Supporting information

for
 Stereoselective synthesis of perillaldehyde-based chiral β-amino acid derivatives through conjugate addition of lithium amides

Zsolt Szakonyi ${ }^{1}$, Reijo Sillanpää ${ }^{2}$, Ferenc Fülöp ${ }^{1,3, \Phi_{*}}$

Address: ${ }^{1}$ Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös utca 6, Hungary, ${ }^{2}$ Department of Chemistry, University of Jyväskylä, POB 35, 40351 Jyväskylä, Finland and ${ }^{3}$ Stereochemistry Research Group of the Hungarian Academy of Sciences, H-6720 Szeged, Eötvös u. 6, Hungary

Email: fulop@pharm.u-szeged.hu
*Corresponding author
${ }^{\$}$ Tel.: +36-62-545564; Fax: +36-62-545705

General information, experimental details, characterization data and copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

Contents

Preparation and characterization data of compounds 6-14 S3-S14
References S14
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectra of new compounds S15-S37

General informations

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker Avance DRX 400 spectrometer at $400.13 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and 100.61 MHz $\left({ }^{13} \mathrm{C}\right)[\delta=0(\mathrm{TMS})]$ in $\mathrm{CDCl}_{3}, \mathrm{DMSO}_{6}$ or $\mathrm{D}_{2} \mathrm{O}$ in a $5-\mathrm{mm}$ tube. Chemical shifts are expressed in ppm (δ) relative to TMS as internal reference. J values are given in Hz. Microanalyses were performed on a Perkin-Elmer 2400 elemental analyser. Optical rotations were obtained with a Perkin-Elmer 341 polarimeter. Melting points were determined on a Kofler apparatus and are uncorrected. Chromatographic separations were carried out on Merck Kieselgel 60 (230-400 mesh ASTM). Reactions were monitored with Merck Kieselgel $60 \mathrm{~F}_{254}{ }^{-}$precoated tlc plates $(0.25 \mathrm{~mm}$ thickness).
(-)-(4S)-Perillaldehyde and (+)-(1R)-N-benzylphenylethylamine are commercially available. THF and toluene were dried over Na wire; all other chemicals and solvents were used as supplied. (-)-(4S)Perillic acid and (4S)-4-isopropylcyclohex-1-enecarboxylic acid ((4S)-phellandric acid) were prepared by literature methods, and were identical with those reported therein [1-4].

Experimental details

(-)-(4S)-tert-Butyl perillate (3)
To a solution of $(-)$-perillic acid $(7.20 \mathrm{~g}, 43.3 \mathrm{mmol})$ in dry toluene $(60 \mathrm{~mL})$, trifluoroacetic anhydride $(16.4 \mathrm{~mL}, 24.47 \mathrm{~g}, 116.4 \mathrm{mmol})$ was added at room temperature. The resulting homogeneous solution was stirred for 40 min and then treated with $t \mathrm{BuOH}(52.0 \mathrm{~g}, 696 \mathrm{mmol})$ with ice-bath cooling. The solution was stirred for 4 h at room temperature, and the mixture was then diluted with toluene (200 mL), cooled to $0^{\circ} \mathrm{C}$ and extracted, first with 10% aqueous NaOH solution (100 mL), then with $\mathrm{H}_{2} \mathrm{O}$ $(100 \mathrm{~mL})$ and finally with brine $(100 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (nhexane $\left.-\mathrm{Et}_{2} \mathrm{O}=14: 1\right)$, resulting in compound 3 as a colourless oil $(5.10 \mathrm{~g}, 53 \%) ;[\alpha]_{\mathrm{D}}{ }^{20}=-86.0(c=$ $0.25, \mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.38-1.47(1 \mathrm{H}, m), 1.48(9 \mathrm{H}, s), 1.74(3 \mathrm{H}, s), 1.83-1.91(1 \mathrm{H}, m)$, $2.02-2.24(3 \mathrm{H}, m), 2.26-2.35(1 \mathrm{H}, m), 2.39-2.48(1 \mathrm{H}, m), 4.69-4.73(1 \mathrm{H}, m), 4.74-4.76(1 \mathrm{H}, m)$,
6.86-6.91 (1H, m); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.1,25.1,27.6,28.5,31.5,40.6,80.1,109.4,131.5,138.1$, 148.9, 166.7. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}$ (222.32): C, 75.63 ; H, 9.97; Found: C, 75.90; H, 10.19.

(4S)-tert-Butyl 4-isopropylcyclohex-1-enecarboxylate (6)

Starting from $\mathbf{5}(3.64 \mathrm{~g}, 21.6 \mathrm{mmol})$, the synthesis of $\mathbf{6}$ was accomplished analogously as prescribed for 3, furnishing unsaturated ester $\mathbf{6}$ as a colourless oil $\left(2.33 \mathrm{~g}(48 \%) ;[\alpha]_{\mathrm{D}}{ }^{20}=-96.0(c 0.25\right.$ in $\mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.93(3 \mathrm{H}, d, J=6.6 \mathrm{~Hz}), 0.94(3 \mathrm{H}, d, J=6.6 \mathrm{~Hz}), 1.22(1 \mathrm{H}, d d d, J=$ $5.1,11.5,23.8 \mathrm{~Hz}), 1.27-1.38(1 \mathrm{H}, m), 1.48-1.58(1 \mathrm{H}, m), 1.52(9 \mathrm{H}, s), 1.82-1.97(2 \mathrm{H}, m), 2.08-2.31$ $(2 \mathrm{H}, m), 2.41-2.50(1 \mathrm{H}, m), 6.88-6.92(1 \mathrm{H}, m) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.0,20.2,25.3,26.2,28.6$, 29.8, 32.4, 39.7, 80.1, 132.2, 138.8, 167.4. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}$ (224.34): C, 74.95; H, 10.78; Found: C, 75.24; H, 10.87.

