Supporting Information

for

Regioselective $\mathbf{S}_{\mathbf{N}} \mathbf{2}^{\mathbf{\prime}}$ Mitsunobu reaction of Morita-Baylis-Hillman alcohols: A facile and stereoselective synthesis of α-alkylidene- $\boldsymbol{\beta}$-hydrazino acid derivatives

Silong Xu*, Jian Shang, Junjie Zhang and Yuhai Tang*

Address: Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, P. R. China

Email: Silong Xu - silongxu@mail.xjtu.edu.cn; Yuhai Tang - tyh57@ mail.xjtu.edu.cn * Corresponding author

Experimental details on the synthesis of all hydrazines 3 and $\mathbf{1 H}$-pyrazole 7, full characterization data and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, DEPT NMR spectra for all compounds 3 and 7, and a mechanistic rationale for the formation of 7.

Table of contents

2. Analytical data for 1 H -pyrazole 7 and mechanistic rationale $\ldots \ldots \ldots \ldots \ldots$.......... S11
3. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, DEPT, and NOESY NMR spectra $\cdot \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$.

1. Analytical data for compounds $\mathbf{3 b}-\mathbf{s}^{1}$

Table 2, entry 1. Following the general procedure, the reaction of MBH alcohol 1a ($62 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{PPh}_{3}(157 \mathrm{mg}, 0.6 \mathrm{mmol})$ and diethyl azodicarboxylate $\mathbf{2 b}(94 \mu \mathrm{~L}$, $0.6 \mathrm{mmol})$ was performed for 25 minutes.

3b: $107 \mathrm{mg}, 98 \%$ yield, as slightly yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89$ (s, H), $7.37(\mathrm{~m}, 5 \mathrm{H}), 6.75(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{~m}, 4 \mathrm{H})$, $1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.6$, $156.0(2 \mathrm{C}), 143.7,134.5,129.3,128.9,128.5,127.3,62.5,61.9,61.1,46.6,14.41$, 14.37, 14.2; IR (KBr): $v_{\max } 3433,2983,1638,1401,1124 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$requires 365.1713, found 365.1712.

Table 2, entry 2. Following the general procedure, the reaction of MBH alcohol 1b $(58 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{PPh}_{3}(157 \mathrm{mg}, 0.6 \mathrm{mmol})$ and diethyl azodicarboxylate $\mathbf{2 b}(94 \mu \mathrm{~L}$, 0.6 mmol) was performed for 25 minutes.

3c: $100 \mathrm{mg}, 95 \%$ yield, as yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.36$ $(\mathrm{m}, 5 \mathrm{H}), 6.61(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{~m}, 4 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $8168.0,155.9(2 \mathrm{C}), 143.9,134.3,129.2,128.9,128.4,127.0$, $62.4,61.7,52.1,46.5,14.3(2 \mathrm{C})$; IR (KBr): $v_{\max } 3430,2980,1711,1401,1125 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$requires 351.1556, found 351.1557.

[^0]Table 2, entry 3. Following the general procedure, the reaction of MBH alcohol 1b ($58 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{PPh}_{3}(157 \mathrm{mg}, 0.6 \mathrm{mmol})$ and di-tert-butyl azodicarboxylate $\mathbf{2 c}$ $(138 \mathrm{mg}, 0.6 \mathrm{mmol})$ was performed for 50 minutes.

3d
3d: $116 \mathrm{mg}, 95 \%$ yield, as colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~s}, 1 \mathrm{H})$, $7.28(\mathrm{~m}, 5 \mathrm{H}), 6.32(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 168.0,155.7,154.9,143.5,134.3,129.3,128.8,128.3,127.2$, 80.9, 80.6, 51.9, 45.1, 27.9(2C); IR (KBr): $v_{\max } 3435,2981,1639,1401,1122 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$requires 429.2002, found 429.1995.

Table 2, entry 4. Following the general procedure, the reaction of MBH alcohol 1c ($66 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{PPh}_{3}(157 \mathrm{mg}, 0.6 \mathrm{mmol}$) and diethyl azodicarboxylate $\mathbf{2 b}(94 \mu \mathrm{~L}$, 0.6 mmol) was performed for 35 minutes.

