, *dt*, *J* = 3.3, 10.7 Hz); 3.69 (1H, *d*, *J* = 14.5 Hz), 3.81 (1H, *d*, *J* = 14.4 Hz), 4.04–4.11 (1H, *m*), 7.14–7.33 (10H, *m*); δ_C (100 MHz, CDCl₃) 19.0, 21.3, 21.9, 25.7, 26.7, 27.3, 28.6, 30.5, 41.3, 49.9, 50.2, 52.3, 59.6, 79.9, 126.7, 126.8, 128.1, 128.2, 128.5, 129.1, 142.6, 145.4, 175.5. Calcd. for C₂₉H₄₁NO₂ (435.64): C, 79.95; H, 9.49; N, 3.22; Found: C, 80.16; H, 9.61; N, 3.00.

Syntheses of amino esters 9A–D: general procedure 4

To a suspension of palladium-on-carbon (5% Pd/C, 0.55 g) in a mixture of *n*-hexane–EtOAc = 1:1 (120 mL), the appropriate amino ester (4.74 mmol) in a mixture of *n*-hexane–EtOAc = 1:1 (10 mL) was added, and the resulting mixture was stirred under a H₂ atmosphere (1 atm) at room temperature for 24 h. The suspension was filtered through a Celite pad and the solvent was removed. The oily crude product obtained was purified by column chromatography (silica gel, toluene–EtOH = 9:1), affording a colourless oily product.

(1S,2R,4S)-tert-Butyl 2-amino-4-isopropylcyclohexane-1-carboxylate (9A)

According to *General procedure 4*, **9A** was prepared from **8A** (1.08 g, 94%); an oil; $[\alpha]_D^{20} = -39.0$ (*c* 0.125 in MeOH); δ_H (400 MHz, CDCl₃) 0.84 (3H, *d*, *J* = 2.5 Hz), 0.85 (3H, *d*, *J* = 2.5 Hz), 0.86–0.99 (1H, *m*), 1.21–1.42 (4H, *m*), 1.44 (9H, *s*), 1.70–1.78 (3H, *m*), 2.27 (1H, *dt*, *J* = 3.3, 12.2 Hz), 3.48–3.53 (1H, *m*); δ_C (100 MHz, CDCl₃) 19.9, 20.2, 22.3, 28.6, 29.0, 32.9, 36.6, 37.1, 48.3, 48.9, 80.5, 174.6. Anal. Calcd. for C₁₄H₂₇NO₂ (241.37): C, 69.66; H, 11.27; N, 5.80; Found: C, 69.89; H, 11.41; N, 5.60.

(1S,2S,4S)-tert-Butyl 2-amino-4-isopropylcyclohexane-1-carboxylate (9B)

According to *General procedure 4*, **9B** was prepared from **8B** (1.05 g, 92%); an oil; $[\alpha]_D^{20} = +19.0$ (*c* 0.125 in MeOH); δ_H (400 MHz, CDCl₃) 0.87 (6H, *d*, *J* = 6.8 Hz), 0.99–1.20 (2H, *m*), 1.40–1.56 (4H, *m*), 1.46 (9H, *s*), 1.60–1.69 (1H, *m*), 2.08–2.15 (1H, *m*); 2.65–2.69 (1H, *m*); 2.72 (1H, *dt*, *J* = 4.5, 11.6 Hz), δ_C (100 MHz, CDCl₃) 20.1, 20.2, 25.1, 28.6, 29.1, 33.0, 36.2, 44.0, 47.5, 52.6, 80.6, 176.1. Anal. Calcd. for C₁₄H₂₇NO₂ (241.37): C, 69.66; H, 11.27; N, 5.80; Found: C, 69.83; H, 11.39; N, 5.65.

