Supporting Information

Staudinger ligation towards cyclodextrin dimers in aqueous/organic media. Synthesis, conformations and guest-encapsulation ability

Malamatenia D. Manouilidou, Yannis G. Lazarou, Irene M. Mavridis, Konstantina Yannakopoulou*

Address: Institute of Advanced Materials, Physicochemical Processes, Nanotechnology \& Microsystems, National Center for Scientific Research
"Demokritos", Terma Patriarchou Gregoriou \& Neapoleos, Aghia Paraskevi Attikis, 15310 Greece. Tel. +30210 6503796, Fax: +30 2106511766

Email: Konstantina Yannakopoulou - dyanna@chem.demokritos.gr
*Corresponding author

Experimental, analytical and computational data

Experimental

NMR experiments were performed on either a 250 MHz Avance III or a 500 MHz Avance DRX Bruker NMR spectrometer using the library 2D sequences and 90 degree pulses. For ROESY experiments, a spinlock time of $300-350 \mathrm{~ms}$ was used. DOSY NMR experiments: Samples of 4 cm height were used to ensure gradient linearity along the volume. The temperature was kept at $298.0 \pm 0.1 \mathrm{~K}$ (air flow $535 \mathrm{~L} / \mathrm{min}$). The measured 90 degree pulses were $10 \mu \mathrm{~s}$. A delay $\mathrm{d} 1=4 * \mathrm{~T}_{1}$ was inserted for the measurements, which were carried out with the gradient spin echo sequence ledbpgspr2sld employing a presaturation step. Data were acquired with 32 or 16 scans for each gradient step, 4 dummy scans, a 2.5 ms gradient pulse (δ), a linear gradient of $16-32$ steps between 2% and 95% and diffusion time (Δ) 100 ms . Total acquisition times were 31 min or 62 min . Processing was carried out with Bruker's Topspin 2.1 software

Synthetic procedures

1,4-Diiodo-p-xylene, 4-methyl-2,5-diiodobenzoic acid [1], 2,5-diiodoterephthalic acid [1], dimethyl 2,5-diiodoterephthalate [2] and mono(6-p-toluenesulfonyl)- β-cyclodextrin [3] were prepared according to the literature. Linker $\mathbf{2}$ was prepared according to ref. [4].

Dimethyl 2,5-bis(diphenylphospanyl)terephthalate (3).- To a solution of dimethyl 2,5diiodoterephthalate [2] ($100 \mathrm{mg}, 0.224 \mathrm{mmol}$) in dry THF (3 mL), triethylamine ($125 \mu \mathrm{~L}$, 0.896 mmol) was added followed by a catalytic amount of palladium acetate. The solution was degassed using argon, diphenylphosphine was added ($78 \mu \mathrm{~L}, 0.448 \mathrm{mmol}$) and the solution was left under argon and stirring at $70^{\circ} \mathrm{C}$ for 12 h . Then, the solution was allowed to acquire rt and the solvent was evaporated under reduced pressure. The residue was dissolved in $\mathrm{CHCl}_{3}: \mathrm{H}_{2} \mathrm{O}(1: 1, \mathrm{v} / \mathrm{v})(84 \mathrm{~mL})$, the two phases were separated and the organic phase was washed with $\mathrm{HCl}_{(\mathrm{aq})}(1 \mathrm{M}, 4 \mathrm{~mL})$. Then, the solvent was evaporated under reduced pressure
and a small amount of DMF was added to the resulted solid. The desired product was isolated after centrifugation as an orange solid and dried under vacuum ($126 \mathrm{mg}, 100 \%$). The product was stored under argon at $-20{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.57$ (eluent: CHCl_{3}). m.p.: 199.0-201.0 ${ }^{\circ} \mathrm{C}(\mathrm{dec}) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 298 \mathrm{~K}\right) \delta 7.55-7.40(\mathrm{~m}, 22 \mathrm{H},-\mathrm{Ar}), 3.57\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 166.8$ (-COO-), 141.1, 140.9 (C1), 137.1 136.9, 136.1, 134.2, 134.0, 129.2, 128.8 (-Ar), $52.2\left(-\mathrm{OCH}_{3}\right) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 202.5 \mathrm{MHz}, 298 \mathrm{~K}\right) \delta-3.9 . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ $563.3[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\left[\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{H}\right]^{+}: 563.15$.