3e: $92 \mathrm{mg}, 81 \%$ yield, as yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.20$ (br s, 2H), $7.08(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.03(\mathrm{~m}, 4 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~m}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.5,155.8(2 \mathrm{C}), 143.7,138.9,131.4,129.3,129.0,126.1,62.1,61.5$, $60.8,46.0,21.0,14.2,14.1,13.9$; IR (KBr): $v_{\max } 3413,2981,1710,1401,1124 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$requires 379.1869, found 379.1867.

Table 2, entry 5. Following the general procedure, the reaction of MBH alcohol 1d ($72 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{PPh}_{3}(157 \mathrm{mg}, 0.6 \mathrm{mmol})$ and diethyl azodicarboxylate $\mathbf{2 b}(94 \mu \mathrm{~L}$, $0.6 \mathrm{mmol})$ was performed for 35 minutes.

3f: $104 \mathrm{mg}, 87 \%$ yield, as slightly yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94$ (s, $1 \mathrm{H}), 7.33(\mathrm{~m}, 4 \mathrm{H}), 6.61(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{~m}$, $4 \mathrm{H}), 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9$, 155.9(2C), 140.9, 133.7, 133.2, 130.3, 129.9, 129.4(2C), 126.6, 62.4, 61.8, 61.2, 46.8, 14.3(2C), 14.1; IR (KBr): $v_{\max } 3422,2985,1717,1401,1136 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$requires 399.1323, found 399.1324.

Table 2, entry 6. Following the general procedure, the reaction of MBH alcohol 1e ($72 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{PPh}_{3}(157 \mathrm{mg}, 0.6 \mathrm{mmol})$ and diethyl azodicarboxylate $\mathbf{2 b}(94 \mu \mathrm{~L}$, $0.6 \mathrm{mmol})$ was performed for 30 minutes.

3 g
3g: $109 \mathrm{mg}, 91 \%$ yield, as colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~s}, 1 \mathrm{H})$, $7.35(\mathrm{~m}, 4 \mathrm{H}), 6.92(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~m}, 4 \mathrm{H})$, $1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1$, $155.8(2 \mathrm{C}), 142.2,134.8,132.9,130.5,128.6,127.9,62.3,61.7,61.0,46.1,14.3,14.2$, 14.0; IR (KBr): $v_{\max } 3448,2985,1712,1401,1124 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$requires 399.1323, found 399.1320.

Table 2, entry 7. Following the general procedure, the reaction of MBH alcohol if ($63 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{PPh}_{3}(157 \mathrm{mg}, 0.6 \mathrm{mmol}$) and diethyl azodicarboxylate $\mathbf{2 b}(94 \mu \mathrm{~L}$, $0.6 \mathrm{mmol})$ was performed for 30 minutes.

3h: $87 \mathrm{mg}, 79 \%$ yield, as yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.33$ (br s, 2H), $7.00(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~m}, 4 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 1.15$ $(\mathrm{m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.8,162.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=250.2 \mathrm{~Hz}\right), 155.9(2 \mathrm{C})$, $142.7,131.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7.5 \mathrm{~Hz}\right), 130.4,126.8,115.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.7 \mathrm{~Hz}\right), 62.38,61.73$, 52.03, 46.27, 14.25, 14.19; IR (KBr): $v_{\max } 3170,2984,1718,1401,1124 \mathrm{~cm}^{-1} ;$ HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$requires 369.1462, found 369.1464.

Table 2, entry 8. Following the general procedure, the reaction of MBH alcohol $\mathbf{1 g}$ $(75 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{PPh}_{3}(157 \mathrm{mg}, 0.6 \mathrm{mmol})$ and di-tert-butyl azodicarboxylate 2 c $(138 \mathrm{mg}, 0.6 \mathrm{mmol})$ was performed for 40 minutes.