(1*R*,2*S*,4*S*)-*tert*-Butyl 2-amino-4-isopropylcyclohexane-1-carboxylate (9C)

According to *General procedure 4*, **9C** was prepared from **8C** (1.08 g, 95%); an oil; $[\alpha]_D^{20} = +31.0$ (*c* 0.505 in MeOH); δ_H (400 MHz, CDCl₃) 0.87 (6H, *d*, *J* = 6.7 Hz), 0.84–0.91 (1H, *m*), 0.95 (1H, *ddd*, *J* = 3.3, 12.1, 25.3 Hz), 1.14–1.48 (3H, *m*), 1.46 (9H, *s*), 1.67–1.75 (1H, *m*), 1.81–1.99 (3H, *m*), 2.86 (1H, *ddd*, *J* = 4.0, 10.1, 13.9 Hz); δ_C (100 MHz, CDCl₃) 20.1, 20.2, 28.6, 28.9, 29.3, 32.9, 38.6, 43.2, 52.3, 54.5, 80.6, 175.3. Anal. Calcd. for C₁₄H₂₇NO₂ (241.37): C, 69.66; H, 11.27; N, 5.80; Found: C, 69.85; H, 11.47; N, 5.62.

(1R,2R,4S)-tert-Butyl 2-amino-4-isopropylcyclohexane-1-carboxylate (9D)

According to *General procedure 4*, **9D** was prepared from **8D** (1.05 g, 92%); an oil; $[\alpha]_D^{20} = -40.0$ (*c* 0.125 in MeOH); δ_H (400 MHz, CDCl₃) 0.86 (3H, *d*, *J* = 6.7 Hz), 0.90 (3H, *d*, *J* = 6.7 Hz), 1.20–0.45 (4H, *m*), 1.46 (9H, *s*), 1.55–1.86 (4H, *m*), 2.07–2.16 (1H, *m*), 3.14–3.25 (1H, *m*); δ_C (100 MHz, CDCl₃) 21.0 (2xMe), 23.8, 27.0, 28.4, 28.6, 35.8, 39.6, 47.2, 52.1, 80.6, 174.6. Anal. Calcd. for C₁₄H₂₇NO₂ (241.37): C, 69.66; H, 11.27; N, 5.80; Found: C, 69.87; H, 11.40; N, 5.59.

Syntheses of amino acid hydrochlorides 10A-D: general procedure 5

The appropriate amino ester **9A–D** (2.41 g, 10 mmol) was dissolved in a mixture of Et_2O (15 mL) and 10% aqueous HCl solution (100 mL), which was followed by stirring at room temperature for 24 h. The mixture was then evaporated to dryness and the resulting white crystalline product was washed with Et_2O and filtered off.

(1S,2R,4S)-2-Amino-4-isopropylcyclohexanecarboxylic acid hydrochloride (10A)

According to *General procedure 5*, **10A** was obtained as white crystals (2.03 g, 92%); mp 210–213 °C; $[\alpha]_D^{20} = +46.0$ (*c* 0.125 in MeOH); δ_H (400 MHz, DMSO–d₆) 0.83 (3H, *d*, *J* = 2.5 Hz), 0.84 (3H, *d*, *J* = 2.5 Hz), 0.97–1.10 (1H, *m*), 1.27–1.48 (3H, *m*), 1.63–1.99 (1H, *m*), 2.62 (1H, *dt*, *J* = 3.5, 12.2 Hz), 3.65–3.71 (1H, *m*), 7.98 (3H, *br s*); δ_C (100 MHz, DMSO–d₆) 20.3, 20.4, 22.9, 28.3, 32.2, 32.3, 36.1, 44.0, 48.2, 175.0. Anal. Calcd. for C₁₀H₂₀ClNO₂ (221.72): C, 54.17; H, 9.09; N, 6.32; Found: C, 54.38; H, 9.25; N, 5.98.