Syntheses of amino esters 7A-D and 11: general procedure 1

n-BuLi solution (27 mL of a 1.6 M solution in n-hexane) was added dropwise to a stirred solution of secondary amine (45.1 mmol) in dry THF at $-78^{\circ} \mathrm{C}$ under an argon atmosphere, followed by stirring for 30 min prior to the addition of acceptor $\mathbf{3}$ or $\mathbf{6}(18.0 \mathrm{mmol})$ in dry THF $(25 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After the appropriate reaction time (6 h), saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(100 \mathrm{~mL})$ was added and the solution was warmed to room temperature, partitioned between $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$ and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by column chromatography gave the desired products (the diastereomeric ratio of the crude product was determined by ${ }^{1} \mathrm{H}$ NMR measurement to be 7A:7B:7C:7D = 76:17:6:1; $\mathbf{1 1}$ was obtained as a single diastereoisomer).

(1S,2R,4S)-tert-Butyl 2-dibenzylamino-4-isopropenylcyclohexane-1-carboxylate (7A)

According to General procedure 1, 7A was prepared from 3 with dibenzylamine. Purification was accomplished by column chromatography on silica gel: the mixture of 7A and 7B was first separated from the mixture of 7C and 7D with n-hexane- $\mathrm{Et}_{2} \mathrm{O}=19: 1$; repeated chromatography with a mixture of n-hexane- $\mathrm{Et}_{2} \mathrm{O}-\mathrm{AcOH}=94: 5: 1$ then resulted in isolated compound $7 \mathrm{~A}(4.99 \mathrm{~g}, 66.1 \%)$. An oil;
$[\alpha]_{\mathrm{D}}{ }^{20}=+15.0(c 0.25$ in MeOH$) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.33-1.54(2 \mathrm{H}, m), 1.44(9 \mathrm{H}, s), 1.67(3 \mathrm{H}, s)$, $1.71-1.89(2 \mathrm{H}, m), 1.93-2.02(1 \mathrm{H}, m), 2.30-2.38(1 \mathrm{H}, m), 2.44-2.52(1 \mathrm{H}, m), 2.60(1 \mathrm{H}, d t, J=4.8$, $8.9 \mathrm{~Hz}), 3.33(1 \mathrm{H}, d t, J=4.6,6.3 \mathrm{~Hz}), 3.67(2 \mathrm{H}, d, J=13.9 \mathrm{~Hz}), 3.78(2 \mathrm{H}, d, J=13.9 \mathrm{~Hz}), 4.66(2 \mathrm{H}$, $d, J=25.4 \mathrm{~Hz}), 7.16-7.36(10 \mathrm{H}, m) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.9,24.9,28.0,28.5,30.3,39.9,46.7$, 54.7, $55.5,80.4,109.7,127.0,128.4,129.3,140.5,149.0,174.6$. Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{NO}_{2}(419.60)$: C, 80.15; H, 8.89; N, 3.34; Found: C, 80.23; H, 9.06; N, 3.11.

(1S,2S,4S)-tert-Butyl 2-dibenzylamino-4-isopropenylcyclohexane-1-carboxylate (7B)

According to General procedure 1, 7B was prepared from $\mathbf{3}$ with dibenzylamine. Purification was accomplished by column chromatography on silica gel: the mixture of 7A and 7B was first separated from the mixture of 7C and 7D with n-hexane $-\mathrm{Et}_{2} \mathrm{O}=19: 1$; repeated chromatography with a mixture of n-hexane- $\mathrm{Et}_{2} \mathrm{O}-\mathrm{AcOH}=94: 5: 1$ then resulted in isolated compound $7 \mathrm{~B}(1.12 \mathrm{~g}, 14.8 \%)$. An oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-8.0(c 0.255 \mathrm{in} \mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.38-1.49(2 \mathrm{H}, m), 1.46(9 \mathrm{H}, s), 1.66-1.77$ $(2 \mathrm{H}, m), 1.73(3 \mathrm{H}, s), 1.80-1.93(2 \mathrm{H}, m), 2.23(1 \mathrm{H}, d d, J=12.0,24.1 \mathrm{~Hz}), 2.70-2.82(1 \mathrm{H}, m), 2.84-$ $2.93(1 \mathrm{H}, m), 3.74(4 \mathrm{H}, b r s), 4.70(2 \mathrm{H}, d, J=8.8 \mathrm{~Hz}), 7.14-7.42(10 \mathrm{H}, m) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $21.0,26.8,28.5,29.0,29.4,43.2,46.0,55.0,60.3,80.1,109.0,127.0,128.5,128.8,140.6,149.9$, 174.8. Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{NO}_{2}$ (419.60): C, 80.15 ; H, 8.89; N, 3.34; Found: C, 80.31 ; H, 9.07; N, 3.20 .
(1R,2S,4S)-tert-Butyl 2-dibenzylamino-4-isopropenylcyclohexane-1-carboxylate (7C)
According to General procedure 1, 7C was prepared from $\mathbf{3}$ with dibenzylamine. Purification was accomplished by column chromatography on silica gel: the mixture of 7C and 7D was first separated from the mixture of 7 A and 7 B with n-hexane- $\mathrm{Et}_{2} \mathrm{O}=19: 1$; repeated chromatography with a mixture of n-hexane- $\mathrm{Et}_{2} \mathrm{O}-\mathrm{AcOH}=94: 5: 1$ then resulted in isolated compound $7 \mathrm{C}(0.39 \mathrm{~g}, 5.2 \%)$. An oil; $[\alpha]_{\mathrm{D}}{ }^{20}=+64.0(c 0.255$ in MeOH$) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.04-1.23(2 \mathrm{H}, m), 1.41-1.50(1 \mathrm{H}, m), 1.47$ $(9 \mathrm{H}, s), 1.67-1.76(1 \mathrm{H}, m), 1.72(3 \mathrm{H}, s), 1.81-1.95(2 \mathrm{H}, m), 1.97-2.01(1 \mathrm{H}, m), 2.47(1 \mathrm{H}, d t, J=3.7$, $11.6 \mathrm{~Hz}), 2.95(1 \mathrm{H}, d t, J=3.4,11.6 \mathrm{~Hz}), 3.42(2 \mathrm{H}, d, J=13.5 \mathrm{~Hz}), 3.82(2 \mathrm{H}, d, J=13.5 \mathrm{~Hz}), 4.68-$
$4.72(2 \mathrm{H}, m), 7.17-7.34(10 \mathrm{H}, m) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.3,28.5,29.5,30.0,30.8,44.5,49.4,54.1$, $59.5,80.1,108.9,127.1,128.3,129.5,140.3,150.1,174.9$. Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{NO}_{2}$ (419.60): C, 80.15; H, 8.89; N, 3.34; Found: C, 80.39; H, 9.09; N, 3.14.

