Supporting Information

for

Rapid pseudo five-component synthesis of intensively blue luminescent 2,5-di(hetero)arylfurans via a Sonogashira–Glaser cyclization sequence

Fabian Klukas, Alexander Grunwald, Franziska Menschel, and Thomas J. J. Müller* Address: Heinrich-Heine Universität Düsseldorf, Institut für Organische Chemie und Makromolekulare Chemie, Universitätsstraße 1, D-40225 Düsseldorf, Germany

Email: Thomas J.J.Müller - ThomasJJ.Mueller@uni-duesseldorf.de *Corresponding author

Experimental procedures, spectroscopic and analytical data of all compounds 2.

Table of Contents

1. General considerations	s3
2. General procedure for optimization studies	s5
3. General procedure for the Sonogashira–Glaser cyclization sequence	s6
4. Analytical data of compounds 2a–2o	s7
5. UV-absorption and fluorescence data of compounds 2a-2o	.s22
6. NMR spectra of compounds 2a–2o	.s30
7. CV data of compounds 2a–2o	.s60
8. xyz-Coordinates and dihedral angles of compounds 2a-2o	.s66

1. General considerations

All cross coupling reactions were carried out in oven-dried 80 mL microwave vessels (CEM Corporation) by using septa and syringes under nitrogen atmosphere. Commercial-grade reagents were used as supplied without further purification and were purchased from Sigma-Aldrich Chemie GmbH, ABCR GmbH & Co. KG, Alfa Aesar GmbH & Co. KG, and Merck Serono KGaA. The purification of products was performed on silica gel 60 (0.015–0.040 mm) from Macherey-Nagel Düren by using the flash technique under a pressure of 1.5 bar. The crude mixtures were adsorbed on Celite® 545 (0.02–0.10 mm) from Merck Serono KGaA Darmstadt before chromatographic purification. The reaction progress was monitored qualitatively by TLC silica gel 60 F254 aluminium sheets obtained by Merck Serono KGaA Darmstadt. The spots were detected with UV light at 254 nm and by using aqueous potassium permanganate solution.

¹H, ¹³C, and 135-DEPT NMR spectra were recorded on a Bruker Avance III – 600 spectrometer. $CDCl_3$ and $DMSO-d_6$ were used as deuterated solvents. The resonances of the residues of nondeuterated solvent were locked as internal standards (CDCl₃: ¹H δ 7.26, ¹³C δ 77.2; DMSO-*d*₆: ¹H δ 2.50, ¹³C δ 39.52). The multiplicities of signals were abbreviated as follows: s: singlet; d: doublet; t: triplet; dd: doublet of doublets and m: multiplet. The type of carbon atoms was determined on the basis of 135-DEPT NMR spectra. EI mass spectra were measured on a Finnigan MAT 8200 or Shimadzu GC-2010/QP-2010 spectrometer. IR spectra were obtained on Bruker Vector 22 FTIR. The intensity of signals is abbreviated as follows: s (strong), m (medium) and w (weak). The melting points (uncorrected) were measured on a Büchi Melting Point B-540. Combustion analyses were carried out on Perkin Elmer Series II Analyser 2400 in the microanalytical laboratory of the Institut für Pharmazeutische and Medizinische Chemie at the Heinrich Heine-Universität Düsseldorf. The UV-vis spectra were recorded with a Perkin Elmer Spectrometer (Lambda 19). The emission data were carried out on Perkin Elmer Luminescence Spectrometer (LS55). The quantum yield was determined as followed:

 $\phi_f(\text{sample}) = \phi_f(\text{reference}) \cdot \frac{F_{sample}}{F_{reference}} \cdot \frac{A_{reference}}{A_{sample}} \cdot \frac{n^2_{sample}}{n^2_{reference}} [1] \text{ with } p\text{-terphenyl } (\Phi_f = 93 \% \text{ in cyclohexane}) [2] \text{ or coumarin 1 } (\Phi_f = 73 \% \text{ in EtOH}) [3] \text{ as a reference.}$

Cyclic voltammetry experiments were performed with a 263A E&G Princeton Applied Research device under argon in dry and degassed dichloromethane at T = 293 K at scan rates of 100, 250, 500 and 1000 mVs⁻¹. The electrolyte was tetrabutylammonium hexafluorophosphate at a concentration of c = 0.1 mol L⁻¹. The working electrode was a 1 mm platinum disk, the counter electrode was a platinum wire and the reference electrode was a silver/silverchloride electrode filled with 3 M potassium chloride solution. The potentials were calibrated using [FeCp₂]/[FeCp₂]⁺ (E₀^{0/+1} = 450 mV) [4] as an internal potential standard. Computational support and infrastructure was provided by the "Center for Information and Media Technology" (ZIM) at the Heinrich-Heine-Universität Düsseldorf. The geometries of the ground state structures were optimizied on the DFT level of theory (B3LYP/6-311G(d,p) [5,6,7,8,9]) as implemented in Gaussian09 [10].

2. General procedure for optimization studies

A mixture of iodobenzene **3a** (101 mg, 0.50 mmol), H₂O (18.0 mg, 1.00 mmol) and potassium hydroxide (56.1 mg, 1 mmol) was dissolved in DMSO (2.00 mL) in a 10 mL microwave vessel equipped with a stirring bar and a septum. The mixture was heated in the microwave cavity at 130 °C for 1 h. After cooling to room temperature the mixture was extracted with methylene chloride (100 mL) and brine (250 mL). The organic phase was dried with anhydrous Na₂SO₄ and the solvents were removed under reduced pressure. The residue was absorbed on Celite[®] and purified by column chromatography on silica gel with *n*-hexane.

3. General procedure for the Sonogashira–Glaser cyclization sequence

In manner similar to [11]

2 mol % Pd(PPh₃)₂Cl₂, 4 mol % CuCl TMSA (1.5 equiv), NEt₃ (3.0 equiv) DMSO, under N₂, rt, 1 h

(hetero)aryl-l 3

then: KF, air, rt, 24 h **then:** DMSO, KOH (8.0 equiv), H₂O (8.0 equiv), MW (130 °C), 1 h

A mixture of a (hetero)aryl iodide **3** (2.00 mmol), $PdCl_2(PPh_3)_2$ (28.1 mg, 0.04 mmol, 2 mol %), and CuCl (7.92 mg, 0.08 mmol, 4 mol %) was dissolved in DMSO (2.00 mL) in a 80 mL microwave vessel equipped with a stirring bar and a septum and was degassed with N₂ for 5 min. After addition of trimethylsilylacetylene (0.42 mL, 3.00 mmol) and dry triethylamine (0.55 mL, 4.00 mmol) the solution was stirred at room temperature for 1 h. Then, KF (232 mg, 4.00 mmol) was added and the reaction mixture was vigorously stirred under air in the open reaction vessel at room temperature for 16 h. After the addition of H₂O (144 mg, 8.00 mmol), potassium hydroxide (449 mg, 16 mmol), and DMSO (14.0 mL) the mixture was heated in the microwave cavity at 130 °C for 1 h. After cooling to room temperature the mixture was extracted with methylene chloride (300 mL) and brine (500 mL). The organic phase was dried with anhydrous Na₂SO₄ and the solvents were removed under reduced pressure. The residue was absorbed on Celite[®] and purified by column chromatography on silica gel with *n*-hexane or *n*-hexane/THF as eluent.

4. Analytical data of compounds 2a-2o

2,5-Diphenylfuran (2a) [12]

C₁₆H₁₂O 220.27

The synthesis was carried out according to the general procedure with 408 mg (2.00 mmol) of iodobenzene (**3a**) (Alfa Aesar). The crude product was absorbed onto Celite® and purified by column chromatography on silica gel with *n*-hexane as an eluent to give 96.0 mg (0.44 mmol, 44 %) of the desired product as colorless crystals.

R_f: = 0.31 (*n*-hexane). Mp 84 °C (66-68 °C [12]). ¹H NMR (DMSO-*d*₆, 600 MHz): *δ*= 7.08 (s, 2 H), 7.31 (t, ³*J* = 7.4 Hz, 2 H), 7.46 (t, ³*J* = 7.8 Hz, 4 H), 7.82 (d, ³*J* = 7.3 Hz, 4 H). ¹³C NMR (DMSO, 150 MHz): *δ*= 108.2 (CH), 123.4 (CH), 127.5 (CH), 128.9 (CH), 130.0 (C_{quat}), 152.6 (C_{quat}). GC-MS (*m*/*z* (%)): 220 (M⁺, 100), 191 (13), 115 ((M-C₇H₅O)⁺, 41), 105 ((C₇H₅O)⁺, 22), 89 (14), 77 ((C₆H₅)⁺, 51), 63 (13), 51 (22); IR (KBr): $\tilde{\nu}$ = 1479 (w) cm⁻¹, 1446 (w), 1155 (w), 1022 (m), 925 (w), 910 (w), 794 (m), 756 (s), 689 (s), 671 (m). Anal. calcd for C₁₆H₁₂O (220.3): C 87.25, H 5.49; Found: C 87.09, H 5.42. UV–vis (CH₂Cl₂): $\lambda_{max}(\varepsilon)$: 327 nm (35000 L-mol⁻¹·cm⁻¹), 342 (22000). Fluorescence (CH₂Cl₂): λ_{max} : 358 nm. *Stokes* shift $\Delta \tilde{\nu}$ = 3800 cm⁻¹. Quantum yield: Φ_f = 83 % (ref.: *p*-terphenyl (Φ_f = 93 % in cyclohexane) [2]). Cyclic voltammetry (CH₂Cl₂): $E_{1/2}^{0/+1}$ = 1.25 V.

2,5-Di-o-tolylfuran (2b)

C₁₈H₁₆O 248.32

The synthesis was carried out according to the general procedure with 436 mg (2.00 mmol) of *o*-iodotoluene (**3b**) (Alfa Aesar). The crude product was absorbed onto Celite® and purified by column chromatography on silica gel with *n*-hexane as an eluent to give 126 mg (0.51 mmol, 51%) of the desired product as colorless solid.

R_f = 0.31 (*n*-hexane). Mp 70 °C. ¹H NMR (DMSO-*d*₆, 600 MHz): δ = 2.50 (s, 6 H), 6.87 (t, ³*J* = 1.9 Hz, 2 H), 7.22 (t, ³*J* = 7.4 Hz, 2 H), 7.28 (t, ³*J* = 6.9 Hz, 4 H), 7.76 (d, ³*J* = 7.2 Hz, 2 H). ¹³C NMR (DMSO, 150 MHz): δ = 21.7 (CH₃), 111.1 (CH), 125.2 (CH), 126.4 (CH), 127.6 (CH), 129.3 (C_{quat}), 131.3 (CH), 133.9 (C_{quat}), 151.9 (C_{quat}); GC-MS (*m*/*z* (%)): 248 (M⁺, 100), 128 ((C₁₀H₈)⁺, 40), 119 ((M-C₁₀H₉)⁺, 69), 91 ((C₇H₇)⁺, 71), 77 ((C₆H₅)⁺, 15), 65 (29); IR (KBr): $\tilde{\nu}$ = 1481 (w) cm⁻¹, 1458 (w), 1436 (w), 1030 (w), 928 (w), 789 (w), 756 (s), 721 (m), 671 (w);. Anal. calcd for C₁₈H₁₆O (248.3): C 87.05, H 6.49; Found: C 86.86, H 6.28; UV–vis (CH₂Cl₂): $\lambda_{max}(\varepsilon)$: 314 nm (23000 L·mol⁻¹·cm⁻¹), 342 (9000). Fluorescence (CH₂Cl₂): λ_{max} : 359 nm. *Stokes* shift $\Delta \tilde{\nu}$ = 5200 cm⁻¹. Quantum yield: Φ_f = 59 % (ref.: *p*-terphenyl (Φ_f = 93 % in cyclohexane) [2]). Cyclic voltammetry (CH₂Cl₂): $E_{1/2}^{0/+1}$ = 1.19 V.