Mono[6-(3-azidopropylamino-6-deoxy)]- β-cyclodextrin. A solution of dry mono(6-p-toluenesulfonyl)- β-cyclodextrin [3] ($80 \mathrm{mg}, 0.06 \mathrm{mmol}$) in 3-azidopropylamine (0.1 mL) was left under stirring for 14 h at $80{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}$ then was added (5 mL) and the solvents were evaporated under reduced pressure. The oily mixture was dissolved in $\mathrm{H}_{2} \mathrm{O}$, the pH of the solution was adjusted to 9 with $\mathrm{NaOH}_{(\mathrm{aq})}(10 \%, \mathrm{v} / \mathrm{v})$ and a cation-exchange resin (Amberlite IR120, $\mathrm{H}^{+}, 1.4 \mathrm{~g}$) was added to remove extra 3-azidopropylamine. The mixture was filtered, the pH of the filtrate was adjusted to 9 with $\mathrm{NaOH}_{(\mathrm{aq})}(10 \%, \mathrm{v} / \mathrm{v})$ and a anion-exchange resin (Amberlite IRA-400, 600 mg) was added to remove free p-toluenesulfonic acid. The mixture was filtered, the pH of the filtrate was adjusted to 7 with $\mathrm{HCl}_{(\mathrm{aq})}(10 \%$, $\mathrm{v} / \mathrm{v})$ and it was dialyzed for 3 h to remove the salts. After evaporating the solvents under reduced pressure, the product was isolated as a white powder, $(483 \mathrm{mg}, 85 \%) . \mathrm{R}_{\mathrm{f}}=0.25$ (eluent i PrOH:AcOEt: $\mathrm{H}_{2} \mathrm{O} 5: 3: 1$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}, 298 \mathrm{~K}\right) \delta 5.31$ (bs, $2 \mathrm{H}, \mathrm{H} 1$), 5.03 (bs, 5 H , H1), 4.11-3.65 (26H, H3, H5, H6), 3.65-3.47 (14H, H2, H4), 3.4 (bs, 2H, H7), 3.06 (d, $J=$ $13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H6}_{\mathrm{A}}$), 2.78 (dd, $J=13.0 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H6}^{\prime}$) , 2.69 (m, 2H, H9), 1.80 (m, $2 \mathrm{H}, \mathrm{H} 8) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}, 125 \mathrm{MHz}\right) \delta 102.4,100.7$ (C1), 81.4 (C4), 75.9 (C3), 72.7 (C2), 71.9 (C5), 60.3 (C6), $49.3\left(\mathrm{C}_{\mathrm{A}}, \mathrm{C} 7\right), 45.6(\mathrm{C} 9), 27.9(\mathrm{C} 8)$. IR $\left(\mathrm{cm}^{-1}\right)$ v $2103.6\left(-\mathrm{N}_{3}\right) . \mathrm{MS}$ (MALDI-TOF): $\mathrm{m} / \mathrm{z} 1218.0[\mathrm{M}+\mathrm{H}]^{+}$, calc. for $\left[\mathrm{C}_{45} \mathrm{H}_{76} \mathrm{~N}_{4} \mathrm{O}_{34} \mathrm{H}\right]^{+}$: 1218.09.

Monomer 4. To a solution of dry mono-[6-(3-azidopropylamino)-6-deoxy]- β-cyclodextrin ($30 \mathrm{mg}, 0.024 \mathrm{mmol}$) in dry DMF (1.5 mL), 1-methyl-2-diphenylphosphanylterephthalate [4] $(11.37 \mathrm{mg}, 0.03 \mathrm{mmol})$ was added during 1 h and the solution was left under stirring for 15 \min at $40^{\circ} \mathrm{C}$. Then, $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ was added and the solution was allowed to stir for 12 h at $40^{\circ} \mathrm{C}$. The solvents were evaporated under reduced pressure and the solid produced was dissolved in $\mathrm{H}_{2} \mathrm{O}$ and was washed with $\mathrm{CHCl}_{3}(4 \times 15 \mathrm{~mL})$ at pH 2 . The aqueous phase was isolated, its pH was adjusted at 7 and was subjected to solid-phase extraction (SPE, AluminaA) with $\mathrm{H}_{2} \mathrm{O}$ as the eluent. The desired product was isolated as white powder ($35.1 \mathrm{mg}, 95 \%$). $\mathrm{R}_{\mathrm{f}}=0.29$ (eluent: i-PrOH:AcOEt: $\mathrm{H}_{2} \mathrm{O}$ 5:3:1). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}, 298 \mathrm{~K}\right) \delta 8.27(\mathrm{~d}, J=$ $14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2), 8.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6), 7.86-7.69\left(\mathrm{~m}, 5 \mathrm{H}, 4 \mathrm{xH} 3^{\prime}+\mathrm{H} 5\right), 7.70-7.60(\mathrm{~m}$, $\left.5 \mathrm{H}, 2 \mathrm{xH} 1^{\prime}, 4 \mathrm{xH} 2^{\prime}\right), 5.18-4.98$ (m, 7H, H1), 4.10-3.72 (m, 21H, H3, H5, H6), 3.73-3.51 (m, $18 \mathrm{H}, \mathrm{H} 2, \mathrm{H} 4, \mathrm{H} 6), 3.47(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4), 3.13(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6), 2.96(\mathrm{~m}, 1 \mathrm{H}$, Hc), 2.94-2.79 (m, 2H, Hc'\& H6'), $2.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ha}), 1.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Hb}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 62.9$ $\mathrm{MHz}) \delta 173.1(\mathrm{COOH}), 171.0(\mathrm{HN}-\mathrm{C}=\mathrm{O})$, terephthalic $141.8(\mathrm{C} 1)$, $138.7(\mathrm{C} 4), 134.7(\mathrm{C} 2)$, 133.5 (C6), 133.4-126.9 (Ph, C1', C^{\prime}, C^{\prime} ', terephthalic C5), 102.0 and 101.8 (CD-C1), 83.6, 81.9-80.1 (all CD-C4), 73.5-71.22, 70.24 (CD C2, C3, C5), 60.6-59.1 (CD-C6), 49.7 (CDC_{A}), 46.0 (chain Cc), 36.7 (chain Ca), 27.5 (chain Cb). ${ }^{31} \mathrm{P}$ NMR, ($\mathrm{D}_{2} \mathrm{O}, 202.5 \mathrm{MHz}, 298 \mathrm{~K}$) δ 35.2. MS (MALDI-TOF): $\mathrm{m} / \mathrm{z} 1539.1[\mathrm{M}+\mathrm{H}]^{+}, 1561.1[\mathrm{M}+\mathrm{Na}]^{+}$and $1577.1[\mathrm{M}+\mathrm{K}]^{+}$, calcd. for $\left[\mathrm{C}_{65} \mathrm{H}_{91} \mathrm{~N}_{2} \mathrm{O}_{38} \mathrm{PH}\right]^{+}: 1539.5, \mathrm{C}_{65} \mathrm{H}_{91} \mathrm{~N}_{2} \mathrm{O}_{38} \mathrm{PNa}^{+}: 1561.5, \mathrm{C}_{65} \mathrm{H}_{91} \mathrm{~N}_{2} \mathrm{O}_{38} \mathrm{PK}^{+}: 1577.5$.