(1R,2R,4S)-tert-Butyl 2-dibenzylamino-4-isopropenylcyclohexane-1-carboxylate (7D)

Method A: According to General procedure 1, 7D was prepared from 3 with dibenzylamine. Purification was accomplished by column chromatography on silica gel: the mixture of 7C and 7D was first separated from the mixture of 7 A and 7 B with n-hexane- $\mathrm{Et}_{2} \mathrm{O}=19: 1$; repeated chromatography with n-hexane $-\mathrm{Et}_{2} \mathrm{O}-\mathrm{AcOH}=94: 5: 1$ then resulted in isolated compound $7 \mathrm{D}(66 \mathrm{mg}$, 0.9%).

Method B: According to General procedure 3, 7D was prepared from 7A $(6.12 \mathrm{~g}, 93 \%)$.
An oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-32.0(c 0.25$ in MeOH$) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.35-1.60(4 \mathrm{H}, m), 1.47(9 \mathrm{H}, s), 1.62-$ $1.71(1 \mathrm{H}, m), 1.64(3 \mathrm{H}, s), 1.86-1.94(1 \mathrm{H}, m), 2.42-2.47(1 \mathrm{H}, m), 2.51(1 \mathrm{H}, d t, J=4.2,11.0 \mathrm{~Hz}), 3.13$ $(1 \mathrm{H}, d t, J=3.4,11.7 \mathrm{~Hz}), 3.46(2 \mathrm{H}, d, J=13.6 \mathrm{~Hz}), 3.82(2 \mathrm{H}, d, J=13.6 \mathrm{~Hz}), 4.59(1 \mathrm{H}, s), 4.73-$ $4.76(1 \mathrm{H}, m), 7.15-7.34(10 \mathrm{H}, m) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 22.9,26.0,27.0,27.5,28.5,39.2,49.5,54.1$, 54.7, 80.0, 111.5, 127.1, 128.2, 129.5, 140.5, 146.1, 175.0. Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{NO}_{2}$ (419.60): C, 80.15; H, 8.89; N, 3.34; Found: C, 80.37; H, 9.11; N, 3.10.
(1S,2R,4S)-tert-Butyl 2-[benzyl-(1-(1 $\left.R^{\prime}\right)$-phenylethyl)-amino]-4-isopropenyl-1cyclohexanecarboxylate (11)

