Supporting Information File 1

for

Total synthesis of panicein $\mathrm{A}_{\mathbf{2}}$

Lili Yeung, Lisa I. Pilkington, Melissa M. Cadelis, Brent R. Copp and David Barker

Address: School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand

Email: David Barker - d.barker@auckland.ac.nz

* Corresponding author

Experimental procedures, characterisation data of new

 compounds, NMR comparison tables of natural and synthetic 5 and NCl testing results sheet
Contents

General experimental details S2
Experimental procedures and compound data S2
Comparison of the NMR data obtained from the isolation of panicein $\mathrm{A}_{2}(\mathbf{5})$ and the NMR data of the synthetic panicein A_{2} (5) S16
NCI results data sheet S18
References S19

General experimental details:

All reactions were carried out under a nitrogen atmosphere in dry, freshly distilled solvents unless otherwise noted. NMR spectra were recorded on a 400 MHz or 500 MHz spectrometer. Chemical shifts are reported relative to the solvent peak of CDCl_{3} ($\delta 7.26$ for ${ }^{1} \mathrm{H}$ and $\delta 77.0$ for ${ }^{13} \mathrm{C}$) or $\mathrm{CD}_{3} \mathrm{OD}\left(\delta 3.31\right.$ for ${ }^{1} \mathrm{H}$ and $\delta 49.0$ for ${ }^{13} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR data is reported as position (δ), relative integral, multiplicity (s , singlet; d, doublet; dd. doublet of doublets; ddq doublet of doublet of quartets; m, multiplet; pd, pentet of doublets, br, broad), coupling constant $(J, \mathrm{~Hz})$, and the assignment of the atom. ${ }^{13} \mathrm{C}$ NMR data are reported as position (δ) and assignment of the atom. NMR assignments were performed using HSQC and HMBC experiments. High-resolution mass spectrometry (HRMS) was carried out by either chemical ionization (CI) or electrospray ionization (ESI) on a MicroTOF-Q mass spectrometer. Unless noted, chemical reagents were used as purchased.

Experimental procedures and compound data:

2,3,5-Trimethylanisole

2,3,5-Trimethylphenol 11 ($1.52 \mathrm{~g}, 11.0 \mathrm{mmol}$) was added to EtOH (30 mL) and $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL}) . \mathrm{KOH}(0.73 \mathrm{~g}, 13.0 \mathrm{mmol})$ was then added to the mixture and stirred in an ice bath until the solution went clear. Methyl iodide ($0.82 \mathrm{~mL}, 13.2 \mathrm{mmol}$) was added dropwise to the solution. The solution was stirred for 2 h at rt and then for 12 h at $60^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added to the reaction mixture and the solution then extracted with $\mathrm{Et}_{2} \mathrm{O}(1 \times 50 \mathrm{~mL})$. The organic extract was washed first with $5 \% \mathrm{NaOH}(20 \mathrm{~mL})$, then $\mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The product was purified using silica gel column chromatography in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, giving the title compound as a pale yellow oil ($1.02 \mathrm{~g}, 62 \%$).
$\mathbf{R}_{\mathbf{f}}\left(\mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}\right) 0.92 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{4 0 0} \mathbf{~ M H z}\right) \delta_{\mathrm{H}} 6.68(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 6.61(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 3.86$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.36\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CH}_{3}\right), 2.30\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 2.18\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR
$\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right) \delta_{\mathrm{C}} 157.6(\mathrm{C}-1), 137.6(\mathrm{C}-3), 135.6(\mathrm{C}-5), 123.1(\mathrm{C}-4), 121.9(\mathrm{C}-2), 109.0$ (C-6), $55.6(\mathrm{OMe}), 21.4\left(5-\mathrm{CH}_{3}\right), 20.0\left(3-\mathrm{CH}_{3}\right), 11.3\left(2-\mathrm{CH}_{3}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR values are in agreement with literature values. ${ }^{1}$

2,3,6-Trimethyl-4-anisaldehyde (10)

$\mathrm{POCl}_{3}(1.49 \mathrm{~mL}, 16.0 \mathrm{mmol})$ was added dropwise to stirring dry DMF ($1.23 \mathrm{~mL}, 16.0 \mathrm{mmol}$) under N_{2} in an ice bath. The reaction mixture warmed to $10{ }^{\circ} \mathrm{C}$ after the addition, and then the $2,3,5$-trimethylanisole ($2.08 \mathrm{~g}, 13.8 \mathrm{mmol}$) was added at rt . The mixture was then heated to $110{ }^{\circ} \mathrm{C}$ for 6 h . The reaction was then cooled to rt and poured on to ice water $(50 \mathrm{~mL})$. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{NaOAc}(6 \mathrm{~g})$ were added to the mixture and stirred for 1 h . The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with $2 \% \mathrm{HCl}(20 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$ and then dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed in vacuo, giving the title compound $\mathbf{1 0}$ as light yellow crystals ($2.02 \mathrm{~g}, 82 \%$).
$\mathbf{R}_{\mathbf{f}}\left(\mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{2}\right) 0.69$; m.p $62-66^{\circ} \mathrm{C}\left(\right.$ lit. $\left.{ }^{1} 63-65{ }^{\circ} \mathrm{C}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 400 \mathbf{~ M H z}\right) \delta_{\mathrm{H}} 10.53(1 \mathrm{H}$, s, CHO), $6.56(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.60\left(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{CH}_{3}\right), 2.53\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 2.15$ $\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 100 \mathbf{~ M H z}\right) \delta_{\mathrm{C}} 193.0(\mathrm{CHO}), 160.8(\mathrm{C}-4), 141.6(\mathrm{C}-2)$, 141.3 (C-6), $126.5(\mathrm{C}-1), 124.1(\mathrm{C}-3), 111.0(\mathrm{C}-5), 55.6(\mathrm{OMe}), 21.4\left(6-\mathrm{CH}_{3}\right), 15.9\left(2-\mathrm{CH}_{3}\right)$, $11.3\left(3-\mathrm{CH}_{3}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR values are in agreement with literature values. ${ }^{1}$