Dimer 5. To a solution of monomer $4(48 \mathrm{mg}, 0.03 \mathrm{mmol})$ in dry DMF (2 mL), HATU (1-[bis(dimethylamino)methylene]-1 H -1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate, Aldrich] was gradually added ($947.2 \mathrm{mg}, 0.12 \mathrm{mmol}$) and the solution was left under stirring for 1 h at $0^{\circ} \mathrm{C}$. Diisopropylethylamine ($15.8 \mu \mathrm{~L}, 0.09 \mathrm{mmol}$) was subsequently added at rt until the pH of the solution was $8-9$. Finally, $\operatorname{mono}\left(6-{ }^{15} \mathrm{~N}\right.$-amino-6-deoxy) $-\beta$ cyclodextrin ($38.7 \mathrm{mg}, 0.03 \mathrm{mmol}$) was gradually added and the solution was stirred for 72 h
at $35{ }^{\circ} \mathrm{C}$. During the reaction, the pH was always adjusted to 9 with additional diisopropylethylamine. The product was purified by successive solid-phase extractions (an SPE column packed with Alumina-A followed by an SPE column packed with silica gel modified with carboxy groups), by which excessive mono($6-{ }^{15} \mathrm{~N}$-amino-6-deoxy)- β cyclodextrin was removed. The pH of the solution was adjusted to 7 and dialyzed for 12 h . The desired product was isolated as a white solid ($4 \mathrm{mg}, 10 \%$). $\mathrm{R}_{\mathrm{f}}=0.06$ (eluent i PrOH:AcOEt: $\mathrm{H}_{2} \mathrm{O} 5: 3: 1$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}, 500 \mathrm{MHz}\right) \delta 8.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, terephthalic H6), 8.05-7.37 (m, 12H, Ar), 5.23-5.00 (m, 14H, CD-H1, all), 4.18-3.85 (m, 53H, H3, H5, CD1-H6, CD2-H6) 3.84-3.33 (m, 31H, H2, H4, 2xH6', H6'), 3.28 (bs, 1H, CD2H^{\prime}), 3.02 (bs, 3H, chain Hc, Ha), 1.89 (bs, 2H, chain Hb). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}, 62.9$ $\mathrm{MHz}) \delta 139.0-124.9$ (Ar), 101.8 (CD-C1), 80.9, 80.6, 80.1 (all CD-C4), 73.0, 72.0, (CD C2, C3, C5), 59.9, 59.6 (CD1-C6), 48.8 (CD2-C6), 45.4 (chain Cc), 41.1 (CD2-C6), 35.8 (chain $\mathrm{Ca}), 25.7$ (chain Cb$).{ }^{31} \mathrm{P}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}, 202.5 \mathrm{MHz}\right) \delta 35.2 .{ }^{15} \mathrm{~N}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}, 50.7\right.$ MHz) 141.6. MS (MALDI-TOF): m/z $2658.66[\mathrm{M}+\mathrm{H}]^{+}$and $2680.56[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\left[\mathrm{C}_{119} \mathrm{H}_{169} \mathrm{~N}_{3} \mathrm{O}_{71} \mathrm{P}_{2} \mathrm{H}\right]^{+}:$2656.37, $\left[\mathrm{C}_{119} \mathrm{H}_{169} \mathrm{~N}_{3} \mathrm{O}_{71} \mathrm{P}_{2} \mathrm{Na}\right]^{+}: 2678.37$.