According to General procedure 1, 11 was prepared from 3 and (1R)-phenylethylamine. Purification was accomplished by column chromatography on silica gel (n-hexane- $\mathrm{Et}_{2} \mathrm{O}=19: 1$), resulting in compound $11(7.10 \mathrm{~g}, 88 \%)$ as an oil; $[\alpha]_{\mathrm{D}}{ }^{20}=+93.0(c 0.25$ in MeOH$) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.29$ $(3 \mathrm{H}, d, J=6.8 \mathrm{~Hz}), 1.41-1.59(4 \mathrm{H}, m), 1.45(9 \mathrm{H}, s), 1.70(3 \mathrm{H}, s), 1.78-1.94(2 \mathrm{H}, m), 2.36-2.50(3 \mathrm{H}$, $m), 3.04-3.11(1 \mathrm{H}, m), 3.94(2 \mathrm{H}, d d, J=15.0,27.7 \mathrm{~Hz}), 4.07(1 \mathrm{H}, d d, J=6.8,13.5 \mathrm{~Hz}), 4.67(1 \mathrm{H}, s)$, $4.79(1 \mathrm{H}, s), 7.14-7.44(10 \mathrm{H}, m) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.7,22.8,24.4,25.3,28.5,29.6,40.0,46.1$, $51.4,54.0,58.2,80.2,110.7,126.6,126.8,128.1,128.2,128.3,128.4,143.2,145.0,147.5,175.3$. Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{NO}_{2}$ (433.63): C, 80.33; H, 9.07; N, 3.23; Found: C, 80.47; H, 9.18; N, 3.01.
(1R,2R,4S)-tert-Butyl 2-[benzyl-(1-(1R')-phenylethyl)-amino]-4-isopropenyl-1-
cyclohexanecarboxylate (13): General procedure 3
To a solution of $11(7.0 \mathrm{~g}, 15.68 \mathrm{mmol})$ in $t \mathrm{BuOH}(150 \mathrm{~mL}), \mathrm{KO} t \mathrm{Bu}(0.69 \mathrm{~g}, 6.15 \mathrm{mmol})$ was added and the solution was stirred at $40{ }^{\circ} \mathrm{C}$ for 24 h . The solution was evaporated to one-tenth volume, diluted with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and extracted with ice-cold water $(3 \times 150 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (n-hexane- $\mathrm{Et}_{2} \mathrm{O}=19: 1$), resulting in compound $13(6.39 \mathrm{~g}, 91 \%)$; an oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-13.0(c$ 0.25 in MeOH$) ; ~ \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.25-1.38(2 \mathrm{H}, m), 1.36(3 \mathrm{H}, d, J=6.8 \mathrm{~Hz}), 1.46(9 \mathrm{H}, s)$, $1.50-1.72(3 \mathrm{H}, m), 1.62(3 \mathrm{H}, s), 1.75-1.83(1 \mathrm{H}, m), 1.94-2.02(1 \mathrm{H}, m), 2.32(1 \mathrm{H}, d t, J=4.5,9.9 \mathrm{~Hz})$, $2.36-2.42(1 \mathrm{H}, m), 3.29(1 \mathrm{H}, d t, J=3.5,10.7 \mathrm{~Hz}), 3.71(1 \mathrm{H}, d, J=14.8 \mathrm{~Hz}), 3.85(1 \mathrm{H}, d, J=14.8$ $\mathrm{Hz}), 4.12(1 \mathrm{H}, d d, J=6.8,13.9 \mathrm{~Hz}), 4.67(1 \mathrm{H}, s), 4.61(1 \mathrm{H}, s), 4.75-4.78(1 \mathrm{H}, m), 7.13-7.35(10 \mathrm{H}$, $m) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 18.7,22.7,25.9,27.4,28.5,31.0,39.6,49.4,50.4,55.9,59.3,79.9,111.1$, 126.7, 126.8, 128.1, 128.2, 128.5, 128.8, 142.7, 145.4, 146.8, 175.2. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{NO}_{2}$ (433.63): C, 80.33; H, 9.07; N, 3.23; Found: C, 80.51; H, 9.21 ; N, 2.97.

Syntheses of amino esters 8A-D, 12 and 14: general procedure 2

To a suspension of platinum-on-carbon $(5 \% \mathrm{Pt} / \mathrm{C}, 0.180 \mathrm{~g})$ in a $1: 1$ mixture of n-hexane-EtOAc (160 $\mathrm{mL})$, the appropriate amino ester $\mathbf{7 A}-\mathbf{D}, \mathbf{1 1}$ or $\mathbf{1 3}(3.15 \mathrm{mmol})$ in a $1: 1$ mixture of n-hexane-EtOAc $(10 \mathrm{~mL})$ was added, and the resulting mixture was stirred under a H_{2} atmosphere (1 atm) at room temperature for 16 h . The suspension was filtered through a Celite pad and the solvent was evaporated off. The oily crude product obtained was purified by column chromatography (silica gel, n-hexane$\mathrm{Et}_{2} \mathrm{O}=19: 1$), affording a colourless oily product.
(1S,2R,4S)-tert-Butyl 2-dibenzylamino-4-isopropylcyclohexane-1-carboxylate (8A)
According to General procedure 2, 8A was prepared from 7A (1.28 g, 91\%); an oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-35.0(c$ 0.125 in MeOH$) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.82(3 \mathrm{H}, d, J=6.5 \mathrm{~Hz}), 0.84(3 \mathrm{H}, d, J=6.5 \mathrm{~Hz}), 1.13-1.24$
$(1 \mathrm{H}, m), 1.30-1.41(2 \mathrm{H}, m), 1.44(9 \mathrm{H}, s), 1.47-1.56(1 \mathrm{H}, m), 1.64-1.92(3 \mathrm{H}, m), 2.18-2.27(1 \mathrm{H}, m) ;$ $2.58(1 \mathrm{H}, d t, J=5.0,9.6 \mathrm{~Hz}) ; 3.25(1 \mathrm{H}, d t, J=4.5,7.1 \mathrm{~Hz}) ; 3.64(2 \mathrm{H}, d, J=13.9 \mathrm{~Hz}), 3.78(2 \mathrm{H}, d, J$ $=13.9 \mathrm{~Hz}), 7.15-7.36(10 \mathrm{H}, m) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.7,20.8,24.8,26.5,28.5,28.8,30.2,40.0$, $46.8,54.6,55.6,80.3,127.0,128.4,129.2,140.7,174.8$. Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{NO}_{2}$ (421.61): C, 79.76; H, 9.32; N, 3.32; Found: C, 79.93; H, 9.55; N, 3.01.
(1S,2S,4S)-tert-Butyl 2-dibenzylamino-4-isopropylcyclohexane-1-carboxylate (8B)
According to General procedure 2, 8B was prepared from 7B (1.25 g, 90\%); an oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-4.0(c$ 0.125 in MeOH$) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.87(3 \mathrm{H}, d, J=6.5 \mathrm{~Hz}), 0.88(3 \mathrm{H}, d, J=6.5 \mathrm{~Hz}), 0.98-1.10$ $(1 \mathrm{H}, m), 1.26-1.52(4 \mathrm{H}, m), 1.45(9 \mathrm{H}, s), 1.62-1.69(1 \mathrm{H}, m), 1.77-1.85(1 \mathrm{H}, m), 1.95(1 \mathrm{H}, d d, J=$ $12.2,24.4 \mathrm{~Hz}) ; 2.63-2.73(1 \mathrm{H}, m) ; 2.83-2.92(1 \mathrm{H}, m), 3.73(4 \mathrm{H}, d d, J=14.6,17.7 \mathrm{~Hz}), 7.15-7.40$ $(10 \mathrm{H}, m) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.1,20.3,24.6,28.3,28.5,29.4,33.3,43.5,44.6,55.0,60.6,80.3$, 126.9, 128.4, 128.8, 141.2, 175.3. Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{NO}_{2}$ (421.61): C, 79.76; H, 9.32; N, 3.32; Found: C, 79.89; H, 9.69; N, 3.21.
(1R,2S,4S)-tert-Butyl 2-dibenzylamino-4-isopropylcyclohexane-1-carboxylate (8C)
According to General procedure 2, 8C was prepared from 7C $(1.29 \mathrm{~g}, 92 \%)$; an oil; $[\alpha]_{\mathrm{D}}{ }^{20}=+51.0(c$ 0.25 in MeOH$) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.80-0.85(1 \mathrm{H}, m), 0.85(3 \mathrm{H}, d, J=2.3 \mathrm{~Hz}), 0.87(3 \mathrm{H}, d, J=$ $2.3 \mathrm{~Hz}), 0.93(1 \mathrm{H}, d d, J=12.0,23.7 \mathrm{~Hz}) ; 0.99-1.09(1 \mathrm{H}, m), 1.34-1.47(2 \mathrm{H}, m), 1.46(9 \mathrm{H}, s), 1.60-$ $1.68(1 \mathrm{H}, m), 1.84-1.95(2 \mathrm{H}, m), 2.41(1 \mathrm{H}, d t, J=3.8,11.7 \mathrm{~Hz}) ; 2.88(1 \mathrm{H}, d t, J=3.6,11.6 \mathrm{~Hz}) ; 3.42$ $(2 \mathrm{H}, d, J=13.5 \mathrm{~Hz}), 3.81(2 \mathrm{H}, d, J=13.5 \mathrm{~Hz}), 7.16-7.33(10 \mathrm{H}, m) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.0,20.1$, $27.6,28.5,28.8,30.1,33.1,43.4,49.8,54.1,59.9,79.9,127.0,128.2,129.6,140.4,175.1$. Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{NO}_{2}$ (421.61): C, 79.76; H, 9.32; N, 3.32; Found: C, 79.85; H, 9.47; N, 3.19.