(1S,2S,4S)-2-Amino-4-isopropylcyclohexanecarboxylic acid hydrochloride (10B)

According to *General procedure 5*, **10B** was obtained as white crystals (1.99 g, 90%); mp 247–250 °C; $[\alpha]_D^{20} = -23.0$ (*c* 0.25 in MeOH); δ_H (400 MHz, DMSO–d₆) 0.82 (6H, *d*, *J* = 6.9 Hz), 0.84–0.92 (1H, *m*), 1.16–1.28 (1H, *m*), 1.36–1.58 (4H, *m*), 1.74–1.83 (1H, *m*), 2.07–2.18 (1H, *m*), 2.96–3.03 (1H, *m*), 3.10–3.19 (1H, *m*), 8.10 (3H, *br s*), 12.10 (1H, *br s*); δ_C (100 MHz, DMSO–d₆) 20.3, 20.4, 25.3, 27.8, 30.6, 32.8, 41.1, 42.7, 50.8, 174.8. Anal. Calcd. for C₁₀H₂₀CINO₂ (221.72): C, 54.17; H, 9.09; N, 6.32; Found: C, 54.30; H, 9.31; N, 6.10.

(1R,2S,4S)-2-Amino-4-isopropylcyclohexanecarboxylic acid hydrochloride (10C)

According to *General procedure 5*, **10**C was obtained as white crystals (2.35 g, 94%); mp 220–223 °C; $[\alpha]_D^{20} = +38.0$ (*c* 0.25 in MeOH); δ_H (400 MHz, DMSO–d₆) 0.84 (6H, *d*, *J* = 6.8 Hz), 0.94 (1H, *ddd*, *J* = 3.2, 12.9, 25.7 Hz), 1.04–1.24 (2H, *m*), 1.31 (1H, *ddd*, *J* = 3.4, 13.1, 26.0 Hz), 1.39–1.49 (1H, *m*), 1.36–1.58 (4H, *m*), 1.63–1.73 (1H, *m*), 1.98–2.12 (2H, *m*), 2.40 (1H, *ddd*, *J* = 3.9, 11.2, 14.9 Hz), 3.08–3.21 (1H, *m*), 8.10 (3H, *br s*), 12.80 (1H, *br s*); δ_C (100 MHz, DMSO–d₆) 20.3, 20.4, 28.4, 29.2, 32.7, 33.5, 42.0, 46.8, 51.2, 175.3. Anal. Calcd. for C₁₀H₂₀CINO₂ (221.72): C, 54.17; H, 9.09; N, 6.32; Found: C, 54.35; H, 9.23; N, 5.99.

(1R,2R,4S)-2-Amino-4-isopropylcyclohexanecarboxylic acid hydrochloride (10D)

According to *General procedure 5*, **10D** was obtained as white crystals (2.03 g, 92%); mp 224–227 °C; $[\alpha]_D^{20} = -41.0$ (*c* 0.125 in MeOH); δ_H (400 MHz, DMSO–d₆) 0.81 (3H, *d*, *J* = 6.0 Hz), 0.84 (3H, *d*, *J* = 6.0 Hz), 1.12–1.24 (1H, *m*), 1.38–1.52 (3H, *m*), 1.58–1.72 (2H, *m*), 1.75–1.90 (2H, *m*), 2.72 (1H, *dd*, *J* = 5.0, 9.9 Hz), 3.50–3.60 (1H, *m*), 8.25 (3H, *br s*), 12.75 (1H, *br s*); δ_C (100 MHz, DMSO– d₆) 20.6, 20.7, 23.0, 26.2, 30.3, 30.7, 37.4, 43.5, 47.8, 174.4. Anal. Calcd. for C₁₀H₂₀ClNO₂ (221.72): C, 54.17; H, 9.09; N, 6.32; Found: C, 54.40; H, 9.21; N, 6.01. **X-ray crystallographic study of 10D**: Crystallographic data were collected at 123 K with a Nonius-Kappa CCD area detector diffractometer, using graphite-monochromatized Mo-K_{α} radiation ($\lambda = 0.71073$ Å) as reported earlier [5]. The structure was solved by direct methods by use of the SHELXS-97 program [6] and full-matrix, least-squares refinements on F^2 were performed by use of the SHELXL-97 program [6]. The CH hydrogen atoms were included at fixed distances from their host atoms with the fixed displacement parameters. The NH and OH hydrogen atoms were refined isotropically and the hydrogen bonds formed by them control the crystal packing of **10D**. The ORTEP plot was drawn with *ORTEP-3 for Windows* [7]. The deposition number CCDC 1011603 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccde.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: (internat.) + 44-1223-336-033; E-mail: deposit@ccdc.cam.ac.uk)