2,5-Di-m-tolylfuran (2c) [12]

C₁₈H₁₆O 248.32

The synthesis was carried out according to the general procedure with 436 mg (2.00 mmol) of *m*-iodotoluene (**3c**) (Sigma-Aldrich). The crude product was absorbed onto Celite® and purified by column chromatography on silica gel with *n*-hexane as an eluent to give 160 mg (0.65 mmol, 65%) of the desired product as colorless solid.

R_f: = 0.24 (*n*-hexane)). Mp 83 °C (colorless oil [12]); ¹H NMR (DMSO-*d*₆, 600 MHz): δ = 2.37 (s, 6 H), 7.03 (s, 2 H), 7.12 (d, ³*J* = 7.5 Hz, 2 H), 7.33 (t, ³*J* = 7.6 Hz, 2 H), 7.61 (d, ³*J* = 7.9 Hz, 2 H), 7.64 (s, 2 H). ¹³C NMR (DMSO, 150 MHz): δ = 21.0 (CH₃), 108.0 (CH), 120.8 (CH), 123.9 (CH), 128.3 (CH), 128.9 (CH), 130.2 (C_{quat}), 138.2 (C_{quat}), 152.8 (C_{quat}). GC-MS (*m*/*z* (%)): 248 (M+, 100), 128 ((C₁₀H₈)⁺, 20), 119 ((M-C₁₀H₉)⁺, 12), 91 ((C₇H₇)⁺, 36), 77 ((C₆H₅)⁺, 11), 65 (21). IR (KBr): $\tilde{\nu}$ = 1476 (w) cm⁻¹, 1260 (w), 1092 (w), 1026 (m), 779 (s), 698 (m). Anal. calcd for C₁₈H₁₆O (248.3): C 87.05, H 6.49; Found: C 86.86, H 6.28. UV–vis (CH₂Cl₂): $\lambda_{max}(\varepsilon)$: 331 nm (33000 L·mol⁻¹·cm⁻¹), 348 (20000). Fluorescence (CH₂Cl₂): λ_{max} : 360 nm. *Stokes* shift $\Delta \tilde{\nu}$ = 3800 cm⁻¹. Quantum yield: Φ_f = 72 % (ref.: *p*-terphenyl (Φ_f = 93 % in cyclohexane) [2]). Cyclic voltammetry (CH₂Cl₂): $E_{1/2}^{0/+1}$ = 1.19 V.

2,5-Di-p-tolylfuran (2d) [12]

248.32

The synthesis was carried out according to the general procedure with 436 mg (2.00 mmol) of *p*-iodotoluene (**3d**) (Sigma-Aldrich). The crude product was absorbed onto Celite® and purified by column chromatography on silica gel with *n*-hexane as an eluent to give 100 mg (0.40 mmol, 40%) of the desired product as colorless solid.

R_f.: = 0.31 (*n*-hexane). Mp 168 °C (158-160 °C [12]). ¹H NMR (DMSO-*d*₆, 600 MHz): δ = 2.33 (s, 6 H), 6.97 (s, 2 H), 7.25 (d, ³*J* = 8.4 Hz, 4 H), 7.69 (t, ³*J* = 8.4, 4 H). ¹³C NMR (DMSO, 150 MHz): δ = 20.9 (CH), 107.3 (CH), 123.3 (CH), 127.5 (C_{quat}), 129.5 (CH), 136.8 (C_{quat}), 152.4 (C_{quat}). GC-MS (*m*/*z* (%)): 248 (M+, 100), 205 (6), 129 ((C₁₀H₇)⁺, 15), 119 ((M-C₁₀H₉)⁺, 11), 91 ((C₇H₇)⁺, 24), 77 ((C₆H₅)⁺, 7), 65 (14); IR (KBr): $\tilde{\nu}$ = 2911 (w) cm⁻¹, 1912 (w), 1501 (m), 1487 (m), 1375 (w), 1287 (w), 1209 (w), 1113 (w), 1063 (w), 1017 (m), 928 (m), 824 (s), 791 (s), (716 (m), 673 (m). Anal. calcd for C₁₈H₁₆O (248.3): C 87.05, H 6.49; Found: C 87.27, H 6.41. UV-vis (CH₂Cl₂): λ_{max}(ε): 331 nm (33000 L·mol⁻¹·cm⁻¹), 348 (20000). Fluorescence (CH₂Cl₂): λ_{max}: 360 nm. Stokes shift: Δ $\tilde{\nu}$ = 3800 cm⁻¹). Quantum yield: Φ_f = 64 % (ref.: *p*terphenyl (Φ_f = 93 % in cyclohexane) [2]). Cyclic voltammetry (CH₂Cl₂): $E_{1/2}^{0/+1}$ = 1.09 V.

2,5-Bis(3,5-dimethylphenyl)furan (2e)

C₂₀H₂₀O 276.37

The synthesis was carried out according to the general procedure with 464 mg (2.00 mmol) of 3,5-dimethyliodobenzene (**3e**) (Alfa Aesar). The crude product was absorbed onto Celite® and purified by column chromatography on silica gel with *n*-hexane as an eluent to give 60.0 mg (0.22 mmol, 22%) of the desired product as colorless crystals.

R_f: = 0.43 (*n*-hexane). Mp 147 °C. ¹H NMR (DMSO-*d*₆, 600 MHz): δ = 2.50 (s, 12 H), 6.93 (s, 2 H), 6.99 (s, 2 H), 7.42 (s, 4 H). ¹³C NMR (DMSO, 150 MHz): δ = 21.0 (CH), 107.9 (CH), 121.2 (CH), 129.1 (CH), 130.0 (C_{quat}), 137.9 (C_{quat}), 152,7 (C_{quat}). GC-MS (*m*/*z* (%)): 276 (M⁺, 100), 233 (4), 143 ((C₁₁H₁₁)⁺, 11), 128 (11), 115 (10), 105 ((C₈H₉)⁺, 11), 77 (14). IR (KBr): $\tilde{\nu}$ = 2913 (m) cm⁻¹, 1601 (m), 1466 (m), 1377 (w), 1312 (w), 1207 (w), 1028 (m), 941 (m), 891 (m), 845 (s), 791 (s), 698 (m), 675 (m). Anal. calcd for C₂₀H₂₀O (276.4): C 86.92, H 7.29; Found: C 86.73, H 7.19. UV-vis (CH₂Cl₂): $\lambda_{max}(\varepsilon)$: 331 nm (28000 L·mol⁻¹·cm⁻¹), 347 (18000). Fluorescence (CH₂Cl₂): λ_{max} : 362 nm. *Stokes* shift: $\Delta \tilde{\nu}$ = 3800 cm⁻¹. Quantum yield: Φ_f = 55 % (ref.: *p*terphenyl (Φ_f = 93 % in cyclohexane) [2]). Cyclic voltammetry (CH₂Cl₂): $E_{1/2}^{0/+1}$ = 1.06 V.

2,5-Bis(3-methoxyphenyl)furan (2f) [12]

C₁₈H₁₆O₃ 280.32

The synthesis was carried out according to the general procedure with 468 mg (2.00 mmol) of m-methoxyiodobenzene (**3f**) (Sigma Aldrich). The crude product was absorbed onto Celite® and purified by column chromatography on silica gel with *n*-hexane as an eluent to give 110 mg (0.39 mmol, 39%) of the desired product as beige solid.

R_f: = 0.08 (*n*-hexane). Mp 85 °C (colorless oil [12]). ¹H NMR (DMSO-*d*₆, 600 MHz): δ = 3.83 (s, 6 H), 6.89 (ddd, ³*J* = 8.1 Hz, ⁴*J* = 2.4 Hz, ⁵*J* = 1.2 Hz, 2 H), 7.10 (s, 2 H), 7.34 – 7.37 (m, 4 H), 7.40 (td, ³*J* = 7.8 Hz, ⁴*J* = 1.2 Hz, 4 H). ¹³C NMR (DMSO, 150 MHz): δ = 55.2 (CH), 108.6 (CH), 108.8 (CH), 113.3 (CH), 115.9 (CH), 130.1 (CH), 131.1 (C_{quat}), 152.5 (C_{quat}), 159.7 (C_{quat}). GC-MS (*m*/*z* (%)): 280 (M⁺, 100), 237 (23), 194 (16), 165 (13), 145 (9), 102 (21), 92 (17), 77 (22), 63 (16), 51 (9). IR (KBr): $\tilde{\nu}$ = 2959 (w) cm⁻¹, 1611 (w), 1584 (m), 1485 (s), 1431 (m), 1279 (m), 1211 (s), 1169 (m), 1099 (w), 1038 (s), 864 (m), 796 (s), 777 (m), 692 (m), 681 (m). Anal. calcd for C₁₈H₁₆O₃ (280.3): C 77.12, H 5.75; Found: C 77.04, H 5.89. UV–vis (CH₂Cl₂): $\lambda_{max}(\varepsilon)$: 331 nm (29000 L·mol⁻¹·cm⁻¹), 347 (20000). Fluorescence (CH₂Cl₂): λ_{max} : 362 nm. *Stokes* shift: $\Delta \tilde{\nu}$ = 4000 cm⁻¹); Quantum yield: Φ_f = 95 % (ref.: *p*-terphenyl (Φ_f = 93 % in cyclohexane) [2]).

2,5-Bis(3,4,5-trimethoxyphenyl)furan (2g) [13]

400.42

The synthesis was carried out according to the general procedure with 588 mg (2.00 mmol) of 3,4,5-trimethoxyiodobenzene (**3g**). The crude product was absorbed onto Celite® and purified by column chromatography on silica gel with 5/1 n-hexane/THF as an eluent to give 108 mg (0.27 mmol, 27%) of the desired product as colorless solid.

R_f: = 0.18 (5/1 *n*-hexane/THF). Mp 139 °C (140-140.9 °C [13]). ¹H NMR (DMSO-*d*₆, 600 MHz): δ = 3.70 (s, 6 H), 3.88 (s 12 H), 7.07 (s 2 H), 7.09 (s 4 H). ¹³C NMR (DMSO, 150 MHz): δ = 56.0 (CH_t), 60.1 (CH), 101.2 (CH), 108.1 (CH), 125.8 (C_{quat}), 137.8 (C_{quat}), 152.4 (C_{quat}), 153.4 (C_{quat}). MS-EI (*m*/*z* (%)): 400 (M⁺, 4), 293 (13), 195 ((C₉H₁₁O₃)⁺, 3), 167 (19), 148 (100), 71 (23). IR (KBr): $\tilde{\nu}$ = 2951 (w) cm⁻¹, 1586 (m), 1493 (m) 1464 (m), 1414 (m), 1341 (m), 1240 (m), 1184 (w), 1123 (s), 1088 (m), 1022 (m), 1007 (m), 997 (m), 968 (m), 831 (m), 789 (m), 762 (m), 691 (m). Anal. calcd for C₂₂H₂₄O₇ (400.4): C 66.59, H 6.04; Found: C 66.32, H 5.90. UV–vis (CH₂Cl₂): $\lambda_{max}(\varepsilon)$: 340 nm (33000 L·mol⁻¹·cm⁻¹), 365 (20000). Fluorescence (CH₂Cl₂): λ_{max} : 378 nm. Stokes shift: $\Delta \tilde{\nu}$ = 3800 cm⁻¹. Quantum yield: Φ_f = 80 % (ref.: *p*terphenyl (Φ_f = 93 % in cyclohexane) [2]).