(1R,2R,4S)-tert-Butyl 2-dibenzylamino-4-isopropylcyclohexane-1-carboxylate (8D)

According to General procedure 2, 8D was prepared from 7D (1.25 g, 90\%); an oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-46.0(c$ 0.125 in MeOH$) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.81(3 \mathrm{H}, d, J=6.3 \mathrm{~Hz}), 0.86(3 \mathrm{H}, d, J=6.3 \mathrm{~Hz}), 1.20-1.41$
$(4 \mathrm{H}, m), 1.48(9 \mathrm{H}, s), 1.42-1.69(3 \mathrm{H}, m), 2.05-2.13(1 \mathrm{H}, m), 2.49(1 \mathrm{H}, d t, J=4.3,11.6 \mathrm{~Hz}) ; 3.02(1 \mathrm{H}$, $d t, J=3.5,11.6 \mathrm{~Hz}) ; 3.40(2 \mathrm{H}, d, J=13.5 \mathrm{~Hz}), 3.80(2 \mathrm{H}, d, J=13.5 \mathrm{~Hz}), 7.15-7.35(10 \mathrm{H}, m) ; \delta_{\mathrm{C}}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.5,21.7,25.5,26.2,26.5,27.5,28.5,41.1,49.5,54.1,54.2,80.0,127.1,128.2$, 129.5, 140.6, 174.6. Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{NO}_{2}$ (421.61): C, 79.76; H, 9.32; N, 3.32; Found: C, 79.90; H, 9.52; N, 3.13.
(1S,2R,4S)-tert-Butyl 2-[benzyl-(1-(1R')-phenylethyl)-amino]-4-isopropyl-1cyclohexanecarboxylate (12)

According to General procedure 2, 12 was prepared from $11(1.28 \mathrm{~g}, 91 \%)$; an oil; $[\alpha]_{\mathrm{D}}{ }^{20}=+66.0(c$ 0.255 in MeOH$) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.80(3 \mathrm{H}, d, J=6.7 \mathrm{~Hz}), 0.83-0.89(1 \mathrm{H}, m), 0.91(3 \mathrm{H}, d, J=$ $6.6 \mathrm{~Hz}), 1.24-1.30(1 \mathrm{H}, m), 1.29(3 \mathrm{H}, d, J=6.8 \mathrm{~Hz}), 1.32-1.53(4 \mathrm{H}, m), 1.45(9 \mathrm{H}, s), 1.66-1.78(2 \mathrm{H}$, $m), 1.64-1.92(3 \mathrm{H}, m), 2.28(1 \mathrm{H}, d t, J=4.5,12.9 \mathrm{~Hz}) ; 2.36-2.43(1 \mathrm{H}, m) ; 2.99(1 \mathrm{H}, d t, J=4.5,12.2$ $\mathrm{Hz}) ; 3.88(1 \mathrm{H}, d, J=14.7 \mathrm{~Hz}), 3.98-4.09(2 \mathrm{H}, m) ; 7.15-7.48(10 \mathrm{H}, m) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.0$, $21.6,21.7,23.7,24.8,26.9,28.5,29.0,41.5,46.3,51.5,53.3,58.0,80.1,126.6,126.8,128.1,128.2$, 128.3, 128.5, 143.3, 145.2, 175.4. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{NO}_{2}$ (435.64): C, 79.95; H, 9.49; N, 3.22; Found: C, 80.11; H, 9.69; N, 3.03.
(1R,2R,4S)-tert-Butyl 2-[benzyl-(1-(1'R)-phenylethyl)-amino]-4-isopropyl-1cyclohexanecarboxylate (14)