Dimer 6. To a solution of mono[6-(3-azidopropylamino)-6-deoxy]- β-cyclodextrin (12.5 mg , $0.01 \mathrm{mmol})$ in DMF ($450 \mu \mathrm{~L}$), dimethyl 2,5-(diphenylphosphanyl)terephthalate was added as a solution in dry $\mathrm{CHCl}_{3}\left(2.7 \mathrm{mg}, 0.0047 \mathrm{mmol}\right.$ in $100 \mu \mathrm{~L}$ of dry $\left.\mathrm{CHCl}_{3}\right)$. The reaction was stirred for 48 h , under argon, at $60^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}$ was then added $(20 \mu \mathrm{~L})$ and the reaction was left under stirring at $60{ }^{\circ} \mathrm{C}$ for additional 4 h . The reaction was terminated by addition of cold water and the solvents were evaporated under reduced pressure. The product was purified on a silica gel column chromatography using $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ (5:2 to $1: 1$, v/v) and then $\mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}$ $(1: 1, \mathrm{v} / \mathrm{v})$ as eluting solvents. The pure product was isolated as a white powder $(8.4 \mathrm{mg}, 62 \%)$. $\mathrm{R}_{\mathrm{f}}=0.08$ (eluent: $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O} 5: 2$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}, 500 \mathrm{MHz}\right) \delta 7.94-7.44(\mathrm{~m}, 22 \mathrm{H}$, 20xH-Ph, H2, H5), 5.06 (s, 14H, H1), 3.96 (br apparent d, $J=9.0 \mathrm{~Hz}, 14 \mathrm{H}, \mathrm{H} 3$), 3.90-3.70
(m, 38H, H5 \& H6), 3.69-3.53 (m, 36H, H2 \& H4), 3.44 (t, J = 9.0 Hz, 2H, H4), 2.92 (apparent d, $J=10.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 6), 2.83(\mathrm{~s}, 4 \mathrm{H}$, chain Hc$), 2.71\left(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H6}_{\mathrm{A}}\right), 2.41$ ($\mathrm{s}, 4 \mathrm{H}$, chain Ha), $1.49(\mathrm{~s}, 4 \mathrm{H}$, chain Hb$) .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 298 \mathrm{~K}, 500 \mathrm{MHz}\right) \delta 8.45(\mathrm{~s}$, $2 \mathrm{H},-\mathrm{NH}-\mathrm{C}=\mathrm{O}), 7.79-7.71(\mathrm{dd}, J=13.0 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2), 7.70-7.57 \& 7.56-7.44(20 \mathrm{H}$, $\mathrm{H}-\mathrm{Ph}), 5.88-5.60(\mathrm{~m}, 28 \mathrm{H}, \mathrm{OH} 2 \& \mathrm{OH} 3), 4.82$ ($\mathrm{s}, 14 \mathrm{H}, \mathrm{H} 1$), 4.62-4.34 (m, 12H, OH6), 3.763.45 (m, 52H, H3, H5, H6), 3.44-3.30 (m, 24H, H2, H4), 2.78 (d, J = $10.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{A}}$), 2.74-2.58 (m, 6H, $2 \mathrm{xH6}_{\mathrm{A}}, 4 \mathrm{xHc}$), 2.36 (bs, 2H, Ha), 2.30 (bs, 2H, chain Ha), 1.27 (t, $J=6.0$ $\mathrm{Hz}, 4 \mathrm{H}$, chain Hb), $1.23(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}-) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}\right) \delta 168.6(\mathrm{HN}-\mathrm{C}=\mathrm{O}), 141.5$ (Ph, C3), 135.0-127.8 (Ph, C1, C2, C4), 102.0, 101.7 (CD-C1), 83.6, 81.0 (CD-C4), 73.2 (CD-C3), 72.2 (CD-C5), 72.0 (CD-C2), 60.1 (CD-C6), 49.5 (CD-C6 ${ }_{A}$), 46.1 (chain Ca), 37.2 (chain Cc), 27.8 (chain Cb). ${ }^{31} \mathrm{P}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}, 202.5 \mathrm{MHz}\right) \delta$ 35.4. MS (MALDI-TOF): $\mathrm{m} / \mathrm{z} 2912.1 \quad[\mathrm{M}+\mathrm{H}]^{+}, 2934.6[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\left[\mathrm{C}_{122} \mathrm{H}_{176} \mathrm{~N}_{4} \mathrm{O}_{71} \mathrm{P}_{2} \mathrm{H}\right]^{+}:$2912.0, $\left[\mathrm{C}_{122} \mathrm{H}_{176} \mathrm{~N}_{4} \mathrm{O}_{71} \mathrm{P}_{2} \mathrm{Na}\right]^{+}: 2934.0$.

Computational procedure

All semiempirical calculations were performed by the MOPAC 2012 program (Version 13.071L),[5] using the PM3 parameterization [6]. Molecular geometries were fully optimized by the Eigenvector Following approach (EF), using convergence criteria corresponding to a maximum gradient norm of $0.05 \mathrm{kcal} \mathrm{mol}^{-1} \AA^{-1}$. Solvation effects were treated by the Conductor-like Screening Model (COSMO) approach [7], using a dielectric constant of 78.4 (at 298 K)[8] and a radius of $1.3 \AA$ for water. Density functional theory calculations were performed by the Gaussian 03 suite [9], using the B3P86 functional [10] with the $6-31 \mathrm{G}\left(\mathrm{d}^{\prime}, \mathrm{p}{ }^{\prime}\right)$ basis set [11].