2,5-Bis(2-methoxy-5-methylphenyl)furan (2h) [14]

The synthesis was carried out according to the general procedure with 496 mg (2.00 mmol) of 2-iodo-1-methoxy-4-methylbenzene (**3h**). The crude product was absorbed onto Celite® and purified by column chromatography on silica gel with *n*-hexane as an eluent to give 128 mg (0.42 mmol, 42%) of the desired product as yellow solid.

R_f: = 0.32 (*n*-hexane). Mp 118 °C (110 °C [14]). ¹H NMR (DMSO-*d*₆, 600 MHz): δ = 2.34 (s, 6 H), 3.89 (s 6 H), 7.00 (t, ³*J* = 4.2 Hz, 4 H), 7.09 (dd, ³*J* = 6.6 Hz, ⁴*J* = 1.8 Hz, 2 H), 7.75 (ds, ⁴*J* = 1.8 Hz, 2 H). ¹³C NMR (DMSO, 150 MHz): δ = 20.3 (CH), 55.9 (CH), 111.6 (CH), 112.3 (CH), 118.4 (C_{quat}), 125.5 (CH), 128.8 (CH), 129.4 (C_{quat}), 148.1 (C_{quat}), 153.2 (C_{quat}). GC-MS (*m*/*z* (%)): 308 (M⁺, 100), 265 (42), 149 ((C₉H₉O₂)⁺, 23), 145 (45), 115 (40), 91 (32), 78 (45). IR (KBr): $\tilde{\nu}$ = 2926 (w) cm⁻¹, 1609 (w), 1503 (s), 1462 (m), 1439 (m), 1273 (m), 1244 (s), 1179 (m), 1146 (m), 1028 (s), 885 (w), 795 (s), 739 (m). Anal. calcd for C₂₀H₂₀O₃ (308.4): C 77.90, H 6.54; Found: C 77.93, H 6.59. UV-vis (CH₂Cl₂): $\lambda_{max}(\varepsilon)$: 347 nm (33000 L·mol⁻¹·cm⁻¹), 364 (26000). Fluorescence (CH₂Cl₂): λ_{max} : 377 nm. *Stokes* shift: $\Delta \tilde{\nu}$ = 3500 cm⁻¹. Quantum yield: Φ_f = 47 % (ref.: *p*-terphenyl (Φ_f = 93 % in cyclohexane) [2]). Cyclic voltammetry (CH₂Cl₂): $E_{1/2}^{0/+1}$ = 0.95 V.

2,5-Bis(naphthalen-1-yl)furan (2i) [15]

The synthesis was carried out according to the general procedure with 508 mg (2.00 mmol) of 1-iodonaphtalene (**3i**). The crude product was absorbed onto Celite® and purified by column chromatography on silica gel with *n*-hexane as an eluent to give 191 mg (0.60 mmol, 60%) of the desired product as beige solid.

R_f: = 0.43 (*n*-hexane). Mp 76 °C (yellow oil [15]). ¹H NMR (DMSO-*d*₆, 600 MHz): δ = 7.19 (s, 2 H), 7.58 – 7.65 (m, 6 H), 7.94 (d, ³*J* = 7.1 Hz, 2 H), 7.99 (d, ³*J* = 8.2 Hz, 2 H), 8.00 (d, ³*J* = 8.0 Hz, 2 H), 8.53 (d, ³*J* = 8.4 Hz, 2 H). ¹³C NMR (DMSO, 150 MHz): δ = 111.8 (CH), 124.9 (CH), 125.6 (CH), 126.0 (CH), 126.2 (CH), 127.1 (CH), 127.5 (C_{quat}), 128.7 (CH), 129.3 (C_{quat}), 133.7 (C_{quat}), 152.6 (C_{quat}). GC-MS (*m*/*z* (%)): 320 (M⁺, 100), 289 (9), 165 ((C₁₃H₉)⁺, 30), 127 ((C₁₀H₇)⁺, 57), 77 (12).IR (KBr): $\tilde{\nu}$ = 1479 (w) cm⁻¹, 1446 (w), 1155 (w), 1022 (m), 925 (w), 910 (w), 794 (m), 756 (s), 689 (s), 671 (m). Anal. calcd for C₂₄H₁₆O (320.4): C 89.97, H 5.03; Found: C 89.69, H 5.08. UV–vis (CH₂Cl₂): $\lambda_{max}(\varepsilon)$: 347 nm (29000 L·mol⁻¹·cm⁻¹). Fluorescence (CH₂Cl₂): λ_{max} : 424 nm. *Stokes* shift: $\Delta \tilde{\nu}$ = 5300 cm⁻¹. Quantum yield: Φ_f = 75 % (ref.: coumarin 1 (Φ_f = 73 % in EtOH) [3]). Cyclic voltammetry (CH₂Cl₂): $E_{1/2}^{0/+1}$ = 1.15 V.

2,5-Bis(naphthalen-2-yl)furan (2j) [15]

C₂₄H₁₆O 320.38

The synthesis was carried out according to the general procedure with 508 mg (2.00 mmol) of 2-iodonapthalene (**3j**). The crude product was absorbed onto Celite® and purified by column chromatography on silica gel with *n*-hexane as an eluent to give 96.0 mg (0.21 mmol, 21%) of the desired product as brown solid.

R_f: = 0.28 (*n*-hexane). Mp 201 °C (219-220 °C [15]). ¹H NMR (CDCl₃, 600 MHz): δ = 6.84 (s, 2 H), 7.40 (t, ³*J* = 7.2 Hz, 2 H), 7.44 (t, ³*J* = 7.2, 2 H), 7.76 (d, ³*J* = 7.9, 2 H), 7.81 (s, 4 H), 7.86 (d, ³*J* = 8.0, 2 H). ¹³C NMR (DMSO, 150 MHz): δ = 107.1 (CH), 121.1 (CH), 121.4 (CH), 124.9 (CH), 125.5 (CH), 126.8 (CH), 127.0 (C_{quat}), 127.2 (CH), 127.4 (CH), 131.7 (C_{quat}), 132.7 (C_{quat}), 152.7 (C_{quat}). GC-MS (*m*/*z* (%)): 320 (M⁺, 100), 289 (6), 165 ((C₁₃H₉)⁺, 16), 127 ((C₁₀H₇)⁺, 18), 77 (3). IR (KBr): $\tilde{\nu}$ = 2922 (w) cm⁻¹, 1661 (w), 1624 (w), 1599 (w), 1501 (w), 1375 (w), 1260 (m), 1090 (m), 1024 (m), 1015 (m), 795 (s), 741 (s). HRMS calcd for C₂₄H₁₆O⁺: 320.1196; Found: 320.1197. UV-vis (CH₂Cl₂): $\lambda_{max}(\varepsilon)$: 358 nm (26000 L·mol⁻¹·cm⁻¹), 377 (21000). Fluorescence (CH₂Cl₂): λ_{max} : 393 nm. *Stokes* shift: $\Delta \tilde{\nu}$ = 3600 cm⁻¹. Quantum yield: Φ_f = 100 % (ref.: coumarin 1 (Φ_f = 73 % in EtOH) [3]). Cyclic voltammetry (CH₂Cl₂): $E_{1/2}^{0/+1}$ = 1.20 V.

2,5-Bis(3-hydroxymethylphenyl)furan (2k)

The synthesis was carried out according to the general procedure with 636 mg (2.00 mmol) of THP protected 3-iodobenzyl alcohol (**3k**). The crude product was absorbed onto Celite® and purified by column chromatography on silica gel with *n*-hexane as an eluent to give 120 mg (0.43 mmol, 43%) of the desired product as beige solid.

R_f: = 0.29 (*n*-hexane). Mp 146 °C. ¹H NMR (DMSO-*d*₆, 600 MHz): δ = 4.57 (d, ³*J* = 6.0 Hz, 4 H), 5.30 (t, ³*J* = 5.4 Hz, 2 H), 7.06 (s, 2 H), 7.27 (d, ³*J* = 7.2 Hz, 2 H), 7.41 (t, ³*J* = 6.0 Hz, 2 H), 7.68 (d, ³*J* = 7.8 Hz, 2 H), 7.77 (s, 2 H). ¹³C NMR (DMSO, 150 MHz): δ = 62.8 (CH₂), 108.1 (CH), 121.3 (CH), 121.9 (CH), 125.7 (CH), 128.7 (CH), 129.9 (C_{quat}), 143.4 (C_{quat}), 152.7 (C_{quat}). MS-EI (*m*/*z* (%)): 280 (M⁺, 100), 261 (5), 202 (6), 191 (5), 145 ((C₁₀H₉O)^{+,} 11), 135 ((C₈H₇O₃)^{+,} 7), 107 ((C₇H₇O)^{+,} 4),89 (8), 77 (6). IR (KBr): $\tilde{\nu}$ = 3277 (m) cm⁻¹, 2924 (w), 1601 (w), 1476 (w), 1452 (m), 1414 (m), 1294 (m), 1184 (m), 1045 (m), 1026 (s), 1003 (s), 941 (m), 897 (m), 901 (s), 775 (s), 694 (s), 613 (m). Anal. calcd for C₁₈H₁₆O₃ (280.3): C 77.12, H 5.75; Found: C 76.88, H 5.82. UV–vis (CH₂Cl₂): $\lambda_{max}(\varepsilon)$: 329 nm (32000 L-mol⁻¹·cm⁻¹), 345 (22000). Fluorescence (CH₂Cl₂): λ_{max} : 362 nm. *Stokes* shift: $\Delta \tilde{\nu}$ = 3900 cm⁻¹. Quantum yield: Φ_f = 80 % (ref.: *p*-terphenyl (Φ_f = 93 % in cyclohexane) [3]). Cyclic voltammetry (CH₂Cl₂): $E_{1/2}^{0/+1}$ = 1.16 V.

2,5-Bis(thiophen-2-yl)furan (2l) [16]

232.32

The synthesis was carried out according to the general procedure with 420 mg (2.00 mmol) of 2-iodothiophene (**3I**). The crude product was absorbed onto Celite® and purified by column chromatography on silica gel with *n*-hexane as an eluent to give 73.0 mg (0.31 mmol, 31 %) of the desired product as colorless solid.

R_f: 0.31 (*n*-hexane). Mp 78 °C (81-82 °C [16]). ¹H NMR (DMSO-*d*₆, 600 MHz): $\delta = 6.85$ (s, 2 H), 7.13 (t, ³*J* = 3.7 Hz, 2 H), 7.42 (d, ³*J* = 3.6 Hz, 2 H), 7.55 (d, ³*J* = 5.0 Hz, 2 H). ¹³C NMR (DMSO, 150 MHz): $\delta = 107.8$ (CH), 123.2 (CH), 125.4 (CH), 128.2 (CH), 132.3 (C_{quat}), 147.9 (C_{quat}). GC-MS (*m*/*z* (%)): 232 (M⁺, 100), 203 (29), 171 (31), 121 (M-C₅H₃OS)⁺, 26), 111 ((M-C₇H₅O)⁺, 34), 83 ((C₄H₃S)⁺, 12), 77 (17), 69 (17), 63 (13), 58 (16), 51 (11). IR (KBr): $\tilde{\nu} = 3105$ (w) cm⁻¹, 1796 (w), 1429 (w), 1260 (w), 1003 (s), 843 (m), 826 (m), 789 (s), 691 (s). Anal. calcd for C₁₂H₈OS₂ (232.3): C 62.04, H 3.47, S 27.60; Found: C 62.27, H 3.39, S 27.73. UV–vis (CH₂Cl₂): $\lambda_{max}(\varepsilon)$: 353 nm (24000 L·mol⁻¹·cm⁻¹), 371 (15000). Fluorescence (CH₂Cl₂): λ_{max} : 389 nm. *Stokes* shift: $\Delta \tilde{\nu} = 3800$ cm⁻¹. Quantum yield: $\Phi_f = 42$ % (ref.: *p*-terphenyl ($\Phi_f = 93$ % in cyclohexane) [2]).