According to General procedure 2, 14 was prepared from $13(1.28 \mathrm{~g}, 91 \%)$; an oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-29.0(c$ 0.265 in MeOH$) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.80(3 \mathrm{H}, d, J=6.4 \mathrm{~Hz}), 0.81(3 \mathrm{H}, d, J=6.4 \mathrm{~Hz}), 1.13-1.22$ $(1 \mathrm{H}, m), 1.28-1.35(1 \mathrm{H}, m), 1.37(3 \mathrm{H}, d, J=7.0 \mathrm{~Hz}), 1.41-1.51(2 \mathrm{H}, m), 1.46(9 \mathrm{H}, s), 1.53-1.71(3 \mathrm{H}$, $m), 1.84-1.90(1 \mathrm{H}, m) ; 2.27(1 \mathrm{H}, d t, J=4.3,10.8 \mathrm{~Hz}) ; 3.23(1 \mathrm{H}, d t, J=3.3,10.7 \mathrm{~Hz}) ; 3.69(1 \mathrm{H}, d, J$ $=14.5 \mathrm{~Hz}), 3.81(1 \mathrm{H}, d, J=14.4 \mathrm{~Hz}), 4.04-4.11(1 \mathrm{H}, m), 7.14-7.33(10 \mathrm{H}, m) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $19.0,21.3,21.9,25.7,26.7,27.3,28.6,30.5,41.3,49.9,50.2,52.3,59.6,79.9,126.7,126.8,128.1$, $128.2,128.5,129.1,142.6,145.4,175.5$. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{NO}_{2}$ (435.64): C, 79.95; H, 9.49; N, 3.22; Found: C, 80.16; H, 9.61; N, 3.00.

Syntheses of amino esters 9A-D: general procedure 4

To a suspension of palladium-on-carbon $(5 \% \mathrm{Pd} / \mathrm{C}, 0.55 \mathrm{~g})$ in a mixture of n-hexane-EtOAc $=1: 1$ $(120 \mathrm{~mL})$, the appropriate amino ester $(4.74 \mathrm{mmol})$ in a mixture of n-hexane-EtOAc $=1: 1(10 \mathrm{~mL})$ was added, and the resulting mixture was stirred under a H_{2} atmosphere (1 atm) at room temperature for 24 h . The suspension was filtered through a Celite pad and the solvent was removed. The oily crude product obtained was purified by column chromatography (silica gel, toluene- $\mathrm{EtOH}=9: 1$), affording a colourless oily product.
(1S,2R,4S)-tert-Butyl 2-amino-4-isopropylcyclohexane-1-carboxylate (9A)
According to General procedure $4, \mathbf{9 A}$ was prepared from $\mathbf{8 A}(1.08 \mathrm{~g}, 94 \%)$; an oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-39.0(c$ 0.125 in MeOH$) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.84(3 \mathrm{H}, d, J=2.5 \mathrm{~Hz}), 0.85(3 \mathrm{H}, d, J=2.5 \mathrm{~Hz}), 0.86-0.99$ $(1 \mathrm{H}, m), 1.21-1.42(4 \mathrm{H}, m), 1.44(9 \mathrm{H}, s), 1.70-1.78(3 \mathrm{H}, m), 2.27(1 \mathrm{H}, d t, J=3.3,12.2 \mathrm{~Hz}), 3.48-$ $3.53(1 \mathrm{H}, m) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.9,20.2,22.3,28.6,29.0,32.9,36.6,37.1,48.3,48.9,80.5$, 174.6. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{NO}_{2}$ (241.37): C, 69.66; H, 11.27; N, 5.80; Found: C, 69.89; H, 11.41; N, 5.60.

(1S,2S,4S)-tert-Butyl 2-amino-4-isopropylcyclohexane-1-carboxylate (9B)

According to General procedure 4, 9B was prepared from 8B (1.05 g, 92\%); an oil; $[\alpha]_{\mathrm{D}}{ }^{20}=+19.0(c$ 0.125 in MeOH$) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.87(6 \mathrm{H}, d, J=6.8 \mathrm{~Hz}), 0.99-1.20(2 \mathrm{H}, m), 1.40-1.56(4 \mathrm{H}$, $m), 1.46(9 \mathrm{H}, s), 1.60-1.69(1 \mathrm{H}, m), 2.08-2.15(1 \mathrm{H}, m) ; 2.65-2.69(1 \mathrm{H}, m) ; 2.72(1 \mathrm{H}, d t, J=4.5,11.6$ $\mathrm{Hz}), \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.1,20.2,25.1,28.6,29.1,33.0,36.2,44.0,47.5,52.6,80.6,176.1$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{NO}_{2}$ (241.37): C, 69.66; H, 11.27; N, 5.80; Found: C, 69.83; H, 11.39; N, 5.65.