Figure S1: ${ }^{31} \mathrm{P}$ NMR spectra of linkers $\mathbf{2}$ and $\mathbf{3}$ in dry CDCI3 (202.46 MHz, 298 K).

Figure S2: ${ }^{1} \mathrm{H}$ NMR spectrum of Staudinger products in $\mathrm{D}_{2} \mathrm{O}(500 \mathrm{MHz}, 298 \mathrm{~K})$: of $\mathbf{4}$ and $\mathbf{5}$ with presaturation of HDO and of 6 .

4

5

6

Figure S3: Partial 2D ROESY NMR spectra of monomer 4 and of dimers 5 and 6 in $\mathrm{D}_{2} \mathrm{O}$ ($500 \mathrm{MHz}, 298 \mathrm{~K}$): interactions between phenyl (and not terephthalic) protons and all $\beta C D$ cavity protons (H3, H5, H6, 6^{\prime}) are observed.

Ph

Figure S4: Partial 2D ROESY NMR spectrum of compound 4 in DMSO- d_{6} ($500 \mathrm{MHz}, 298 \mathrm{~K}$): interactions of phenyl protons with primary β CD side protons ($\mathrm{H} 6,6^{\prime}, \mathrm{H} 5$) and with chain protons a, b and c are observed.

Figure S5: Partial 2D ROESY NMR spectrum of dimer 6 in DMSO-d $\mathrm{d}_{6}(500 \mathrm{MHz}, 298 \mathrm{~K}$): interactions of phenyl protons with primary β CD side protons $(\mathrm{OH} 6)$ and with external ones $(\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 4)$ as well as with chain protons a, b and c are observed but not with wider side groups OH 2 and OH 3 .

Figure S6: 2D DOSY NMR spectrum of dimer 6 in $\mathrm{D}_{2} \mathrm{O}$ alone (1 mM , blue contours) and in the presence of 4 equivalent of 1 -adamantylamine $\cdot \mathrm{HCl}$ (red contours), 298 K . The water diffusion peak was taken as reference.

Figure S7: Partial 2D ROESY spectra ($\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}, 297 \mathrm{~K}$) of the monomer 4 (0.5 mM) with 1 equivalent of 1 -adamantylamine $\cdot \mathrm{HCl}$ (ada), and the dimer $6(1 \mathrm{mM})$ with 4 equivalents of ada. Left: ada vs $\beta C D$ region; right: phenyl vs $\beta C D$ region.

Double Inclusion (Primary side)

Single Inclusion (Primary side)

Inclusion (Secondary side)

Figure S8: Geometries of three typical arrangements for a pair of monomers 4 at the PM3(COSMO) level of theory.

Table S1: The minimum distances (\AA) between H atoms of the phenyl rings and glucopyranose H atom of $\beta C D$ for each limiting case of monomer 4 and dimer $\mathbf{6}$, as well as for a pair of monomers 4 calculated at the PM3(COSMO) level of theory. ${ }^{\text {a }}$