2,5-Bis(thiophen-3-yl)furan (2m) [17]

The synthesis was carried out according to the general procedure with 420 mg (2.00 mmol) of 3-iodothiophene (3m). The crude product was absorbed onto Celite® and purified by column chromatography on silica gel with *n*-hexane as an eluent to give 45.0 mg (0.20 mmol, 20 %) of the desired product as colorless solid.

 $R_{f} = 0.22$ (*n*-hexane). Mp 131 °C (130-131 °C [17]). ¹H NMR (DMSO- d_{6} , 600 MHz): δ = 6.82 (s, 2 H), 7.50 (dd, ${}^{5}J$ = 0.6 Hz, ${}^{3}J$ = 5.0 Hz, 2 H), 7.64-7.65 (m, 2 H), 7.79 (dd, ${}^{5}J$ = 1.1 Hz, ${}^{4}J$ = 3.0 Hz, 2 H). 13 C NMR (DMSO, 150 MHz): δ = 107.3 (C_{quat}), 119.2 (C_{quat}), 124.7 (C_{quat}), 127.4 (C_{quat}), 131.9 (CH), 149.3 (CH). GC-MS (*m/z* (%)): 232 $(M^+, 100), 203 (20.6), 171 (13.9), 121 ((M-C_7H_8S^+) 20.9), 111 ((M-C_5H_5OS)^+, 25.0),$ 83 ((M-C₅H₃S)⁺, 11.4). IR (KBr): \tilde{v} = 3101 (w), 2920 (w), 1573 (w), 1483 (w) 1413 (w), 1269 (w), 1085 (w), 1018 (m), 848 (m), 769 (s), 684 (m). HRMS calcd for C₁₃H₈OS₂⁺: 233.0089; Found: 232.0090 UV-vis (CH₂Cl₂): $\lambda_{max}(\varepsilon)$: 321 nm (23000 L·mol⁻¹·cm⁻¹), 336 (15000). Fluorescence (CH₂Cl₂): λ_{max} : 351 nm. Stokes shift: $\Delta \tilde{\nu} = 3900 \text{ cm}^{-1}$. Quantum yield: $\Phi_f = 29 \%$ (ref.: *p*-terphenyl ($\Phi_f = 93 \%$ in cyclohexane) [2]).

2,5-Bis(phenanthren-9-yl)furan (2n)

420.50

The synthesis was carried out according to the general procedure with 608 mg (2.00 mmol) of 9-iodophenanthrene (**3n**). The crude product was absorbed onto Celite® and purified by column chromatography on silica gel with 80/1 *n*-Hexane/THF as an eluent to give 215 mg (0.51 mmol, 51%) of the desired product as yellow solid.

R_f: = 0.30 (40/1 *n*-hexane/THF). Mp 157 °C. ¹H NMR (DMSO-*d*₆ measured at 80 °C (DMSO-*d*₆ Signal locked at 3.5 ppm), 600 MHz): δ = 7.21 (s, 2.H), 7.68 (dt, ³*J* = 7.2 Hz, ⁴*J* = 1.2 Hz, 2 H), 7.72 - 7.79 (m, 6 H), 8.09 (d, 2 H), 8.27 (s, 2 H), 8.57 (dd, ³*J* = 9, ⁴*J* = 1.8 Hz, 2 H), 8.83 (d, ³*J* = 7.8 Hz, 2 H), 8.92 (dd, ³*J* = 9 Hz, ⁴*J* = 1.8 Hz, 2 H). ¹³C NMR (DMSO-*d*₆ measured at 80 °C (DMSO-*d*6 Signal locked at 39.5 ppm), 150 MHz): δ = 112.4 (CH), 123.2 (CH), 123.9 (CH), 126.3 (C_{quat}), 127.0 (CH), 127.5 (CH), 127.6 (CH), 127.7 (CH), 127.8 (CH), 128.0 (CH), 129.3 (C_{quat}), 129.5 (CH), 130.3 (C_{quat}), 131.0 (C_{quat}), 131.4 (C_{quat}), 153.2 (C_{quat}). MS-EI (*m*/*z* (%)): 420 (M⁺, 100), 389 (12), 376 (11), 215 ((C₁₇H₁₁)⁺, 22), 205 ((C₁₅H₉O)⁺, 14), 188 (22), 177 ((C₁₄H₉)⁺, 21); IR (KBr): $\tilde{\nu}$ = 3053 (w) cm⁻¹, 1940 (w), 1609 (w), 1493 (w), 1447 (m), 1425 (m), 1250 (m), 1140 (m), 897 (s), 764 (s), 743 (s), 717 (s). Anal. calcd for C₃₂H₂₀O (420.5): C 91.40, H 4.79; Found: C 91.18, H 5.08. UV-vis (CH₂Cl₂): $\lambda_{max}(\varepsilon)$: 343 nm (23000 L·mol⁻¹·cm⁻¹). Fluorescence (CH₂Cl₂): λ_{max} : 439 nm. *Stokes* shift: $\Delta \tilde{\nu}$ = 6400 cm⁻¹. Quantum yield: Φ_f = 69 % (ref.: coumarin 1 (Φ_f = 73 % in EtOH) [3]). Cyclic voltammetry (CH₂Cl₂): $E_{1/2}^{O/+1}$ = 1.24 V.

2,5-Bis(4-fluorophenyl)furan (20) [12]

256.25

The synthesis was carried out according to the general procedure with 444 mg (2.00 mmol) of p-fluoroiodobenzene (**3o**) (ABCR). The crude product was absorbed onto Celite® and purified by column chromatography on silica gel with *n*-hexane as an eluent to give 63.0 mg (0.25 mmol, 25%) of the desired product as colorless crystals.

R_f: = 0.33 (*n*-hexane). Mp 146 °C (140-141 °C [12]). ¹H NMR (DMSO-*d*₆, 600 MHz): δ = 7.05 (s, 2 H), 7.29 (t, ³*J* = 6.0 Hz, 2 H), 7.86 (dt, ³*J* = 5.4 Hz, ⁴*J* = 3 Hz, 4 H). ¹³C NMR (DMSO, 150 MHz): δ = 108.0 (CH), 115.9 (d, ²*J* = 21.9 Hz, CH), 125.5 (d, ³*J* = 8.1 Hz, CH), 126.7 (d, ⁴*J* = 3 Hz, C_{quat}), 151.7 (C_{quat}), 161.5 (d, ¹*J* = 243.5 Hz, C_{quat}). GC-MS (*m*/*z* (%)): 256 (M⁺, 100), 227 (13), 207 (5), 133 ((C₉H₆F)⁺, 22), 123 ((C₇H₄FO)⁺, 18), 95 ((C₆H₄F)⁺, 16). IR (KBr): $\tilde{\nu}$ = 2924 (w) cm⁻¹, 1599 (m), 1487 (s), 1300 (m), 1229 (s), 1157 (m), 1103 (m), 1026 (m), 928 (m), 829 (s), 810 (m), 787 (m), 774 (s), 664 (m), 635 (m), 623 (s). Anal. calcd for C₁₆H₁₀F₂O (256.3): C 74.99, H 3.93; Found.: C 74.82, H 4.16. UV–vis (CH₂Cl₂): $\lambda_{max}(\varepsilon)$: 323 nm (21000 L·mol⁻¹·cm⁻¹), 338 (12000). Fluorescence (CH₂Cl₂): λ_{max} : 353 nm. Stokes shift: $\Delta \tilde{\nu}$ = 3800 cm⁻¹. Quantum yield: Φ_f = 76 % (ref.: *p*-terphenyl (Φ_f = 93 % in cyclohexane) [2]). Cyclic voltammetry (CH₂Cl₂): $E_{1/2}^{0/+1}$ = 1.24 V, reversible.

5. UV-absorption and fluorescence data of compounds 2a-2o

 E_{0-0} was determined with the cross-section of the absorption and emission spectra

$$(E_{0-0} = \Lambda_{cross}).$$
2.5-Diphenvlfuran (2a)

Normalized UV–vis and fluorescence spectra (recorded in dichloromethane at T = 20 °C).

2,5-Di-o-tolylfuran (2b)

Normalized UV-vis and fluorescence spectra (recorded in dichloromethane at T = 20 °C).

2,5-Di-p-tolylfuran (2d)

Normalized UV–vis and fluorescence spectra (recorded in dichloromethane at T = 20 °C).

2,5-Bis(3,5-dimethylphenyl)furan (2e)

2,5-Bis(3-methoxyphenyl)furan (2f)

Normalized UV-vis and fluorescence spectra (recorded in dichloromethane at T = 20 °C).

2,5-Bis(3,4,5-trimethoxyphenyl)furan (2g)

2,5-Bis(2-methoxy-5-methylphenyl)furan (2h)

Normalized UV-vis and fluorescence spectra (recorded in dichloromethane at T = 20 °C).

2,5-Di(naphthalen-1-yl)furan (2i)

2,5-Di(naphthalen-2-yl)furan (2j)

Normalized UV–vis and fluorescence spectra (recorded in dichloromethane at T = 20 °C).

2,5-Bis(3-hydroxymethylphenyl)furan (2k)

2,5-Di(thiophen-2-yl)furan (2l)

Normalized UV-vis and fluorescence spectra (recorded in dichloromethane at T = 20 °C).

2,5-Di(thiophen-3-yl)furan (2m)

2,5-Di(phenanthren-9-yl)furan (2n)

Normalized UV-vis and fluorescence spectra (recorded in dichloromethane at T = 20 °C).

2,2,5-bis(4-fluorophenyl)furan (2o)

6. NMR spectra of compounds 2a-2o

¹³C NMR of **2a** in DMSO- d_6 at T = 298 K (150 MHz).

DEPT-135 NMR of **2a** in DMSO-*d*₆ at 298 K (150 MHz).

¹³C NMR of **2b** in DMSO- d_6 at T = 298 K (150 MHz).

DEPT-135 NMR of **2b** in DMSO- d_6 at T = 298 K (150 MHz).

2,5-Di-*m*-tolylfuran (2c)

DEPT-135 NMR of **2c** in DMSO- d_6 at T = 298 K (150 MHz).

2,5-Di-*p*-tolylfuran (2d)

s38

DEPT-135 NMR of **2e** in DMSO- d_6 at T = 298 K (150 MHz).

2,5-Bis(3-methoxyphenyl)furan (2f)

¹H NMR of **2f** in DMSO- d_6 at T = 298 K (600 MHz).

DEPT-135 NMR of **2f** in DMSO- d_6 at T = 298 K (150 MHz).

2,5-Bis(3,4,5-trimethoxyphenyl)furan (2g)

DEPT-135 NMR of **2g** in DMSO- d_6 at T = 298 K (150 MHz).

¹³C NMR of **2h** in DMSO- d_6 at T = 298 K (150 MHz).

DEPT-135 NMR of **2h** in DMSO- d_6 at T = 298 K (150 MHz).