3i: obtained as an inseparable mixture of E / Z isomers (E / Z 3:1) in $120 \mathrm{mg}, 86 \%$ yield, as colorless oil; NMR data for $E-3 \mathrm{i}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23$ (d, $J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.46(\mathrm{~m}, 18 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.8$, $154.8(2 \mathrm{C}), 147.4,141.1,140.3,130.0,129.0,123.4,81.3,81.0,61.2,45.3,27.9(2 \mathrm{C})$, 14.0; selected NMR data for $Z-\mathbf{3 i}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.0,142.1,131.1,123.1,61.1,13.6$; IR (KBr): $v_{\max }$ 3433, 2986, 1521, 1710, 1401, 1369, 1122 cm^{-1}; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{NaO}_{8}$ $[\mathrm{M}+\mathrm{Na}]^{+}$requires 488.2009, found 488.2003.

Table 2, entry 9. Following the general procedure, the reaction of MBH alcohol $\mathbf{1 h}$
($47 \mathrm{mg}, 0.3 \mathrm{mmol}$), PPh_{3} ($157 \mathrm{mg}, 0.6 \mathrm{mmol}$) and diisopropyl azodicarboxylate 2a $(118 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ was performed for 30 minutes.

3j
3j: obtained as an inseparable mixture of E / Z isomers ($E / Z 9: 1$) in $83 \mathrm{mg}, 80 \%$ yield, as slightly yellow oil; NMR data for $E-\mathbf{3 j}$: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.98(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 2.31 (br s, 2H), $1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~m}, 12 \mathrm{H}), 1.06(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.0,155.4(2 \mathrm{C}), 149.8,126.3,69.7,69.3,60.5,44.9$, 21.9, 21.81, 21.76, 14.1, 13.1; selected NMR data for Z-3j: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 2.51(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $149.5,126.2,70.3,60.3,44.5,21.6,13.5$; IR (KBr): $v_{\max } 3437,2982,1715,1401$, $1135 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$requires 345.2026, found 345.2020 .

Table 2, entry 10. Following the general procedure, the reaction of MBH alcohol $\mathbf{1 h}$ ($47 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{PPh}_{3}(157 \mathrm{mg}, 0.6 \mathrm{mmol})$ and diethyl azodicarboxylate $\mathbf{2 b}(94 \mu \mathrm{~L}$, $0.6 \mathrm{mmol})$ was performed for 20 minutes.

3k
3k: $78 \mathrm{mg}, 82 \%$ yield, as colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.99(\mathrm{~m}, 2 \mathrm{H})$, $4.43(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{~m}, 6 \mathrm{H}), 2.32(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.28(\mathrm{~m}, 9 \mathrm{H}), 1.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 166.9,155.7(2 \mathrm{C}), 149.7,126.0,62.1,61.6,60.5,45.0$, $21.6,14.3,14.2,13.9,12.9$; IR (KBr): $v_{\max } 3434,2983,1712,1401,1124 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$requires 317.1713, found 317.1712.

Table 2, entry 11. Following the general procedure, the reaction of MBH alcohol 1i ($43 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{PPh}_{3}(157 \mathrm{mg}, 0.6 \mathrm{mmol}$) and diethyl azodicarboxylate $\mathbf{2 b}(94 \mu \mathrm{~L}$, $0.6 \mathrm{mmol})$ was performed for 25 minutes.

31: $72 \mathrm{mg}, 80 \%$ yield, as slightly yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.94$ (m,2H), 4.37 (s, 2H), 4.13 (m, 4H), 3.69 (s, 3H), 2.28 (m, 2H), $1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $6 \mathrm{H}), 1.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,156.0(2 \mathrm{C}), 150.3$, $125.8,62.2,61.6,51.7,45.2,21.7,14.33,14.28,13.0$; IR (KBr): $v_{\max } 3448,2981$, 1718, 1401, $1122 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$requires 303.1556, found 303.1554.

Table 2, entry 12. Following the general procedure, the reaction of MBH alcohol 1i $(43 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{PPh}_{3}(157 \mathrm{mg}, 0.6 \mathrm{mmol})$ and diisopropyl azodicarboxylate 2a ($118 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) was performed for 30 minutes.

