## **Supporting Information**

for

## Thermal and oxidative stability of the *Ocimum basilicum* L. essential oil/β-cyclodextrin supramolecular system

Daniel I. Hădărugă<sup>1\*</sup>, Nicoleta G. Hădărugă<sup>2</sup>, Corina I. Costescu<sup>2</sup>, Ioan David<sup>2</sup>, Alexandra T. Gruia<sup>3</sup>

Address: <sup>1</sup>Department of Applied Chemistry, Organic and Natural Compounds Engineering, *Polytechnic* University of Timişoara, Carol Telbisz 6, 300001, Timişoara, Romania, <sup>2</sup>Department of Food Science, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" – Timişoara, Calea Aradului 119, 300645, Timişoara, Romania and <sup>3</sup>Regional Centre for Immunology and Transplant, County Clinical Emergency Hospital Timişoara, Iosif Bulbuca Blvd. 10, 300736, Timişoara, Romania

Email: Daniel I. Hădărugă - daniel.hadaruga@upt.ro

\*Corresponding author

Complexation data, principal component analysis data, GC–MS analysis chromatograms and mass spectra for *O. basilicum* L. essential oil (raw, degraded or recovered from the βCD complexes)

## **Complexation data**

| Nº | Essential oil                     | Cyclodextrin   | M <sub>main</sub><br>compds.<br>(g/mol) <sup>a</sup> | Conc. of ess.<br>oil solution<br>(mg/mL) | m <sub>ess.oil</sub><br>(mg) | <i>m<sub>CD</sub></i> (mg) | m <sub>complex</sub><br>(mg) | Yield<br>(%) |
|----|-----------------------------------|----------------|------------------------------------------------------|------------------------------------------|------------------------------|----------------------------|------------------------------|--------------|
| 1  | Basil<br>(Ocimum<br>basilicum L.) | β-Cyclodextrin | 148/154                                              | 15.3                                     | 77.4                         | 670.9                      | 555.1                        | 74.18        |

**Table 1:** *Ocimum basilicum* L. essential oil/β-cyclodextrin nanoencapsulation process

<sup>a</sup> The main compounds were methyl chavicol (estragole) and linalool

**Table 2:** Codes and degradation conditions for the *O. basilicum* L. essential oil and its β-cyclodextrin complex

| N° | Sample                                                     | Codes              | m <sub>sample</sub><br>(mg) | Degr. temp.<br>(°C) | Degr. time<br>(min.) |
|----|------------------------------------------------------------|--------------------|-----------------------------|---------------------|----------------------|
| 1  |                                                            | В                  |                             | -                   |                      |
| 2  | Ocimum basilicum L.                                        | $B_{50}$           | 50                          | 50                  | 120                  |
| 3  | essential oil                                              | $B_{100}$          | 50                          | 100                 | 120                  |
| 4  |                                                            | $B_{150}$          |                             | 150                 |                      |
| 5  | <i>Ocimum basilicum</i> L.<br>essential oil/β-cyclodextrin | $B/\beta CD$       |                             | -                   |                      |
| 6  |                                                            | $B/\beta CD_{50}$  | 450                         | 50                  | 120                  |
| 7  |                                                            | $B/\beta CD_{100}$ | 430                         | 100                 | 120                  |
| 8  | complex                                                    | $B/\beta CD_{150}$ |                             | 150                 |                      |



Figure 1: SEM images for the Ocimum basilicum L. essential oil/β-cyclodextrin complex