2,5-Bis(naphthalen-1-yl)furan (2i)

¹³C NMR of **2i** in DMSO- d_6 at T = 298 K (150 MHz).

DEPT-135 NMR of **2i** in DMSO- d_6 at T = 298 K (150 MHz).

2,5-Bis(naphthalen-2-yl)furan (2j)

s50

DEPT-135 NMR of **2k** in DMSO- d_6 at T = 298 K (150 MHz).

2,5-Bis(thiophen-2-yl)furan (2l)

132 130 128 126 124 122 120 118 116 114 112 110 108 106 104 102 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 f1 (ppm)

DEPT-135 NMR of **2m** in DMSO- d_6 at T = 298 K (150 MHz).

2,5-Bis(phenanthren-9-yl)furan (2n)

¹³C NMR of **2n** in DMSO- d_6 at T = 378 K (150 MHz).

DEPT-135 NMR of **2n** in DMSO- d_6 at T = 378 K (150 MHz).

¹³C NMR of **20** in DMSO- d_6 at T = 298 K (150 MHz).

DEPT-135 NMR of **2o** in DMSO- d_6 at T = 298 K (150 MHz).

7. CV data of compounds 2a-2o

The oxidation potentials were determined with $E_{1/2}(Ag/Ag^+) = \frac{(E_{pa}-E_{pc})}{2}$ ([FeCp₂]/[FeCp₂]⁺ (E₀^{0/+1} = 450 mV) [4]). The half-wave potential against NHE were calculated with

 $E_{1/2}(H_2/H^+) = E_{1/2}(Ag/Ag^+) + NHE$ (NHE = 0.198 V)

The HOMO energy of all compounds were calculated with the first oxidation potential (vs NHE) of the corresponding molecule.

$$E_{HOMO} = -\left(E_{\frac{1}{2}}(Ox.\,1) - E_{\frac{FC}{Fc+}}\right) - 4.6 \ eV$$

The summand 4.6 eV is the ferrocene HOMO energy value related to the vacuum level [18].

2,5-Diphenylfuran (2a)

2,5-Di-o-tolylfuran (2b)

Recorded in dichloromethane, T = 293 K, v = 100 mV/s, 0.1 M electrolyt: [Bu₄N][PF₆], Pt working electrode, Pt counter electrode, Ag/AgCl (in KCl) reference electrode. **2,5-Di-***m***-tolylfuran (2c)**

2,5-Di-p-tolylfuran (2d)

Recorded in dichloromethane, T = 293 K, v = 100 mV/s, 0.1 M electrolyt: [Bu₄N][PF₆], Pt working electrode, Pt counter electrode, Ag/AgCl (in KCl) reference electrode. **2,5-Bis(3,5-dimethylphenyl)furan (2e)**

2,5-Bis(2-methoxy-5-methylphenyl)furan (2h)

Recorded in dichloromethane, T = 293 K, v = 100 mV/s, 0.1 M electrolyt: [Bu₄N][PF₆], Pt working electrode, Pt counter electrode, Ag/AgCl (in KCl) reference electrode. **2,5-Di(naphthalen-1-yl)furan (2i)**

0.1 м

2,5-Di(naphthalen-2-yl)furan (2j)

Recorded in dichloromethane, T = 293 K, v = 100 mV/s, 0.1 M electrolyt: [Bu₄N][PF₆], Pt working electrode, Pt counter electrode, Ag/AgCl (in KCl) reference electrode. **2,5-Bis(3-hydroxymethylphenyl)furan (2k)**

2,5-Di(phenanthren-9-yl)furan (2n)

Recorded in dichloromethane, T = 293 K, v = 100 mV/s, 0.1 M electrolyt: [Bu₄N][PF₆], Pt working electrode, Pt counter electrode, Ag/AgCl (in KCl) reference electrode. **2,2,5-Bis(4-fluorophenyl)furan (20)**

8. xyz-Coordinates and dihedral angles of compounds 2a–20

The geometries of the furans were optimized in DFT calculations with the B3LYP [5] functional and the 6-311G(d,p) [6-9] basis set as implemented in the program package *Gaussian09* [10]. The minima were confirmed by analytical frequency analysis. To find the global minima the DFT calculation started from the "*trans*" configuration with a dihedral angle of 90° (Fig. 1).

Figure s1: Example of starting configuration.

x,y,z-Coordinates of 2,5-diphenylthiophene (2a)

Dehedral Angle $\theta = 1^{\circ}$

SCF Done: E(RB3LYP) = -692.322306636 Hartrees	A.U. after	8 cycles
Sum of electronic and zero-point Energies=	-692.091336	Hartrees
Sum of electronic and thermal Energies=	-692.078387	Hartrees
Sum of electronic and thermal Enthalpies=	-692.077443	Hartrees
Sum of electronic and thermal Free Energies=	-692	2.133352 Hartrees

С	3.591982185	0.915900996	-0.014631071
С	2.411688379	0.151660635	0.000463657
С	2.519532027	-1.249185169	0.016804460
С	3.768472388	-1.862492877	0.017992581
С	4.932494748	-1.095482053	0.003041257
С	4.836000063	0.296950670	-0.013177591
С	1.110560862	0.805300162	-0.000497609
С	0.710709117	2.117158245	-0.000328752
С	-0.710709551	2.117158113	0.000313276
С	-1.110560798	0.805299982	0.000492960
0	0.00000084	0.002479290	0.00000689
С	-2.411688442	0.151660424	-0.000463602
С	-2.519532095	-1.249185275	-0.016812339
С	-3.768472489	-1.862492851	-0.017997787
С	-4.932494679	-1.095481857	-0.003035744
С	-4.835999936	0.296950689	0.013192171
С	-3.591981878	0.915900906	0.014643333

Н	-1.353092973	2.982934659	0.000078964
Н	1.353092079	2.982935093	-0.000103642
Н	-1.621097925	-1.852719513	-0.029262101
Н	-3.831668965	-2.944807726	-0.030786576
Н	-5.904167121	-1.575582130	-0.003942727
Н	-5.734595580	0.903407783	0.025171722
Н	-3.535635328	1.997987383	0.028060365
Н	1.621097845	-1.852719497	0.029245613
Н	3.831668547	-2.944807853	0.030774658
Н	5.904167174	-1.575582384	0.003949970
Н	5.734595791	0.903407831	-0.025147849
Н	3.535636403	1.997987627	-0.028039117

x,y,z-Coordinates of 2,5-di-o-tolylfuran (2b)

Dehedral Angle θ = 35°

rtrees	A.U. after	14 cycles
-770	.683129 Ha	rtrees
-770.	667350 Har	trees
-770	.666406 Har	trees
-77	0.727485 H	artrees
	rtrees -770 -770. -770 -770	rtrees A.U. after -770.683129 Har -770.667350 Har -770.666406 Har -770.727485 H

С	-1.720353194	-1.672183815	-1.440860207
С	-2.740051899	-0.893366851	-0.643287162
С	-4.051084075	-1.375850453	-0.568293430
С	-5.053661570	-0.694415826	0.116379128
С	-4.755298602	0.508906453	0.751296045
С	-3.458700147	1.004210112	0.701588651
С	-2.437966700	0.323828019	0.013740586
С	-1.110985759	0.942950688	-0.005822200
0	-0.000011020	0.139447488	0.000020685
С	-0.711675759	2.253545965	-0.003794761
С	0.711651380	2.253546092	0.003852304
С	1.110963349	0.942951493	0.005868312
С	2.437950454	0.323835152	-0.013725313
С	3.458647573	1.004215362	-0.701633715
С	4.755247171	0.508924341	-0.751396986
С	5.053651182	-0.694389642	-0.116480917
С	4.051113179	-1.375822396	0.568247032
С	2.740080279	-0.893344938	0.643304609
С	1.720451737	-1.672155986	1.440974403
Н	-1.133381123	-1.020702189	-2.091863685
Н	-2.218408527	-2.419587118	-2.060886796
Н	-1.010462270	-2.191010679	-0.791519853
Н	-4.290584902	-2.305610584	-1.073788606
Н	-6.058647170	-1.099564252	0.150227238
Н	-5.521845153	1.052243519	1.291775917
Н	-3.217514680	1.925503867	1.218863126
Н	-1.360565053	3.114705093	-0.018998713
Н	1.360539330	3.114706267	0.019056832
Н	3.217429503	1.925500633	-1.218907910
Н	5.521762495	1.052261993	-1.291920514
Н	6.058637274	-1.099532586	-0.150377476
Н	4.290642640	-2.305580310	1.073733879
Н	1.133363543	-1.020637428	2.091836147
Н	2.218584055	-2.419372711	2.061166402
Н	1.010666532	-2.191206057	0.791700265

x,y,z-Coordinates of 2,5-di-*m*-tolylfuran (2c)

Dehedral Angle $\theta = 0^{\circ}$

SCF Done: E(RB3LYP) = -770.977563472 Har	trees	A.U. after	12 cycles
Sum of electronic and zero-point Energies=	-770	.692451 Ha	rtrees
Sum of electronic and thermal Energies=	-770.	675649 Har	trees
Sum of electronic and thermal Enthalpies=	-770	.674704 Har	trees
Sum of electronic and thermal Free Energies=	-77	0.741144 H	artrees

С	1.110983230	-0.644280702	-0.000125982
С	0.710806681	-1.956102558	-0.000147759
С	-0.710804099	-1.956102685	-0.000080765
С	-1.110981526	-0.644280676	-0.000014881
0	0.000000042	0.158328282	-0.000045217
С	2.411843528	0.010406776	-0.000191883
С	-2.411840861	0.010406393	0.000130272
С	3.590798961	-0.757342856	0.000051279
С	4.850709003	-0.163490862	-0.000069342
С	4.931309635	1.236831183	-0.000599778
С	3.774587288	2.010156306	-0.000830345
С	2.519061535	1.408985860	-0.000606493
С	-2.519059207	1.408983108	0.000691678
С	-3.774587478	2.010154406	0.000865897
С	-4.931308233	1.236829347	0.000485269
С	-4.850707453	-0.163495313	-0.000092278
С	-3.590799009	-0.757344073	-0.000260008
С	6.106216796	-1.002957090	0.001126753
С	-6.106224521	-1.002950470	-0.000592954
Н	1.353110685	-2.821945363	-0.000215290
Н	-1.353109018	-2.821945919	-0.000054962
Н	3.522753880	-1.839682375	0.000292159
Н	5.903727375	1.718378544	-0.000892092
Н	3.849059727	3.092039955	-0.001295601
Н	1.623944384	2.017155201	-0.000891324
Н	-1.623942764	2.017154608	0.001022414
Н	-3.849060732	3.092037822	0.001318033
Н	-5.903725682	1.718376104	0.000640745
Н	-3.522751541	-1.839682999	-0.000707361
Н	5.873265883	-2.069158293	-0.007558019
Н	6.725908992	-0.785441789	-0.873939451
Н	6.715660315	-0.797886302	0.886428409
Н	-6.721321186	-0.791410027	0.879209816
Н	-6.720297282	-0.791871157	-0.881230330
Н	-5.873249055	-2.069180889	-0.000197478

x,y,z-Coordinates of 2,5-di-p-tolylfuran (2d)

Dehedral Angle $\theta = 0^{\circ}$

SCF Done: E(RB3LYP) = -770.977840193 Hart	rees	A.U. after	6 cycles
Sum of electronic and zero-point Energies=	-770	.692763 Har	trees
Sum of electronic and thermal Energies=	-770.	675950 Hart	rees
Sum of electronic and thermal Enthalpies=	-770	.675006 Har	trees
Sum of electronic and thermal Free Energies=	-77	0.741305 Ha	artrees