According to General procedure 4, 9C was prepared from 8C (1.08 g, 95\%); an oil; $[\alpha]_{\mathrm{D}}{ }^{20}=+31.0(c$ 0.505 in MeOH$) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.87(6 \mathrm{H}, d, J=6.7 \mathrm{~Hz}), 0.84-0.91(1 \mathrm{H}, m), 0.95(1 \mathrm{H}, d d d, J$ $=3.3,12.1,25.3 \mathrm{~Hz}), 1.14-1.48(3 \mathrm{H}, m), 1.46(9 \mathrm{H}, s), 1.67-1.75(1 \mathrm{H}, m), 1.81-1.99(3 \mathrm{H}, m), 2.86$ $(1 \mathrm{H}, d d d, J=4.0,10.1,13.9 \mathrm{~Hz}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.1,20.2,28.6,28.9,29.3,32.9,38.6,43.2$, 52.3, 54.5, 80.6, 175.3. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{NO}_{2}$ (241.37): C, 69.66; H, 11.27; N, 5.80; Found: C, 69.85; H, 11.47; N, 5.62.
(1R,2R,4S)-tert-Butyl 2-amino-4-isopropylcyclohexane-1-carboxylate (9D)
According to General procedure 4, 9D was prepared from 8D (1.05 g, 92\%); an oil; $[\alpha]_{\mathrm{D}}{ }^{20}=-40.0(c$ 0.125 in MeOH$) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.86(3 \mathrm{H}, d, J=6.7 \mathrm{~Hz}), 0.90(3 \mathrm{H}, d, J=6.7 \mathrm{~Hz}), 1.20-0.45$ $(4 \mathrm{H}, m), 1.46(9 \mathrm{H}, s), 1.55-1.86(4 \mathrm{H}, m), 2.07-2.16(1 \mathrm{H}, m), 3.14-3.25(1 \mathrm{H}, m) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 21.0(2 \mathrm{xMe}), 23.8,27.0,28.4,28.6,35.8,39.6,47.2,52.1,80.6,174.6$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{NO}_{2}$ (241.37): C, 69.66; H, 11.27; N, 5.80; Found: C, 69.87; H, 11.40; N, 5.59.

Syntheses of amino acid hydrochlorides 10A-D: general procedure 5

The appropriate amino ester $\mathbf{9 A}-\mathbf{D}(2.41 \mathrm{~g}, 10 \mathrm{mmol})$ was dissolved in a mixture of $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ and 10% aqueous HCl solution $(100 \mathrm{~mL})$, which was followed by stirring at room temperature for 24 h . The mixture was then evaporated to dryness and the resulting white crystalline product was washed with $\mathrm{Et}_{2} \mathrm{O}$ and filtered off.
(1S,2R,4S)-2-Amino-4-isopropylcyclohexanecarboxylic acid hydrochloride (10A)
According to General procedure 5, 10A was obtained as white crystals (2.03 g, 92\%); mp 210-213 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+46.0(c 0.125$ in MeOH$) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) 0.83(3 \mathrm{H}, d, J=2.5 \mathrm{~Hz}), 0.84(3 \mathrm{H}$, $d, J=2.5 \mathrm{~Hz}), 0.97-1.10(1 \mathrm{H}, m), 1.27-1.48(3 \mathrm{H}, m), 1.63-1.99(1 \mathrm{H}, m), 2.62(1 \mathrm{H}, d t, J=3.5,12.2$ $\mathrm{Hz}), 3.65-3.71(1 \mathrm{H}, m), 7.98(3 \mathrm{H}, b r s) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) 20.3,20.4,22.9,28.3,32.2,32.3$,
36.1, 44.0, 48.2, 175.0. Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{ClNO}_{2}$ (221.72): C, 54.17; H, 9.09; N, 6.32; Found: C, 54.38; H, 9.25; N, 5.98.
(1S,2S,4S)-2-Amino-4-isopropylcyclohexanecarboxylic acid hydrochloride (10B)
According to General procedure 5, 10B was obtained as white crystals (1.99 g, 90\%); mp 247-250 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=-23.0(c 0.25$ in MeOH$) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{-\mathrm{d}_{6}}\right) 0.82(6 \mathrm{H}, d, J=6.9 \mathrm{~Hz}), 0.84-0.92$ $(1 \mathrm{H}, m), 1.16-1.28(1 \mathrm{H}, m), 1.36-1.58(4 \mathrm{H}, m), 1.74-1.83(1 \mathrm{H}, m), 2.07-2.18(1 \mathrm{H}, m), 2.96-3.03(1 \mathrm{H}$, $m), 3.10-3.19(1 \mathrm{H}, m), 8.10(3 \mathrm{H}, b r s), 12.10(1 \mathrm{H}, b r s) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) 20.3,20.4,25.3$, $27.8,30.6,32.8,41.1,42.7,50.8,174.8$. Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{ClNO}_{2}$ (221.72): C, 54.17; H, 9.09; N, 6.32; Found: C, 54.30; H, 9.31; N, 6.10.
(1R,2S,4S)-2-Amino-4-isopropylcyclohexanecarboxylic acid hydrochloride (10C) According to General procedure 5, 10C was obtained as white crystals ($2.35 \mathrm{~g}, 94 \%$); mp 220-223 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+38.0(c 0.25$ in MeOH$) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) 0.84(6 \mathrm{H}, d, J=6.8 \mathrm{~Hz}), 0.94(1 \mathrm{H}$, $d d d, J=3.2,12.9,25.7 \mathrm{~Hz}), 1.04-1.24(2 \mathrm{H}, m), 1.31(1 \mathrm{H}, d d d, J=3.4,13.1,26.0 \mathrm{~Hz}), 1.39-1.49(1 \mathrm{H}$, $m), 1.36-1.58(4 \mathrm{H}, m), 1.63-1.73(1 \mathrm{H}, m), 1.98-2.12(2 \mathrm{H}, m), 2.40(1 \mathrm{H}, d d d, J=3.9,11.2,14.9 \mathrm{~Hz})$, $3.08-3.21(1 \mathrm{H}, m), 8.10(3 \mathrm{H}, b r s), 12.80(1 \mathrm{H}, b r s) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{-1} \mathrm{~d}_{6}\right) 20.3,20.4,28.4,29.2$, 32.7, 33.5, 42.0, 46.8, 51.2, 175.3. Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{ClNO}_{2}$ (221.72): C, 54.17; H, 9.09; $\mathrm{N}, 6.32$; Found: C, 54.35; H, 9.23; N, 5.99.
(1R,2R,4S)-2-Amino-4-isopropylcyclohexanecarboxylic acid hydrochloride (10D)
According to General procedure 5, 10D was obtained as white crystals ($2.03 \mathrm{~g}, 92 \%$); mp 224-227 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=-41.0(c 0.125 \mathrm{in} \mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) 0.81(3 \mathrm{H}, d, J=6.0 \mathrm{~Hz}), 0.84(3 \mathrm{H}$, $d, J=6.0 \mathrm{~Hz}), 1.12-1.24(1 \mathrm{H}, m), 1.38-1.52(3 \mathrm{H}, m), 1.58-1.72(2 \mathrm{H}, m), 1.75-1.90(2 \mathrm{H}, m), 2.72$ $(1 \mathrm{H}, d d, J=5.0,9.9 \mathrm{~Hz}), 3.50-3.60(1 \mathrm{H}, m), 8.25(3 \mathrm{H}, b r s), 12.75(1 \mathrm{H}, b r s) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}, \mathrm{DMSO}-$ d_{6}) 20.6, 20.7, 23.0, 26.2, 30.3, 30.7, 37.4, 43.5, 47.8, 174.4. Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{ClNO}_{2}$ (221.72): C, 54.17; H, 9.09; N, 6.32; Found: C, 54.40; H, 9.21; N, 6.01.