## PCA analysis



hydrophobicity – "logP", were the PCA variables)

|           | PC 01 (Samples) | PC 02 (Samples) |
|-----------|-----------------|-----------------|
| MI        | 10.078          | -0.533          |
| OM2       | 10.562          | -1.432          |
| OM1       | -50.197         | -2.210          |
| OM        | 83.144          | -0.929          |
| OM2       | -4.551          | -1.989          |
| OM1       | 45.112          | -1.327          |
| OM1       | 6.414           | -1.635          |
| S1        | 19.144          | 1.222           |
| <i>S2</i> | 11.483          | 1.091           |
| <i>S2</i> | 16.619          | 1.027           |
| <i>S2</i> | 13.029          | 0.742           |
| SI        | 3.953           | 1.157           |
| <i>S3</i> | 3.736           | 1.461           |
| <i>S2</i> | 13.387          | 0.923           |
| <i>S2</i> | 10.888          | 1.607           |
| OS3       | -4.255          | -0.240          |
| OS3       | -12.409         | -1.356e-02      |
| OS2       | -54.093         | 0.821           |
| OS4       | -21.403         | 0.121           |
| OS4       | -69.552         | 0.113           |
| OS4       | -31.090         | 2.402e-02       |

**Table 3:** Scores data from the PCA analysis of Q *hasilicum* essential oil compounds nanoencapsulation in  $\beta$ CD

Table 4: Loadings data from the PCA analysis of O. basilicum essential oil compounds nanoencapsulation in βCD

|                            | PC_01 (X-Variables) | PC_02 (X-Variables) |
|----------------------------|---------------------|---------------------|
| Relative encapsulation (%) | 1.000               | 7.580e-05           |
| logP                       | -7.595e-05          | 1.000               |





Figure 3: Gas chromatogram from the GC-MS analysis of C<sub>8</sub>-C<sub>20</sub> alkane standard solution



Figure 4: *Kovats index vs. Retention time* correlation for the GC-MS analysis of alkane standard solution (used for determination of *KIs* of *Ocimum basilicum* L. essential oil components)

| article) |                                         |                    |
|----------|-----------------------------------------|--------------------|
| Nº       | Compound name                           | Compound structure |
| Monot    | erpenoid hydrocarbons, monocyclic (M1)  |                    |
| 1        | Limonene                                |                    |
| Oxyge    | nated monoterpenoids, acyclic (OM)      |                    |
| 4        | Linalool                                | OH                 |
| Oxyge    | nated monoterpenoids, monocyclic (OM1)  |                    |
| 3        | Linalool oxide                          | ООН                |
| 7        | Carvone                                 |                    |
| Oxyge    | nated monoterpenoids, bicyclic (OM2)    |                    |
| 2        | Eucalyptol                              |                    |
| 5        | Camphor                                 |                    |
| Pheno    | lic derivatives                         |                    |
| 6        | Methyl chavicol                         |                    |
| Sesqui   | terpenoid hydrocarbons, monocyclic (S1) |                    |
| 8        | β-Elemen<br>Humulene                    |                    |
|          |                                         |                    |

**Table 5:** The main compounds identified in raw and degraded *O. basilicum* L. essential oils (classes of compounds and their chemical structures). The number of compound corresponds to Table 1 (from the main article)

| Sesqui    | terpenoid hydrocarbons, bicyclic (S2)     |                              |
|-----------|-------------------------------------------|------------------------------|
| 9         | α-Bergamotene                             |                              |
|           |                                           |                              |
| 10        | β-Caryophyllene                           | 1                            |
|           |                                           |                              |
|           |                                           |                              |
|           |                                           |                              |
|           |                                           |                              |
| 1.1       | C circu                                   |                              |
| 11        | α-Guaiene                                 | Ĺ                            |
|           |                                           |                              |
|           |                                           |                              |
|           |                                           |                              |
| 14        | a Pulnasana                               | /                            |
| 14        | u-Dumesene                                | ,                            |
|           |                                           |                              |
|           |                                           | $\langle \downarrow \rangle$ |
|           |                                           |                              |
| 15        | v-Cadinene                                | 7                            |
|           |                                           |                              |
|           |                                           |                              |
|           |                                           |                              |
|           |                                           | $\checkmark$                 |
| Correct   | town ou aid hudu a and ang this with (82) |                              |
| <u>12</u> | B. Cubebene                               |                              |
| 15        | p-Cubebene                                | $\neg$                       |
|           |                                           | $\langle X \downarrow$       |
|           |                                           |                              |
|           |                                           | $\backslash$                 |
| <u></u>   |                                           |                              |
| Uxyge     | a Cadinal                                 |                              |
| 10        | u Caunioi                                 |                              |
|           |                                           |                              |
|           |                                           |                              |