3m: obtained as an inseparable mixture of E / Z isomers ($E / Z 13: 1$) in $80 \mathrm{mg}, 81 \%$ yield, as slightly yellow oil; NMR data for $E-\mathbf{3 m}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.98$ (br s, 1H), 6.54 (br m, 1H), 4.95 (m, 2H), 4.41 (s, 2H), 3.74 (s, 3H), 2.31 (m, 2H), $1.26(\mathrm{~m}, 12 \mathrm{H}), 1.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4$, 155.6(2C), 150.2, 126.0, 69.8, 69.3, 51.7, 45.0, 21.9, 21.8, 21.5, 13.0; selected NMR data for Z-3m: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 2.51(\mathrm{~m}$, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.8,125.8,51.3,44.5,13.4$; IR (KBr): $\mathrm{v}_{\max }$ 3427, 2981, 1718, 1401, $1144 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ requires 331.1869 , found 331.1864 .

Table 2, entry 13. Following the general procedure, the reaction of MBH alcohol $\mathbf{1 j}$ ($43 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{PPh}_{3}(157 \mathrm{mg}, 0.6 \mathrm{mmol}$) and diethyl azodicarboxylate $\mathbf{2 b}(94 \mu \mathrm{~L}$, $0.6 \mathrm{mmol})$ was performed for 21 minutes.

3n: obtained as an inseparable mixture of E / Z isomers ($E / Z 13: 1$) in $75 \mathrm{mg}, 83 \%$ yield, as colorless oil; NMR data for $E-\mathbf{3 n}:{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.11(\mathrm{q}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.70(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{~m}, 6 \mathrm{H}), 1.92(\mathrm{~m}, 3 \mathrm{H}), 1.28(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9,155.8(2 \mathrm{C}), 143.5,127.8,62.4,61.8,60.6,45.2$, $14.43,14.38,14.3,14.1$; selected NMR data for $Z-\mathbf{3 n}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 6.26 (br m, 1H), 2.05 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 64.0,60.4$, 15.6; IR (KBr): $v_{\max } 3427,2985,1712,1401,1137 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$requires 303.1556, found 303.1555.

Table 2, entry 14. Following the general procedure, the reaction of MBH alcohol $\mathbf{1 j}$ ($43 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{PPh}_{3}(157 \mathrm{mg}, 0.6 \mathrm{mmol})$ and di-tert-butyl azodicarboxylate 2 c $(138 \mathrm{mg}, 0.6 \mathrm{mmol})$ was performed for 40 minutes.

30: obtained as an inseparable mixture of E / Z isomers ($E / Z 5: 1$) in $59 \mathrm{mg}, 55 \%$ yield, as colorless oil; NMR data for $E-\mathbf{3 o}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.09$ (q, $J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.24(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 4.41$ (s, 2H), $4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 1.46(\mathrm{~m}, 18 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9$, 155.0(2C), 143.1, 128.3, 80.8(2C), 60.5, 44.2, 28.1(2C), 14.2, 14.1; selected NMR data for Z-30: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.07(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.6,128.1,60.2,29.6,15.6 ;$

IR (KBr): $v_{\max } 3432,2980,1711,1400,1152 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$requires 359.2182 , found 359.2177 .

Table 2, entry 15. Following the general procedure, the reaction of MBH alcohol $\mathbf{1 k}$ ($39 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{PPh}_{3}(157 \mathrm{mg}, 0.6 \mathrm{mmol})$ and diethyl azodicarboxylate $\mathbf{2 b}(94 \mu \mathrm{~L}$, $0.6 \mathrm{mmol})$ was performed for 10 minutes.

3p: $78 \mathrm{mg}, 90 \%$ yield, as colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12(\mathrm{br} \mathrm{m}, 1 \mathrm{H})$, $6.33(\mathrm{~s}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{~m}, 6 \mathrm{H}), 1.28(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.9,156.0(2 \mathrm{C}), 135.3,128.0,62.4,61.8,60.8,51.3,14.28,14.24$, 13.9; IR (KBr): $v_{\max } 3417,2983,1718,1401,1138 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$requires 289.1400, found 289.1398.

Table 2, entry 16. Following the general procedure, the reaction of MBH alcohol $\mathbf{1 k}$ ($39 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{PPh}_{3}(157 \mathrm{mg}, 0.6 \mathrm{mmol})$ and diisopropyl azodicarboxylate 2a ($118 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) was performed for 20 minutes.