X-ray crystallographic study of 10D: Crystallographic data were collected at 123 K with a NoniusKappa CCD area detector diffractometer, using graphite-monochromatized Mo-K ${ }_{\alpha}$ radiation ($\lambda=0.71073 \AA$) as reported earlier [5]. The structure was solved by direct methods by use of the SHELXS-97 program [6] and full-matrix, least-squares refinements on F^{2} were performed by use of the SHELXL-97 program [6]. The CH hydrogen atoms were included at fixed distances from their host atoms with the fixed displacement parameters. The NH and OH hydrogen atoms were refined isotropically and the hydrogen bonds formed by them control the crystal packing of 10D. The ORTEP plot was drawn with ORTEP-3 for Windows [7]. The deposition number CCDC 1011603 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: (internat.) + 44-1223-336-033; E-mail: deposit@ccdc.cam.ac.uk)

Crystal data for 10D, $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{ClNO}_{2}, M_{r}=221.72 .50$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$ (no. 9), $a=$ 6.6955(1), $b=7.9887(2), c=22.8357(3) \AA, \alpha=\beta=\delta=90^{\circ}, V=1221.44(4) \AA^{3}, T=123 \mathrm{~K}, Z=4$, $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=0.291 \mathrm{~mm}^{-1}$. Total 3023 refelections, unique 2398 . Refinement of 2315 reflections (145 parameters) with $I>2 \delta(I)$. converged at final $R 1=0.0267(R 1$ all data $=0.0283), w R 2=0.0629(w R 2$ all data $=0.0640), \mathrm{GOF}=1.074$, Flack parameter $=0.00(3)$.

References

1. Kitahara, T.; Horiguchi, A.; Mori, K. Tetrahedron 1988, 44, 4713-4720.
2. Cooke, R. G.; Macbeth, A. K.; Swanson, T. B. J. Chem. Soc. 1940, 808-810.
3. Suga, T.; Sugimoto, M.; Fujita, K.; Matsuura, T. Bull. Chem. Soc. Jpn. 1966, 39, 25462547.
4. Mori, K. Tetrahedron: Asymmetry 2006, 17, 2133-2142.
5. Kanizsai, I.; Szakonyi, Z.; Sillanpää, R.; D'Hooghe, M.; De Kimpe, N.; Fülöp, F. Tetrahedron - Asymmetry 2006, 17, 2857-2863.
6. Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2008, A64, 112-122.
7. Farrugia, L. J. J. Appl. Cryst. 1997, 30, 565.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC of $\mathbf{3}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $6\left(\mathrm{CDCl}_{3}\right)$

Informative part of the ${ }^{1} \mathrm{H}$ NMR of the crude product $7 \mathrm{~A}-\mathrm{D}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $7 \mathrm{~A}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and HMBC NMR of $\mathbf{7 B}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{7 C}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 7D $\left(\mathrm{CDCl}_{3}\right)$

(
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and HMBC NMR of $\mathbf{8 A}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{8 B}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{8 C}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and HMBC NMR of $\mathbf{8 D}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{9 A}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{9 B}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $9 \mathrm{C}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 9D $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 0 A}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 10B $\left(\mathrm{DMSO}-\mathrm{d}_{6}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 0 C}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 10D $\left(\mathrm{DMSO}-\mathrm{d}_{6}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 1}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 2}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 3}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 4}\left(\mathrm{CDCl}_{3}\right)$