-			
С	-1.111313098	1.031636340	0.000299966
С	-0.711063925	2.343253918	0.002919863
С	0.711062977	2.343255214	0.002922216
С	1.111314251	1.031638462	0.000305127
0	0.000001435	0.228595731	-0.001287452
С	-2.411627211	0.377894509	-0.000645323
С	2.411629746	0.377899192	-0.000638660
С	-2.526497081	-1.020521866	-0.005156930
С	-3.777006944	-1.630902680	-0.007954983
С	-4.955902734	-0.879699818	-0.005170390
С	-4.836707869	0.517385518	-0.003195302
С	-3.595421619	1.137131829	-0.000321966
С	2.526500340	-1.020519607	-0.005197873
С	3.777007971	-1.630898135	-0.008021488
С	4.955905549	-0.879692557	-0.005205486
С	4.836710552	0.517389552	-0.003185452
С	3.595421259	1.137136258	-0.000289542
С	6.311576101	-1.541583487	0.012954657
С	-6.311583245	-1.541574010	0.012925553
Н	-1.353675931	3.208943933	0.004594250
Н	1.353674285	3.208945780	0.004594306
н	-1.631755401	-1.629999116	-0.009013157
Н	-3.835583060	-2.714520135	-0.013944739
Н	-5.733155689	1.129362208	-0.005622663
н	-3.544100647	2.219789208	-0.000459999
Н	1.631758100	-1.629995861	-0.009085225
н	3.835587521	-2.714515235	-0.014070310
н	5.733157700	1.129366220	-0.005604633
н	3.544099509	2.219793743	-0.000398295
н	6.238788969	-2.603335068	-0.230127545
н	6.992370673	-1.073607495	-0.703301760
н	6.776930069	-1.458746569	1.001149389
н	-6.238665989	-2.603564133	-0.229066763
н	-6.777484964	-1.457735593	1.000773150
н	-6.991986914	-1.074319519	-0.704180311

x,y,z-Coordinates of 2,5-bis(3,5-dimethylphenyl)furan (2e)

Dehedral Angle $\theta = 0^{\circ}$

SCF Done: E(RB3LYP) = -849.632693976 Hart	rees	A.U. after	5 cycles
Sum of electronic and zero-point Energies=	-849	.293442 Har	trees
Sum of electronic and thermal Energies=	-849.	272790 Hart	rees
Sum of electronic and thermal Enthalpies=	-849	.271846 Har	trees
Sum of electronic and thermal Free Energies=	-84	9.348126 Ha	artrees

С	3.590011991	-1.170443023	0.003474591
С	2.413543768	-0.398686704	-0.000462216
С	2.521046071	0.997648270	-0.006584900
С	3.770997187	1.624282316	-0.007028772
С	4.919280627	0.831899953	-0.005518340
С	4.844081331	-0.568704178	0.000260985
С	1.111204082	-1.051323725	-0.000581867
С	0.710531805	-2.362956797	0.000193292
С	-0.711254793	-2.362692415	0.000530685
С	-1.111451414	-1.050914242	-0.000114268
0	0.000004148	-0.248609725	-0.000792236
С	-2.413665876	-0.397948992	-0.000140404
С	-2.521280856	0.997939370	-0.001176459
С	-3.771771664	1.624599394	-0.001190339
С	-4.919464585	0.832189703	0.000051475
С	-4.844096095	-0.568882055	0.001196618
С	-3.590313447	-1.170209773	0.001050549
С	-3.864881135	3.132567452	-0.003068135
С	-6.106121014	-1.398891930	0.002676726
С	3.866205628	3.131942779	0.010335482
С	6.105970940	-1.399005698	-0.000008032
Н	-1.353830895	-3.228338646	0.001080256
Н	1.352810483	-3.228826621	0.000342419
Н	-1.620959153	1.600565169	-0.001913230
Н	-5.894732954	1.309964328	0.000178465
Н	-3.523546412	-2.252382125	0.001965750
Н	1.620714515	1.600098440	-0.012550120
Н	5.894457200	1.310018923	-0.010270565
Н	3.523612083	-2.252639220	0.006306820
Н	-3.367598019	3.559673151	0.872986615
Н	-3.379398179	3.556574243	-0.887271018
Н	-4.903890334	3.466652148	0.003149320
Н	6.715199138	-1.189337034	-0.884452679
Н	6.723393073	-1.177873526	0.875870614
Н	5.880459939	-2.466860854	0.007908543
Н	-6.718653552	-1.182908639	0.883303259
Н	-6.720202665	-1.183707644	-0.877057701

Н	-5.880821843	-2.466821097	0.002979796
Н	3.166618796	3.582448480	-0.698576861
Н	3.621994930	3.528222278	1.001564185
н	4.872905380	3.469897808	-0.242586008
x,y,z-Coordinates of 2,5-bis(3-methoxyphenyl)furan (2f)

SC	F Done: E(RB3	LYP) = -921.432	2298309 Harti	rees A.U. after 14 cycles	
Sum of electronic and zero-point Energies= -921.137070 Hartrees					
Sum of electronic and thermal Energies= -921.118846 Hartrees					
Su	m of electronic a	nd thermal Enth	alpies=	-921.117902 Hartrees	
Su	m of electronic a	nd thermal Free	Energies=	-921.185718 Hartrees	
С	1.110023657	-1.602775404	-0.00002607	77	
С	0.710791626	-2.914685633	-0.00004914	19	
С	-0.710791420	-2.914685849	-0.00005066	59	
С	-1.110023911	-1.602775711	-0.00002862	20	
0	-0.000000211	-0.800244219	-0.00001558	32	
С	2.412319761	-0.950870404	-0.00000215	51	
С	-2.412320047	-0.950870716	-0.00000707	70	
С	2.511041842	0.443338448	-0.00002423	38	
С	3.760881254	1.071751619	-0.00000216	3	
С	4.930105196	0.305760631	0.00004025	9	
С	4.825508113	-1.088256041	0.00006302	21	
С	3.592447411	-1.720543079	0.00004379	99	
С	-2.511041911	0.443338177	-0.00002216	60	
С	-3.760881132	1.071751677	-0.00000125	57	
С	-4.930105281	0.305761040	0.00003490)7	
С	-4.825508478	-1.088255649	0.00004990)4	
С	-3.592447956	-1.720543036	0.00003045	57	
0	3.729546467	2.434403513	-0.00002661	10	
0	-3.729545964	2.434403587	-0.00001799	99	
С	-4.967526022	3.143822978	0.00000865	54	
С	4.967526705	3.143822581	-0.00000842	20	
Н	1.353696415	-3.780027836	-0.00006655	52	
Н	-1.353695722	-3.780028407	-0.00006883	36	
Н	1.623325982	1.061726180	-0.00005776	51	
Н	5.906424855	0.769903046	0.00005632	7	
Н	5.731851956	-1.683297998	0.00009794	7	
Н	3.540571158	-2.802011710	0.00006614	17	
Н	-1.623325966	1.061725773	-0.00004917	71	
Н	-5.906424855	0.769903687	0.00005218	34	
Н	-5.731852485	-1.683297416	0.00007915	53	
Н	-3.540572306	-2.802011683	0.00004605	55	
Н	-4.703133529	4.199429755	-0.00001140)8	
н	-5.556857143	2.917374794	-0.89403685	58	
н	-5.556806448	2.917395982	0.89409292	24	
н	4.703134439	4.199429406	-0.00002943	32	
н	5.556811846	2.917397617	0.89407324	4	
н	5.556852963	2.917372031	-0.89405658	80	

x,y,z-Coordinates of 2,5-bis(3,4,5-trimethoxyphenyl)furan (2g)

Dehedral Angle $\theta = 2^{\circ}$			
SCF Done: E(RB3LYP) = -1379.62157593 Har	trees	A.U. after	5 cycles
Sum of electronic and zero-point Energies=	-1379	.199270 Ha	rtrees
Sum of electronic and thermal Energies=	-1379	.169269 Har	trees
Sum of electronic and thermal Enthalpies=	-1379	.168325 Ha	rtrees
Sum of electronic and thermal Free Energies=	-137	79.263836 H	lartrees

С	-3.526309086	-1.573525553	-0.036135968
С	-2.362168021	-0.792149976	0.030830450
С	-2.487667200	0.601080370	0.125471343
С	-3.743350223	1.198844085	0.183198015
С	-4.906280547	0.415043072	0.132883840
С	-4.781100669	-0.979849423	0.014500016
С	-1.051884504	-1.423761127	-0.007272287
С	-0.631686565	-2.728274716	-0.048653439
С	0.789643941	-2.704467265	-0.064724177
С	1.167969973	-1.386596191	-0.032137823
0	0.044814886	-0.602702943	0.002810001
С	2.456723924	-0.709610349	-0.033655344
С	2.531348311	0.686671675	-0.046355098
С	3.772084534	1.322156778	-0.042415497
С	4.955551302	0.578664617	-0.043010835
С	4.882158225	-0.831044945	-0.033830778
С	3.643382216	-1.465829842	-0.031071071
0	3.809055501	2.694965172	0.015703108
С	4.259223153	3.352087074	-1.181203203
0	6.172606125	1.211516112	-0.082350776
С	6.813427565	1.356420740	1.196761382
0	6.080697552	-1.473717532	-0.020182942
С	6.087836256	-2.901442078	-0.004674555
0	-3.814641541	2.558021811	0.364672075
С	-4.352774529	3.308838792	-0.737629028
0	-6.143657815	1.009909894	0.192131966
С	-6.755123267	0.974578984	1.495700851
0	-5.893659730	-1.787382007	0.016085312
С	-6.719676875	-1.704143248	-1.159366835
Н	1.445348337	-3.559550435	-0.097822562
Н	-1.260722302	-3.603725612	-0.063053305
Н	1.637150123	1.294657280	-0.044621424
Н	3.589429737	-2.544779813	-0.020579633
Н	-1.613312302	1.235602720	0.179059690
Н	-3.479215773	-2.652083716	-0.118272140
Н	4.221533325	4.420517636	-0.972005252

Н	5.281322093	3.059838772	-1.427882247
Н	3.592082549	3.122223528	-2.018292106
Н	7.755211810	1.871262261	1.010094015
Н	6.195449479	1.955985473	1.871202639
Н	7.013595169	0.378976994	1.642512189
Н	7.136903199	-3.189823556	0.002768520
Н	5.596379574	-3.292399861	0.891478964
Н	5.604846883	-3.310474849	-0.897222069
Н	-7.534782443	-2.410013639	-1.005867315
Н	-7.120526177	-0.697189073	-1.286753403
Н	-6.148873277	-1.994343222	-2.046940828
Н	-7.715681918	1.478296199	1.395911494
Н	-6.911217094	-0.057048048	1.819720675
Н	-6.135954585	1.506135857	2.223404038
Н	-4.313837045	4.354937037	-0.436688954
Н	-3.739675893	3.165163628	-1.632994665
Н	-5.385140900	3.020801512	-0.941366062

x,y,z-Coordinates of 2,5-bis(2-methoxy-5-methylphenyl)furan (2h)

SCF Done: E(RB3LYP) = -1000.07380556 Hart	trees A.U. after 13 cycles
Sum of electronic and zero-point Energies=	-999.724094 Hartrees
Sum of electronic and thermal Energies=	-999.702128 Hartrees
Sum of electronic and thermal Enthalpies=	-999.701184 Hartrees
Sum of electronic and thermal Free Energies=	-999.777456 Hartrees