3q
3q: $84 \mathrm{mg}, 89 \%$ yield, as colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.10(\mathrm{br} \mathrm{m}, 1 \mathrm{H})$, $6.24(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.8$, $155.6(2 \mathrm{C}), 135.4,127.6,69.8,69.3,60.6,50.9,21.73,21.67,13.9$; IR (KBr): $v_{\max }$ 3448, 2983, 1718, 1401, $1108 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ requires 317.1713 , found 317.1713 .

Table 2, entry 17. Following the general procedure, the reaction of MBH alcohol $\mathbf{1 k}$ ($39 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{PPh}_{3}(157 \mathrm{mg}, 0.6 \mathrm{mmol})$ and di-tert-butyl azodicarboxylate $\mathbf{2 c}$ ($138 \mathrm{mg}, 0.6 \mathrm{mmol}$) was performed for 25 minutes.

3r: $93 \mathrm{mg}, 90 \%$ yield, as colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.50(\mathrm{br} \mathrm{m}, 1 \mathrm{H})$, $6.31(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 18 \mathrm{H}), 1.30(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.0,155.0(2 \mathrm{C}), 135.9,127.3$, 81.2(2C), 60.7, 50.9, 28.1(2C), 14.1; IR (KBr): $v_{\max } 3344,2981,1713,1400,1152$ cm^{-1}; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$requires 367.1845, found 367.1840 .

Table 2, entry 18. Following the general procedure, the reaction of MBH alcohol 11 ($35 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{PPh}_{3}(157 \mathrm{mg}, 0.6 \mathrm{mmol})$ and diethyl azodicarboxylate $\mathbf{2 b}(94 \mu \mathrm{~L}$, $0.6 \mathrm{mmol})$ was performed for 13 minutes.

3s: $72 \mathrm{mg}, 87 \%$ yield, as slightly yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.84$ (br m, 1H), $6.34(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{~m}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~m}, 6 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4,156.1(2 \mathrm{C}), 135.1,128.6,62.6,61.9,51.9,51.6$, 14.4, 14.3; IR (KBr): $v_{\max } 3449,2981,1719,1401,1139 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$requires 275.1243, found 275.1243..

2. Analytical data for $\mathbf{1 H}$-pyrazole 7 and mechanistic rationale

7: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{~m}, 5 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H})$, $1.51(\mathrm{~s}, 9 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.7,156.4,151.5,151.2$, 136.0, 128.6, 128.2, 128.1, 107.4, 83.2, 82.4, 65.9, 52.4, 28.1, 28.0, 14.6; IR (KBr): $v_{\max }$ 2981, 1716, 1637, 1401, $1144 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{6}$ $[\mathrm{M}+\mathrm{Na}]^{+}$requires 441.2002, found 441.2005 .

Scheme S1: Plausible mechanism for the formation of compound 7.
The formation of compound $\mathbf{7}$ from the reaction between azodicarboxylate $\mathbf{2 c}$, allenic MBH alcohol 6, and PPh_{3} can be tentatively rationalized in Scheme S1. Initially, addition of PPh_{3} to $\mathbf{2 c}$ forms the Huisgen zwitterion \mathbf{A}, which deprotonates the OH of $\mathbf{6}$ followed by the migration of the phosphonium to produce the anionic species \mathbf{C} and the oxophosphonium intermediate \mathbf{D}. In one of the possible pathways (path a), $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ attack of intermediate \mathbf{C} on \mathbf{D} brings about the hydrazine \mathbf{E}, which undergoes a 5-endo-trig cyclization to furnish \mathbf{F}. A final 1,3-proton transfer of \mathbf{F} results in the
formation of 1 H -pyrazole 7 . Another possible pathway for the formation of 7 (path \mathbf{b}) involves the $\mathbf{S}_{\mathrm{N}} 2$ displacement of \mathbf{D} with the species \mathbf{C} generating the allenic hydrazine \mathbf{G}, which undertakes a favorable 5 -exo-trig ring closure to furnish the $1 H$-pyrazole 7.