Crystal data for 10D, $C_{10}H_{20}CINO_2$, $M_r = 221.72.50$, orthorhombic, space group $P2_12_12_1$ (no. 9), a = 6.6955(1), b = 7.9887(2), c = 22.8357(3) Å, $\alpha = \beta = \delta = 90^\circ$, V = 1221.44(4) Å³, T = 123 K, Z = 4, μ (Mo- K_{α}) = 0.291 mm⁻¹. Total 3023 refelections, unique 2398. Refinement of 2315 reflections (145 parameters) with $I > 2\delta(I)$. converged at final RI = 0.0267 (RI all data = 0.0283), wR2 = 0.0629 (wR2 all data = 0.0640), GOF = 1.074, Flack parameter = 0.00(3).

References

- 1. Kitahara, T.; Horiguchi, A.; Mori, K. Tetrahedron 1988, 44, 4713-4720.
- 2. Cooke, R. G.; Macbeth, A. K.; Swanson, T. B. J. Chem. Soc. 1940, 808-810.
- Suga, T.; Sugimoto, M.; Fujita, K.; Matsuura, T. Bull. Chem. Soc. Jpn. 1966, 39, 2546– 2547.
- 4. Mori, K. Tetrahedron: Asymmetry 2006, 17, 2133-2142.
- Kanizsai, I.; Szakonyi, Z.; Sillanpää, R.; D'Hooghe, M.; De Kimpe, N.; Fülöp, F. *Tetrahedron – Asymmetry* 2006, 17, 2857–2863.
- 6. Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2008, A64, 112-122.
- 7. Farrugia, L. J. J. Appl. Cryst. 1997, 30, 565.

¹H, ¹³C NMR and HMBC of **3** (CDCl₃)

¹H and ¹³C NMR of **6** (CDCl₃)

Informative part of the ¹H NMR of the crude product 7A-D (CDCl₃)

¹H and ¹³C NMR of **7A** (CDCl₃)

¹H, ¹³C and HMBC NMR of **7B** (CDCl₃)

¹H and ¹³C NMR of **7**C (CDCl₃)

 1 H and 13 C NMR of **7D** (CDCl₃)

¹H, ¹³C and HMBC NMR of **8A** (CDCl₃)

¹H and ¹³C NMR of **8B** (CDCl₃)

¹H and ¹³C NMR of **8**C (CDCl₃)

¹H, ¹³C and HMBC NMR of **8D** (CDCl₃)

¹H and ¹³C NMR of **9A** (CDCl₃)

¹H and ¹³C NMR of **9B** (CDCl₃)

¹H and ¹³C NMR of **9**C (CDCl₃)

Ņ

[ppm]

¹H and ¹³C NMR of **9D** (CDCl₃)

. Ņ

[ppm]

 1 H and 13 C NMR of **10A** (DMSO–d₆)

¹H and ¹³C NMR of **10B** (DMSO–d₆)

 1 H and 13 C NMR of **10**C (DMSO–d₆)

¹H and ¹³C NMR of **10D** (DMSO–d₆)

¹H and ¹³C NMR of **11** (CDCl₃)

¹H and ¹³C NMR of **13** (CDCl₃)

¹H and ¹³C NMR of **14** (CDCl₃)