С	-1.105499273	-1.058739701	0.066561518
С	-0.710567636	-2.370706118	0.043137700
С	0.710559455	-2.370708229	-0.043173584
С	1.105495770	-1.058743114	-0.066580551
0	-0.00000243	-0.255463886	-0.000004363
С	-2.436695146	-0.450977649	0.098144071
С	2.436693622	-0.450984140	-0.098151371
С	-3.482973581	-1.093550822	-0.574359995
С	-4.795158965	-0.611950496	-0.572842379
С	-5.045105196	0.570058109	0.121887953
С	-4.028928677	1.240542074	0.804147455
С	-2.726616211	0.739793415	0.809936937
С	3.482965638	-1.093561162	0.574359217
С	4.795151737	-0.611963948	0.572852079
С	5.045107752	0.570040741	-0.121881840
С	4.028938134	1.240527998	-0.804147905
С	2.726622837	0.739785927	-0.809942007
С	-5.890017405	-1.347657558	-1.308992442
С	5.889993697	-1.347646424	1.309051434
0	-1.697863611	1.317217583	1.487605459
0	1.697876618	1.317212090	-1.487618488
С	-1.948103852	2.509588584	2.227509446
С	1.948124416	2.509583700	-2.227518902
Н	-1.359740193	-3.230429726	0.093410528
Н	1.359729028	-3.230433425	-0.093457145
Н	-3.251464051	-1.993344781	-1.134578608
Н	-6.047469470	0.985210779	0.136153056
Н	-4.266563891	2.149937384	1.338580776
Н	3.251450071	-1.993356423	1.134573237
Н	6.047474921	0.985186617	-0.136146311
Н	4.266581565	2.149917831	-1.338587004
Н	-5.619577847	-1.524889043	-2.354096781
Н	-6.087325547	-2.324940166	-0.856628330
Н	-6.823233268	-0.781252951	-1.295543445
Н	6.087005448	-2.325131548	0.857000770
Н	6.823325398	-0.781441756	1.295230728
Н	5.619715275	-1.524446370	2.354272552

Н	-2.688318180	2.343531434	3.016828467
Н	-0.995089583	2.780966870	2.677332359
Н	-2.285318186	3.321158668	1.575127340
Н	2.688341596	2.343525603	-3.016835082
Н	0.995113126	2.780966436	-2.677345493
Н	2.285338850	3.321151138	-1.575133526

x,y,z-Coordinates of 2,5-bis(naphthalen-1-yl)furan (2i)

Dehedral Angle θ = 42°

Denedral Angle $\theta = 42^{\circ}$							
SC	SCF Done: E(RB3LYP) = -999.665375672 Hartrees A.U. after 14 cycles						
Su	Sum of electronic and zero-point Energies= -999.340809 Hartrees						
Su	Sum of electronic and thermal Energies= -999.322733 Hartrees						
Su	m of electronic a	nd thermal Enth	alpies=	-999.	321789 Hai	rtrees	
Su	m of electronic a	nd thermal Free	Energies=	-99	9.388425 H	artrees	
С	-1.103700066	1.591602149	0.13853825	53			
С	-0.706267935	2.901019568	0.08751596	67			
С	0.706265083	2.901019732	-0.08751464	15			
С	1.103697807	1.591602398	-0.13853572	25			
0	-0.000000910	0.786373299	0.00000192	<u>2</u> 5			
С	-2.418188334	0.981357651	0.34829744	17			
С	2.418186238	0.981358461	-0.34829654	12			
С	-3.295738481	1.636974690	1.19937898	33			
С	-4.592933805	1.148754804	1.44797745	52			
С	-5.016512763	-0.015553697	0.85693114	17			
С	-4.163148216	-0.727507184	-0.02485991	16			
С	-2.845322852	-0.230524319	-0.30181098	30			
С	2.845323350	-0.230522602	0.30181195	52			
С	4.163148221	-0.727504967	0.02485743	37			
С	5.016509746	-0.015552015	-0.85693698	33			
С	-4.603417813	-1.922546534	-0.65431377	71			
С	-3.796218773	-2.598571062	-1.53504373	33			
С	-2.507871760	-2.099687043	-1.82950662	24			
С	-2.045450565	-0.950595243	-1.23147686	54			
С	4.592928466	1.148755693	-1.44798308	38			
С	3.295733660	1.636975129	-1.19938113	31			
С	2.045454513	-0.950593200	1.23148110)3			
С	2.507878745	-2.099683408	1.82951157	72			
С	3.796225282	-2.598566734	1.53504560)1			
С	4.603420707	-1.922543116	0.65431156	65			
н	-1.352120277	3.761868492	0.15459025	55			
Н	1.352116843	3.761868995	-0.15459025	50			
Н	-2.965480756	2.536496531	1.70483549	97			
Н	-5.244457523	1.690713128	2.12364605	50			
Н	-6.008489022	-0.407317080	1.05429920)2			
Н	6.008485688	-0.407314942	-1.05430735	52			
н	-5.599332065	-2.288475171	-0.42818924	45			
н	-4.145123468	-3.508315280	-2.01020235	55			
н	-1.876878739	-2.627255525	-2.53583772	27			
н	-1.054944370	-0.591624754	-1.46831580	09			

H5.2444499401.690713800-2.123654004H2.9654742742.536496415-1.704837513

Н	1.054948640	-0.591623458	1.468322451
Н	1.876888429	-2.627251186	2.535845622
Н	4.145132369	-3.508309808	2.010204657
Н	5.599334499	-2.288471504	0.428184240

x,y,z-Coordinates of 2,5-bis(naphthalen-2-yl)furan (2j)

Dehedral Angle $\theta = 0^{\circ}$

С

С

С

Н

Н

Н

Н

Н

Н

Н

	nearai / nigie e	0				
SC	SCF Done: E(RB3LYP) = -999.678490130 Hartrees A.U. after 8 cycles					
Su	m of electronic a	ind zero-point En	ergies= -99	99.354343 Har	rtrees	
Su	m of electronic a	ind thermal Energy	gies= -99	9.336142 Hart	trees	
Su	m of electronic a	ind thermal Entha	alpies= -99	9.335198 Har	trees	
Su	m of electronic a	ind thermal Free	Energies= -	999.403481 H	artrees	
С	-6.250714820	-0.742977875	-0.000281790			
С	-4.982644180	-0.109340576	-0.000273362			
С	-3.800972926	-0.916387114	0.000294018			
С	-3.939548872	-2.330758340	0.000838760			
С	-5.183817183	-2.915256535	0.000817033			
С	-6.350976927	-2.115138853	0.000248992			
С	-4.834663552	1.304675903	-0.000805639			
С	-3.596479962	1.888535487	-0.000767675			
С	-2.411222041	1.093181250	-0.000190676			
С	-2.532637582	-0.286394572	0.000314864			
С	-1.110314736	1.741589723	-0.000124214			
С	-0.710570922	3.054124661	-0.000084130			
С	0.710570996	3.054124598	0.000074696			
С	1.110314646	1.741589607	0.000120629			
0	-0.000000076	0.938339075	-0.000000127			
С	2.411221930	1.093181080	0.000189816			
С	3.596479761	1.888535403	0.000772966			
С	4.834663415	1.304675956	0.000813352			
С	4.982644143	-0.109340507	0.000277694			
С	3.800972958	-0.916387156	-0.000295591			
С	2.532637545	-0.286394725	-0.000318854			
С	3.939549041	-2.330758366	-0.000843803			

5.183817410 -2.915256440 -0.000819722 6.350977033 -2.115138657 -0.000245705 6.250714820 -0.742977690 0.000288502 1.352303081 3.920235594 0.000122180 -1.352302944 3.920235684 -0.000136177 3.515190130 2.968739497 0.001209244 5.725443040 1.923859931 0.001270553 1.643608278 -0.905312413 -0.000776296 7.143927072 -0.126994540 0.000725967 7.325688946 -2.589520791 -0.000233359 0055

Н	5.275964584	-3.995475060	-0.001240055
Н	3.044623071	-2.944007161	-0.001288461
Н	-1.643608262	-0.905312191	0.000767630
Н	-5.725443199	1.923859804	-0.001257940
н	-3.515190570	2.968739608	-0.001200564

Н	-3.044622838	-2.944007050	0.001278836
Н	-5.275964256	-3.995475160	0.001234703
Н	-7.325688735	-2.589521082	0.000238494
н	-7.143927124	-0.126994816	-0.000714705

x,y,z-Coordinates of 2,5-bis(3-hydroxymethylphenyl)furan (2k)

SCF Done: E(RB3LYP) = -921.443480123 Hartrees A.U. after 6 cycles					
Sum of electronic and zero-point Energies= -921.147991 Hartrees					
Su	Sum of electronic and thermal Energies= -921.129156 Hartrees				
Su	Sum of electronic and thermal Enthalpies= -921.128212 Hartrees				
Su	m of electronic a	nd thermal Free	Energies= -921.199242 Hartrees		
С	1.110893286	-1.622882733	-0.012304728		
С	0.710825694	-2.933885777	-0.052453589		
С	-0.710861768	-2.933879105	-0.052305427		
С	-1.110908812	-1.622872483	-0.012074658		
0	-0.000001496	-0.820334096	0.012763501		
С	2.412891124	-0.970787695	0.009323902		
С	-2.412896458	-0.970764914	0.009736088		
С	2.519677349	0.427338436	0.048584704		
С	3.764119050	1.058296489	0.073240212		
С	4.924539847	0.283188063	0.044992601		
С	4.830529844	-1.108540427	-0.002484937		
С	3.592456153	-1.736062125	-0.017138163		
С	-2.519669232	0.427390624	0.048013799		
С	-3.764099793	1.058361022	0.072835683		
С	-4.924531677	0.283226457	0.045735991		
С	-4.830540300	-1.108533437	-0.000783115		
С	-3.592469880	-1.736061189	-0.015581386		
С	3.830353664	2.566016257	0.165284871		
С	-3.830310393	2.566142085	0.163854527		
0	5.101838633	3.026219925	-0.284388219		
0	-5.101832378	3.026060113	-0.286019257		
Н	1.353313434	-3.799176698	-0.079021073		
Н	-1.353363796	-3.799162739	-0.078768664		
н	1.615933364	1.025483435	0.057564965		
Н	5.889387155	0.772560711	0.052387866		
Н	5.733990360	-1.707647009	-0.028288801		
Н	3.538737840	-2.817545616	-0.053618041		
Н	-1.615923547	1.025545751	0.056039940		
Н	-5.889375142	0.772604760	0.053250862		
Н	-5.734010574	-1.707663614	-0.025691322		
Н	-3.538764378	-2.817572123	-0.051258154		
Н	3.020424669	3.000699634	-0.435090022		
н	3.660726934	2.866816244	1.208780929		
н	-3.660598418	2.867647470	1.207132172		
н	-3.020428866	3.000415238	-0.436878519		
н	5.180426037	3.953680877	-0.041128865		
н	-5.180499344	3.953608888	-0.043119723		

x,y,z-Coordinates of 2,5-bis(thiophen-2-yl)furan (2l)

Dehedral Angle $\theta = 0^{\circ}$ SCF Done: E(RB3LYP) = -1333.84429854 HartreesA.U. after 15 cyclesSum of electronic and zero-point Energies=-1333.680751 HartreesSum of electronic and thermal Energies=-1333.668310 HartreesSum of electronic and thermal Enthalpies=-1333.667365 HartreesSum of electronic and thermal Free Energies=-1333.722339 Hartrees