3. Copies of ${ }^{1} \mathbf{H},{ }^{13} \mathbf{C}$, DEPT, and NOESY NMR spectra

200	180	160	140	120	100 $\mathrm{fl}(\mathrm{ppm})$	80	60	40

Parameter
Origin
Spectrometer
Solvent
Pulse Sequence
Number of Scans
Acquisition Time
Acquisition Date
zg30
16

Value
Bruker BioSpin GmbH
spect
CDCl3
3.9846

2013-09-01T 12:52:00
Spectrometer Frequency 400.13
Spectral Width
8223.7

1H
Nucleus

$\stackrel{\substack{i}}{\substack{i}}$
$\stackrel{\pi}{\sim}$

$\bigcirc \stackrel{\text { ले }}{\sim}$
$\stackrel{\infty}{\stackrel{m}{9}}$

| | 180 | 160 | 140 | 120 | 100
 $\mathrm{fl}(\mathrm{ppm})$ | 80 | 60 | 40 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 20 | 0 |
| :--- |


```
N\mp@code{NBM}
~
```

Parameter
Origin
Spectrometer
Solvent
Pulse Sequence
Number of Scans
Acquisition Time

Bruker BioSpin GmbH
spect
CDCl3
zgpg30
854
1.3631

Spectrometer Frequency 100.61
Spectral Width
24038.5

Nucleus 13 C

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

200	180	160	140	120	100	80	60	40	20	0
					fl (ppm)					

Origin
Spectrometer
Solvent
Number of Scans
Acquisition Date
Spectrometer
Frequency
Spectral Width
Nucleus

Value
Bruker BioSpin GmbH
spect
CDCl3
16
2013-08-23T 16:52:26
400.13
8223.7

1H


```
M%
```

Parameter
Origin
Spectrometer
Solvent
Number of Scans
Acquisition Date
2013-08-20T20:16:33

Spectrometer Frequency 100.61
Spectral Width 24038.5

100	180	160	140	120	100	80	60	40
$\mathrm{fl}(\mathrm{ppm})$								

N.

Parameter

Solvent
Pulse Sequence
Number of Scans
Acquisition Time
Acquisition Date

Value
Bruker BioSpin GmbH
spect CDCl3
zg30
16
3.9846

2013-08-20T13:56:50
Spectrometer Frequency 400.13
Spectral Width
Nucleus
8223.7

1H

우웅

Parameter
Origin
Spectrometer
Solvent
Pulse Sequence
Number of Scans
Acquisition Time
Acquisition Date
spect
CDCl 3
zg30
16
3.9846

Value
Bruker BioSpin GmbH

2013-10-04T 15:09:43
Spectrometer Frequency 400.13
Spectral Width
Nucleus
1H

200	180	160	140	120	100 $\mathrm{fl}(\mathrm{ppm})$	80	60	40	20


```
lllll
```


Parameter Origin
Spectrometer
Solvent
Pulse Sequence
Number of Scans
Acquisition Time
Acquisition Date

Value
Bruker BioSpin GmbH
spect
CDCl3
zgpg30
590
1.3631

2013-09-01T19:36:21
Spectrometer Frequency 100.61
Spectral Width 24038.5
Nucleus
13 C

| 200 | 180 | 160 | 140 | 120 | 100
 $\mathrm{fl}(\mathrm{ppm})$ | 80 | 60 | 40 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

Parameter
Origin
Spectrometer
Solvent
Pulse Sequence
Number of Scans
Acquisition Time
Acquisition Date

Value

Bruker BioSpin GmbH
spect
CDC13
zg30
16
3.9846

2013-08-14T 18:30:54
Spectrometer Frequency 400.13
Spectral Width
8223.7

Nucleus
1H

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{N}^{-\mathrm{CO}_{2} \mathrm{Et}}}^{\mathrm{CO}_{2} \mathrm{Et}} \\
& \mathrm{EtO}_{2} \mathrm{C}_{3 \mathrm{p}} \mathrm{NH}^{\mathrm{NH}}
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Parameter
Origin
Spectrometer
Solvent
Pulse Sequence
Number of Scans
Acquisition Time
Acquisition Date
Spectrometer Frequenc
Spectral Width
Nucleus
24038.5

13C
spect
CDCl3
zgpg30
408
1.3631
100.61

Value
Bruker BioSpin GmbH

2013-08-20T 16:27:57

200	180	160	140	120	100 $\mathrm{fl}(\mathrm{ppm})$	80	60	40	20

Or

[^0]: ${ }^{1}$ Rotamers were often observed in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds 3 .