Figure 5: The GC chromatogram of the raw O. basilicum L. essential oil



Figure 8: The GC chromatogram of the O. basilicum L. essential oil degraded at 150°C



**Figure 9:** The GC chromatogram of the recovered *O. basilicum* L. essential oil from the non-degraded βcyclodextrin complex







Figure 13: The experimental (up) and from the NIST database (down) MS spectra for limonene identified from the GC-MS analysis of *O. basilicum* L. essential oil



Figure 14: The experimental (up) and from the NIST database (down) MS spectra for eucalyptol identified from the GC-MS analysis of *O. basilicum* L. essential oil



Figure 15: The experimental (up) and from the NIST database (down) MS spectra for linalool oxide identified from the GC-MS analysis of *O. basilicum* L. essential oil



Figure 16: The experimental (up) and from the NIST database (down) MS spectra for linalool identified from the GC-MS analysis of *O. basilicum* L. essential oil



Figure 17: The experimental (up) and from the NIST database (down) MS spectra for camphor identified from the GC-MS analysis of *O. basilicum* L. essential oil



Figure 18: The experimental (up) and from the NIST database (down) MS spectra for methyl chavicol (estragole) identified from the GC-MS analysis of *O. basilicum* L. essential oil



Figure 19: The experimental (up) and from the NIST database (down) MS spectra for carvone identified from the GC-MS analysis of *O. basilicum* L. essential oil



**Figure 20:** The experimental (up) and from the NIST database (down) MS spectra for β-elemen identified from the GC-MS analysis of *O. basilicum* L. essential oil



**Figure 21:** The experimental (up) and from the NIST database (down) MS spectra for α-bergamotene identified from the GC-MS analysis of *O. basilicum* L. essential oil



**Figure 22:** The experimental (up) and from the NIST database (down) MS spectra for β-caryophyllene identified from the GC-MS analysis of *O. basilicum* L. essential oil



**Figure 23:** The experimental (up) and from the NIST database (down) MS spectra for α-guaiene identified from the GC-MS analysis of *O. basilicum* L. essential oil



Figure 24: The experimental (up) and from the NIST database (down) MS spectra for humulene identified from the GC-MS analysis of *O. basilicum* L. essential oil



**Figure 25:** The experimental (up) and from the NIST database (down) MS spectra for β-cubebene identified from the GC-MS analysis of *O. basilicum* L. essential oil



**Figure 26:** The experimental (up) and from the NIST database (down) MS spectra for α-bulnesene identified from the GC-MS analysis of *O. basilicum* L. essential oil



**Figure 27:** The experimental (up) and from the NIST database (down) MS spectra for γ-cadinene identified from the GC-MS analysis of *O. basilicum* L. essential oil



Figure 28: The experimental (up) and from the NIST database (down) MS spectra for spathulenol identified from the GC-MS analysis of *O. basilicum* L. essential oil



Figure 29: The experimental (up) and from the NIST database (down) MS spectra for caryophyllene oxide identified from the GC-MS analysis of *O. basilicum* L. essential oil



Figure 30: The experimental (up) and from the NIST database (down) MS spectra for α-cadinol identified from the GC-MS analysis of *O. basilicum* L. essential oil



Figure 31: The experimental MS spectra for *Sesquiterpene oxide (isomer 1)* from the GC-MS analysis of *O. basilicum* L. essential oil



Figure 32: The experimental (up) and from the NIST database (down) MS spectra for aristolene epoxide identified from the GC-MS analysis of *O. basilicum* L. essential oil



Figure 33: The experimental (up) and from the NIST database (down) MS spectra for aromadendrene oxide identified from the GC-MS analysis of *O. basilicum* L. essential oil