1. Monomer 4								
Type	Phenyl ${ }^{\text {d }}$	CD-H1	CD-H2	CD-H3	CD-H4	CD-H5	CD-H6	CD-H6'
Inclusion	A	$\begin{aligned} & 4.77 \\ & (7.22) \end{aligned}$	$\begin{aligned} & 5.45 \\ & (7.65) \end{aligned}$	$\begin{aligned} & 3.00 \\ & (5.13) \end{aligned}$	$\begin{aligned} & 4.58 \\ & (7.03) \end{aligned}$	$\begin{aligned} & 1.70 \\ & (4.19) \end{aligned}$	$\begin{aligned} & 3.45 \\ & (5.51) \end{aligned}$	$\begin{aligned} & 3.36 \\ & (5.62) \end{aligned}$
	B	$\begin{aligned} & 4.56 \\ & (6.73) \end{aligned}$	$\begin{aligned} & 6.27 \\ & (7.97) \end{aligned}$	$\begin{aligned} & 5.76 \\ & (8.00) \end{aligned}$	$\begin{aligned} & 4.82 \\ & (7.17) \end{aligned}$	$\begin{aligned} & 3.20 \\ & (5.61) \end{aligned}$	$\begin{aligned} & 2.56 \\ & (4.85) \end{aligned}$	$\begin{aligned} & 1.74 \\ & (4.30) \end{aligned}$
Vicinal	A	$\begin{aligned} & 4.63 \\ & (7.09) \end{aligned}$	$\begin{aligned} & 6.34 \\ & (8.61) \end{aligned}$	$\begin{aligned} & 5.64 \\ & (7.52) \end{aligned}$	$\begin{aligned} & 4.81 \\ & (7.16) \end{aligned}$	$\begin{aligned} & 3.13 \\ & (5.03) \end{aligned}$	$\begin{aligned} & 1.72 \\ & (4.43) \end{aligned}$	$\begin{aligned} & 1.75 \\ & (4.30) \end{aligned}$
	B	$\begin{aligned} & 5.65 \\ & (7.89) \end{aligned}$	$\begin{aligned} & 6.73 \\ & (8.93) \end{aligned}$	$\begin{aligned} & 6.54 \\ & (8.24) \end{aligned}$	$\begin{aligned} & 5.43 \\ & (7.57) \end{aligned}$	$\begin{aligned} & 3.77 \\ & (5.57) \end{aligned}$	$\begin{aligned} & 1.71 \\ & (4.21) \end{aligned}$	$\begin{aligned} & 2.89 \\ & (4.91) \end{aligned}$
Open	A	$\begin{aligned} & 6.71 \\ & (8.99) \end{aligned}$	$\begin{aligned} & 6.45 \\ & (8.71) \end{aligned}$	$\begin{aligned} & 9.12 \\ & (11.31) \end{aligned}$	$\begin{aligned} & 6.54 \\ & (8.67) \end{aligned}$	$\begin{aligned} & 7.90 \\ & (10.50) \end{aligned}$	$\begin{aligned} & 6.87 \\ & (9.45) \end{aligned}$	$\begin{aligned} & 5.17 \\ & (7.80) \end{aligned}$
	B	$\begin{aligned} & 9.65 \\ & (12.13) \end{aligned}$	$\begin{aligned} & 10.63 \\ & (12.84) \end{aligned}$	$\begin{aligned} & 12.37 \\ & (14.81) \end{aligned}$	$\begin{aligned} & 10.16 \\ & (12.38) \end{aligned}$	$\begin{aligned} & 10.37 \\ & (13.00) \end{aligned}$	$\begin{aligned} & 9.26 \\ & (11.73) \end{aligned}$	$\begin{aligned} & 7.97 \\ & (10.40) \end{aligned}$
2. Dimer 6								
Type	Phenyl ${ }^{\text {d }}$	CD-H1	CD-H2	CD-H3	CD-H4	CD-H5	CD-H6	CD-H6'
Inclusion/Vicinal	A	$\begin{aligned} & 4.74 \\ & (6.48) \end{aligned}$	$\begin{aligned} & 4.75 \\ & (6.79) \end{aligned}$	$\begin{aligned} & 1.76 \\ & (4.23) \end{aligned}$	$\begin{aligned} & 4.19 \\ & (6.44) \end{aligned}$	$\begin{aligned} & 1.70 \\ & (4.23) \end{aligned}$	$\begin{aligned} & 3.62 \\ & (6.55) \end{aligned}$	$\begin{aligned} & 3.35 \\ & (5.81) \end{aligned}$
	B	$\begin{aligned} & 4.98 \\ & (6.20) \end{aligned}$	$\begin{aligned} & 6.37 \\ & (8.17) \end{aligned}$	$\begin{aligned} & 5.01 \\ & (6.79) \end{aligned}$	$\begin{aligned} & 4.80 \\ & (7.61) \end{aligned}$	$\begin{aligned} & 2.58 \\ & (4.40) \end{aligned}$	$\begin{aligned} & 1.75 \\ & (4.26) \end{aligned}$	$\begin{aligned} & 1.78 \\ & (4.71) \end{aligned}$
	A^{\prime}	$\begin{aligned} & 4.91 \\ & (7.12) \end{aligned}$	$\begin{aligned} & 6.59 \\ & (8.46) \end{aligned}$	$\begin{aligned} & 5.92 \\ & (8.21) \end{aligned}$	$\begin{aligned} & 4.97 \\ & (7.41) \end{aligned}$	$\begin{aligned} & 3.42 \\ & (5.78) \end{aligned}$	$\begin{aligned} & 1.70 \\ & (3.99) \end{aligned}$	$\begin{aligned} & 1.76 \\ & (4.35) \end{aligned}$
	B'	$\begin{aligned} & 4.90 \\ & (6.68) \end{aligned}$	$\begin{aligned} & 6.33 \\ & (7.93) \end{aligned}$	$\begin{aligned} & 5.96 \\ & (7.92) \end{aligned}$	$\begin{aligned} & 4.86 \\ & (6.98) \end{aligned}$	$\begin{aligned} & 3.32 \\ & (5.29) \end{aligned}$	$\begin{aligned} & 2.52 \\ & (3.67) \end{aligned}$	$\begin{aligned} & 1.76 \\ & (4.28) \end{aligned}$
Inclusion	A	$\begin{aligned} & 4.96 \\ & (7.11) \end{aligned}$	$\begin{aligned} & 5.37 \\ & (7.30) \end{aligned}$	$\begin{aligned} & 2.58 \\ & (4.93) \end{aligned}$	$\begin{aligned} & 4.51 \\ & (6.59) \end{aligned}$	$\begin{aligned} & 1.70 \\ & (4.25) \end{aligned}$	$\begin{aligned} & 3.27 \\ & (6.23) \end{aligned}$	$\begin{aligned} & 3.26 \\ & (5.45) \end{aligned}$
	B	$\begin{aligned} & 3.87 \\ & (6.18) \end{aligned}$	$\begin{aligned} & 5.47 \\ & (7.27) \end{aligned}$	$\begin{aligned} & 5.70 \\ & (7.65) \end{aligned}$	$\begin{aligned} & 4.66 \\ & (7.12) \end{aligned}$	$\begin{aligned} & 3.12 \\ & (5.01) \end{aligned}$	$\begin{aligned} & 1.72 \\ & (4.15) \end{aligned}$	$\begin{aligned} & 1.79 \\ & (4.73) \end{aligned}$