С	1.107968810	-0.561768032	0.000018164
С	0.710839008	-1.874467857	0.000073237
С	-0.710838093	-1.874468089	0.000090448
С	-1.107967963	-0.561768657	0.000037967
0	0.00000780	0.247314469	-0.000006247
С	2.387264675	0.099321220	-0.000018542
С	-2.387264939	0.099320777	0.000039061
С	2.642382293	1.452131545	-0.000089949
С	4.030550039	1.760976250	-0.000099328
С	4.824282497	0.650330307	-0.000034418
С	-2.642382653	1.452131010	0.000171543
С	-4.030550451	1.760975689	0.000124500
С	-4.824283243	0.650329968	-0.000042663
S	-3.885008334	-0.810058040	-0.000160006
S	3.885008049	-0.810058468	0.000039578
Н	1.357782032	-2.737397208	0.000103730
Н	-1.357781884	-2.737396822	0.000147528
Н	1.855475572	2.193362442	-0.000135335
н	4.422110321	2.769565381	-0.000151970
Н	5.901351900	0.587011675	-0.000027173
н	-1.855476244	2.193361913	0.000307330
н	-4.422110750	2.769564889	0.000217449
Н	-5.901352482	0.587011252	-0.000104858

x,y,z-Coordinates of 2,5-bis(thiophen-3-yl)furan (2m)

SCF Done: E(RB3LYP) = -1333.84469985 Har	trees	A.U. after	8 cycles
Sum of electronic and zero-point Energies=	-1333.	681146 Har	trees
Sum of electronic and thermal Energies=	-1333.6	68795 Hart	rees
Sum of electronic and thermal Enthalpies=	-1333.6	667850 Har	trees
Sum of electronic and thermal Free Energies=	-1333	3.722421 Ha	artrees

С	-1.103830731	0.821119310	0.000001338
С	-0.739201816	2.141184812	0.000012095
С	0.684159978	2.176596088	0.000009821
С	1.113838997	0.875673892	-0.000002036
0	0.026225070	0.042097634	-0.000007305
С	-2.376364475	0.124929598	0.000000000
С	2.426133953	0.262637131	-0.000003217
С	-2.501223100	-1.307147958	0.000006771
С	-3.795507708	-1.729116434	0.000004934
S	-4.903817599	-0.394930723	-0.000004931
С	2.656698584	-1.093129205	0.000003518
S	4.346168167	-1.462339459	0.000002764
С	4.760213852	0.223359105	-0.000006489
С	-3.605147225	0.744528840	-0.000007226
С	3.652574317	1.013486802	-0.000009140
Н	-1.407504731	2.987603186	0.000021360
Н	1.309396934	3.055134595	0.000016790
Н	-1.653620508	-1.977669818	0.000013018
Н	-4.170894664	-2.740618796	0.000009142
Н	1.928945729	-1.888534731	0.000009038
Н	5.796666666	0.523184994	-0.000009332
Н	-3.821244871	1.801438420	-0.000013886
Н	3.696777996	2.094272107	-0.000015242

x,y,z-Coordinates of 2,5-bis(phenanthren-9-yl)furan (2n)

Dehedral Angle θ = 38°

SC	F Done: E(RB3	LYP) = -1307.02	2239560 Hart	rees	A.U. after	14 cycles
Sum of electronic and zero-point Energies= -1306.604522 Hartrees					artrees	
Sum of electronic and thermal Energies=			-1306	.580911 Ha	rtrees	
Sum of electronic and thermal Enthalpies=			-1306	5.579967 Ha	artrees	
Sur	m of electronic a	nd thermal Free	Energies=	-130)6.659379 H	Hartrees
С	-1.109065117	-1.414116570	-0.0781295	62		
С	-0.710388499	-2.722714282	-0.0519163	87		
С	0.710387086	-2.722720744	0.0518521	60		
С	1.109072901	-1.414126973	0.0781054	57		
0	0.000006988	-0.607565344	-0.0000007	05		
С	-2.440756664	-0.802194443	-0.1114774	80		
С	2.440766480	-0.802211377	0.11147394	48		
С	-2.753826175	0.376959139	-0.9039266	63		
С	-4.081967231	0.903389066	-0.8818663	16		
С	-5.113065657	0.250824928	-0.0859249	48		
С	-4.771410740	-0.917381935	0.6488229	30		
С	-3.429977658	-1.403556964	0.6188082	33		
С	-1.788087178	1.003966013	-1.7272689	29		
С	-2.098375181	2.116012979	-2.4818048	60		
С	-3.396124898	2.647735807	-2.4438745	75		
С	-4.361911294	2.048348714	-1.6625232	44		
С	-6.445405071	0.715875630	-0.0061561	63		
С	-7.391298163	0.058657569	0.7563606	98		
С	-7.047454982	-1.098041799	1.4787042	10		
С	-5.755706831	-1.574289859	1.4243524	67		
С	3.429994470	-1.403564706	-0.6188100	96		
С	4.771424197	-0.917379861	-0.6488175	80		
С	5.113065990	0.250829476	0.08593330	03		
С	4.081959981	0.903384039	0.88187214	48		
С	2.753825117	0.376939022	0.90393186	64		
С	4.361887809	2.048351360	1.66252448	38		
С	3.396094312	2.647724769	2.44387759	96		
С	2.098353819	2.115979995	2.48181573	30		
С	1.788080076	1.003929019	1.7272796	50		
С	5.755728528	-1.574276100	-1.4243470	16		
С	7.047472710	-1.098016425	-1.4786932	14		
С	7.391303402	0.058683338	-0.75634420	67		
С	6.445401790	0.715890940	0.00617103	37		
Н	-1.358256238	-3.582655906	-0.1114845	21		
Н	1.358248343	-3.582668845	0.11139332	20		
Н	-3.192093593	-2.270244912	1.2251351	12		
н	-0.784401332	0.607120073	-1.7600464	96		

Н	-1.338961206	2.575652285	-3.103886688
Н	-3.644044719	3.523749770	-3.032266883
Н	-5.358579919	2.468529884	-1.660418882
Н	-6.745643855	1.603548278	-0.546771828
Н	-8.405436779	0.439296399	0.797683018
Н	-7.794841505	-1.608451177	2.075088224
Н	-5.474014960	-2.462951988	1.979051361
Н	3.192118100	-2.270250712	-1.225142563
Н	5.358548169	2.468552739	1.660414501
Н	3.644002179	3.523744753	3.032265957
Н	1.338935663	2.575605971	3.103902299
Н	0.784400406	0.607067531	1.760060398
Н	5.474045600	-2.462938070	-1.979050568
Н	7.794865635	-1.608417193	-2.075076582
Н	8.405439001	0.439330770	-0.797661470
Н	6.745631472	1.603564455	0.546790228

x,y,z-Coordinates of 2,5-bis(4-fluorophenyl)furan (20)

SCF Done: E(RB3LYP) = -890.850618071 H	Hartrees	A.U. after	14 cycles
Sum of electronic and zero-point Energies=	-890.	636256 Ha	rtrees
Sum of electronic and thermal Energies=	-890.6	621601 Har	trees
Sum of electronic and thermal Enthalpies=	-890.	620657 Har	trees
Sum of electronic and thermal Free Energies	-89	0.680900 H	artrees

С	1.110297046	1.015116434	-0.000125458
С	0.711037312	2.326479563	-0.000075106
С	-0.711037243	2.326479515	0.000093679
С	-1.110297014	1.015116387	0.000132949
0	0.00000026	0.211687556	0.000000616
С	2.409902385	0.359205553	0.000067662
С	-2.409902353	0.359205561	-0.000065515
С	2.514431221	-1.041903766	0.004344871
С	3.756994925	-1.666415564	0.004525155
С	4.898594770	-0.880894557	0.000485984
С	-2.514431221	-1.041903782	-0.004330061
С	-3.756994920	-1.666415595	-0.004514517
С	-4.898594780	-0.880894578	-0.000492188
С	-4.837860586	0.505409817	0.003708940
С	-3.592430546	1.119843055	0.003943672
F	-6.112870561	-1.483999806	-0.000642632
С	4.837860575	0.505409783	-0.003728607
С	3.592430504	1.119843002	-0.003959550
F	6.112870508	-1.483999811	0.000632504
Н	1.352818421	3.192697787	-0.000033484
Н	-1.352818463	3.192697617	0.000061502
Н	1.616624188	-1.645539769	0.007754107
Н	3.845080729	-2.745677617	0.007800902
Н	-1.616624194	-1.645539859	-0.007725717
Н	-3.845080654	-2.745677691	-0.007780283
Н	-5.752464405	1.084983959	0.006855842
Н	-3.542859118	2.201741494	0.007399225
н	5.752464405	1.084983864	-0.006889551
н	3.542858854	2.201741357	-0.007427788

References

- [1] Rhys, A. T. R.; Winfield, S. A.; J. N. Miller *Analyst* 1983, *108*, 1067-1071.
 DOI: 10.1039/AN9830801067
- [2] Pavlopoulos, T. G.; Hammond, P. R. J. Am. Chem. Soc. 1974, 96, 6568-6579.
 DOI: 10.1021/ja00828a005
- [3] Jones II, G.; Jackson, W. R.; Choi C.; Bergmark W. R. J. Phys. Chem. 1985, 89, 294-300. DOI: 10.1021/j100248a024
- [4] Marcus, R. A. J. Chem. Phys. 1956, 24, 966-978. DOI: 10.1063/1.1742723
- [5] Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev. B* 1988, *37*, 785-789. DOI: 10.1103/PhysRevB.37.785
- [6] Becke, A. D. J. Chem. Phys. 1993, 98, 1372-1377. DOI: 10.1063/1.464913
- [7] Kim, K.; Jordan, K. D. J. Phys. Chem. 1994, 98, 10089-10094.
 DOI: 10.1021/j100091a024
- [8] Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem.
 1994, 98, 11623-11627. DOI: 10.1021/j100096a001
- [9] Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650-654. DOI: 10.1063/1.438955
- [10] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.;. Hratchian, H. P; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. GAUSSIAN 09 (Revision A.02) Gaussian, Inc., Wallingford CT, **2009**.
- [11] Urselmann, D.; Antovic, D.; Müller, T. J. J. Beilstein J. Org. Chem. 2011, 7, 1499–1503. DOI: 10.3762/bjoc.7.174

- [12] Zhang, M.; Jiang, H.-F.; Neumann, H.; Beller, M.; Dixneuf, P. H. Angew. Chem., Int. Ed. 2009, 48, 1681-1684. DOI: 10.1002/anie.200805531
- [13] De Oliveira, R. B.; Vaz, A. BM; Alves, R. O.; Liarte, D. B.; Donnici, C. L.;
 Romanha, A. J.; Zani, C. L. *Mem. Inst. Oswaldo Cruz* 2006, 101, 169-173. DOI: 10.1590/S0074-02762006000200009
- [14] Majumder, P.; Saha, S. *Phytochemistry* **1978**, *77*, 1439-1440.DOI: 10.1016/S0031-9422(00)94610-7
- [15] Yin, G.; Wang, Z.; Chem, A.; Gao, M.; Wu, A.; Pan, Y. J. Org. Chem. 2008, 73, 3377-3383. DOI: 10.1021/jo702585s
- [16] Kagan, J.; Arora, S. K. *Heterocycles* 1983, 20, 1941-1943. DOI: 10.3987/R-1983-10-1941
- [17] Moriarty, R. M.; Prakash, O.; Duncan, M. P. Synth. Commun. 1985, 15, 789-795.
 DOI: 10.1080/00397918508063874
- [18] Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R. F.; Bässler, H.; Porsch, M.; Daub, J. Adv. Mat. 1995, 7. DOI: 10.1002/adma.19950070608