	A^{\prime}	$\begin{aligned} & 4.59 \\ & (7.05) \end{aligned}$	$\begin{aligned} & 5.31 \\ & (7.69) \end{aligned}$	$\begin{aligned} & 2.76 \\ & (5.08) \end{aligned}$	$\begin{aligned} & 4.54 \\ & (6.99) \end{aligned}$	$\begin{aligned} & 1.71 \\ & (4.63) \end{aligned}$	$\begin{aligned} & 2.75 \\ & (5.43) \end{aligned}$	$\begin{aligned} & 3.09 \\ & (5.42) \end{aligned}$
	B'	$\begin{aligned} & 5.65 \\ & (6.46) \end{aligned}$	$\begin{aligned} & 6.81 \\ & (8.16) \end{aligned}$	$\begin{aligned} & 6.19 \\ & (7.10) \end{aligned}$	$\begin{aligned} & 5.43 \\ & (7.15) \end{aligned}$	$\begin{aligned} & 3.55 \\ & (5.31) \end{aligned}$	$\begin{aligned} & 1.78 \\ & (4.35) \end{aligned}$	$\begin{aligned} & 2.64 \\ & (4.39) \end{aligned}$
Vicinal	A	$\begin{aligned} & 5.15 \\ & (7.04) \end{aligned}$	$\begin{aligned} & 6.65 \\ & (8.53) \end{aligned}$	$\begin{aligned} & 6.65 \\ & (8.74) \end{aligned}$	$\begin{aligned} & 5.19 \\ & (7.35) \end{aligned}$	$\begin{aligned} & 3.91 \\ & (6.12) \end{aligned}$	$\begin{aligned} & 1.70 \\ & (4.24) \end{aligned}$	$\begin{aligned} & 2.40 \\ & (4.65) \end{aligned}$
	B	$\begin{aligned} & 7.58 \\ & (9.89) \end{aligned}$	$\begin{aligned} & 9.52 \\ & (11.60) \end{aligned}$	$\begin{aligned} & 9.96 \\ & (12.49) \end{aligned}$	$\begin{aligned} & 7.84 \\ & (10.12) \end{aligned}$	$\begin{aligned} & 7.43 \\ & (10.11) \end{aligned}$	$\begin{aligned} & 5.03 \\ & (7.69) \end{aligned}$	$\begin{aligned} & 5.49 \\ & (8.19) \end{aligned}$
	A^{\prime}	$\begin{aligned} & 5.18 \\ & (7.06) \end{aligned}$	$\begin{aligned} & 6.69 \\ & (8.49) \end{aligned}$	$\begin{aligned} & 6.57 \\ & (8.59) \end{aligned}$	$\begin{aligned} & 5.33 \\ & (7.59) \end{aligned}$	$\begin{aligned} & 3.89 \\ & (6.02) \end{aligned}$	$\begin{aligned} & 1.71 \\ & (4.09) \end{aligned}$	$\begin{aligned} & 2.35 \\ & (4.72) \end{aligned}$
	B'	$\begin{aligned} & 8.12 \\ & (10.13) \end{aligned}$	$\begin{aligned} & 9.47 \\ & (11.76) \end{aligned}$	$\begin{aligned} & 9.67 \\ & (11.84) \end{aligned}$	$\begin{aligned} & 8.03 \\ & (10.26) \end{aligned}$	$\begin{aligned} & 6.89 \\ & (9.13) \end{aligned}$	$\begin{aligned} & 5.08 \\ & (7.84) \end{aligned}$	$\begin{aligned} & 5.80 \\ & (8.31) \end{aligned}$
Open	A	$\begin{aligned} & 6.87 \\ & (9.66) \end{aligned}$	$\begin{aligned} & 7.54 \\ & (10.02) \end{aligned}$	$\begin{aligned} & 9.78 \\ & (12.45) \end{aligned}$	$\begin{aligned} & 6.78 \\ & (9.58) \end{aligned}$	$\begin{aligned} & 9.38 \\ & (12.20) \end{aligned}$	$\begin{aligned} & 8.35 \\ & (11.18) \end{aligned}$	$\begin{aligned} & 8.12 \\ & (11.01) \end{aligned}$
	B	$\begin{aligned} & 6.60 \\ & (9.48) \end{aligned}$	$\begin{aligned} & 7.11 \\ & (9.80) \end{aligned}$	$\begin{aligned} & 10.01 \\ & (12.76) \end{aligned}$	$\begin{aligned} & 7.79 \\ & (10.62) \end{aligned}$	$\begin{aligned} & 9.45 \\ & (12.27) \end{aligned}$	$\begin{aligned} & 8.47 \\ & (11.20) \end{aligned}$	$\begin{aligned} & 8.41 \\ & (11.27) \end{aligned}$
	A^{\prime}	$\begin{aligned} & 6.20 \\ & (8.76) \end{aligned}$	$\begin{aligned} & 7.41 \\ & (10.17) \end{aligned}$	$\begin{aligned} & 9.40 \\ & (12.12) \end{aligned}$	$\begin{aligned} & 6.40 \\ & (9.20) \end{aligned}$	$\begin{aligned} & 9.18 \\ & (12.00) \end{aligned}$	$\begin{aligned} & 8.26 \\ & (11.08) \end{aligned}$	$\begin{aligned} & 8.03 \\ & (10.77) \end{aligned}$
	B'	$\begin{aligned} & 8.13 \\ & (10.98) \end{aligned}$	$\begin{aligned} & 7.13 \\ & (10.00) \end{aligned}$	$\begin{aligned} & 10.11 \\ & (12.94) \end{aligned}$	$\begin{aligned} & 7.80 \\ & (10.60) \end{aligned}$	$\begin{aligned} & 10.18 \\ & (13.03) \end{aligned}$	$\begin{aligned} & 9.39 \\ & (11.51) \end{aligned}$	$\begin{aligned} & 9.93 \\ & (12.65) \end{aligned}$
3. Monomer 4 pair								
Type	Phenyl ${ }^{\text {d }}$	CD-H1	CD-H2	CD-H3	CD-H4	CD-H5	CD-H6	CD-H6'
Single Inclusion (Primary)	A	$\begin{aligned} & 4.53 \\ & (6.86) \end{aligned}$	$\begin{aligned} & 5.40 \\ & (7.75) \end{aligned}$	$\begin{aligned} & 2.82 \\ & (4.95) \end{aligned}$	$\begin{aligned} & 4.50 \\ & (6.43) \end{aligned}$	$\begin{aligned} & 1.72 \\ & (4.26) \end{aligned}$	$\begin{aligned} & 3.49 \\ & (6.10) \end{aligned}$	$\begin{aligned} & 3.06 \\ & (5.93) \end{aligned}$
	B	$\begin{aligned} & 5.79 \\ & (6.61) \end{aligned}$	$\begin{aligned} & 7.26 \\ & (8.11) \end{aligned}$	$\begin{aligned} & 6.80 \\ & (7.55) \end{aligned}$	$\begin{aligned} & 6.06 \\ & (6.84) \end{aligned}$	$\begin{aligned} & 4.06 \\ & (5.08) \end{aligned}$	$\begin{aligned} & 2.41 \\ & (4.04) \end{aligned}$	$\begin{aligned} & 3.16 \\ & (4.16) \end{aligned}$

$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|}\hline & \mathrm{A}^{\prime}: & 7.78 & 7.97 & 10.01 & 7.39 & 8.41 & 6.98 & 5.51 \\ (10.20\end{array}\right)$
${ }^{a}$ Values in parentheses denote the average distance between the particular glucopyranose H atom with all five H atoms of the nearest phenyl ring. ${ }^{\mathrm{b}} \mathrm{A}$ and/or $\mathrm{A}=$ the phenyl inside or on top $\beta C D$ moiety; B and/or $B^{\prime}=$ the phenyl outside or farthest from $\beta C D$ moiety. Average values for all five hydrogen atoms of corresponding phenyl group in parentheses. Close distances ($<4 \AA$) in bold.

Figure S9: Geometries of the complexes between the vicinal configuration (top) and the inclusion configuration (bottom) of 4 with 1-adamantylammonium at the PM3(COSMO) level of theory.

References

1. Zhou, Q.; Swager, T. J. Am. Chem. Soc. 1995, 117, 12593-12602.
2. Benin, V.; Durganala, S.; Morgan, A. B. J. Mater. Chem. 2012, 22, 1180-1190.
3. Brady, B.; Lynam, N.; O'Sullivan, T.; Ahern, C.; Darcy, R. Org. Synth. 2000, 77, 220-224.
4. Saxon, E.; Bertozzi, C. R. Science 2000, 287, 2007-2010.
5. Stewart, J. J. P. MOPAC2012, Version 13.071L, Stewart Computational Chemistry, Colorado Springs, CO, USA, web: http://OpenMOPAC.net.
6. Stewart, J. J. P. J. Comput. Chem. 1989, 10, $209-220$.
7. Klamt, A.; Schüümann, G. J. Chem. Soc. Perkin Trans. 2 1993, 799-805.
8. CRC Handbook of Chemistry and Physics, CRC Press, Inc.: Boca Raton, Florida, 2001.
9. Gaussian 03 Revision D.01, Gaussian, Inc, Wallingford CT, 2004
10. a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652; b) Perdew, J. P. Phys. Rev. B 1986, 33, 8822-8824
11. Petersson, G. A.; A. Bennett, A.; Tensfeldt, T. G. ; al-Laham, M. A.; Shirley, W. A.; Mantziaris, J. J. Chem. Phys. 1988, 89, 2193-2218.