4-(4-Methoxy-2,3,6-trimethylphenyl)but-3-en-2-one (12)

Acetone (15 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ were added to 2,3,6-trimethyl-4-anisaldehyde ($\mathbf{1 0}, 0.90 \mathrm{~g}$, 5 mmol). 10% aq $\mathrm{NaOH}(2.8 \mathrm{~mL})$ was added to the stirring mixture in an ice bath over 30 min . The reaction mixture was allowed to stir for 7 h at rt . The reaction was acidified to pH 5 with AcOH and then the solvent removed in vacuo. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, washed with sat. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, giving the title compound $\mathbf{1 2}$ as pale yellow crystals ($0.72 \mathrm{~g}, 66 \%$).
$\mathbf{R}_{\mathbf{f}}\left(\mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{2}\right) 0.6 ; \mathbf{m} . \mathrm{p} 59-61{ }^{\circ} \mathrm{C}$ (lit. $\left.{ }^{1} 55-56{ }^{\circ} \mathrm{C}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 400 \mathbf{~ M H z}\right) \delta_{\mathrm{H}} 7.67(1 \mathrm{H}, \mathrm{d}$, $J=16.5 \mathrm{~Hz}, \mathrm{H}-4), 6.60\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right), 6.22(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}, \mathrm{H}-3), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.38$ $\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{CH}_{3}\right), 2.33\left(3 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{CH}_{3}\right), 2.26\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{CH}_{3}\right), 2.15\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}, 100 \mathrm{MHz}$) $\delta_{\mathrm{C}} 198.6$ (C-2), 157.6 (C-4'), 143.2 (C-4), 136.7 (C-2'), 135.0 (C-6'), 132.6 (C-3), 126.8 (C-1'), 123.4 (C-3'), 110.3 (C-5'), 55.6 (OMe), 27.5 (C-1), $21.6\left(6^{\prime}-\mathrm{CH}_{3}\right)$, $17.6\left(2^{\prime}-\mathrm{CH}_{3}\right), 11.9\left(3^{\prime}-\mathrm{CH}_{3}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR values are in agreement with literature values. ${ }^{1}$

4-(4-Methoxy-2,3,6-trimethylphenyl)but-3-en-2-ol (14)

4-(4-Methoxy-2,3,6-trimethylphenyl)but-3-en-2-one $12(0.431 \mathrm{~g}, 2.0 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(1.1 \mathrm{~mL})$, and $\mathrm{NaBH}_{4}(0.075 \mathrm{~g}, 2.0 \mathrm{mmol})$ was added to the mixture and allowed to
stir in an ice bath for 10 min . Sat. aq $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ was added to quench the reaction and then extracted with EtOAc $(2 \times 2 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent removed in vacuo to give the title compound 14 as white crystals ($0.415 \mathrm{~g}, 94 \%$).
$\mathbf{R}_{\mathbf{f}}$ (4:1 \boldsymbol{n}-hexanes:EtOAc) 0.35 ; m.p $65-67{ }^{\circ} \mathrm{C}$; IR (ATR) $\mathbf{v}_{\text {max }} 3312,2923,1593,1456$, $1304,1112 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right) \delta_{\mathrm{H}} 6.59\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right), 6.50(1 \mathrm{H}, \mathrm{d}, J=16.1$ $\mathrm{Hz}, \mathrm{H}-4), 5.63(1 \mathrm{H}, \mathrm{dd}, J=16.1,6.4 \mathrm{~Hz}, \mathrm{H}-3), 4.48(1 \mathrm{H}, \mathrm{ddq}, J=6.4,6.4,0.9 \mathrm{~Hz}, \mathrm{H}-2), 3.81$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $2.28\left(3 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{CH}_{3}\right), 2.21\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{CH}_{3}\right), 2.14\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{3}\right), 1.39(3 \mathrm{H}, \mathrm{d}, J$ $=6.4 \mathrm{~Hz}, \mathrm{H}-1) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{1 0 0} \mathbf{~ M H z}\right) \delta_{\mathrm{C}} 156.2\left(\mathrm{C}-4^{\prime}\right), 138.8$ (C-4), 135.9 (C-2'), 133.8 (C-6'), 129.4 (C-1'), 127.9 (C-3), 122.7 (C-3'), 110.0 (C-5'), 69.5 (C-2), 55.7 (OMe), $23.8(\mathrm{C}-1), 21.4\left(6^{\prime}-\mathrm{CH}_{3}\right), 17.4\left(2^{\prime}-\mathrm{CH}_{3}\right), 11.9\left(3^{\prime}-\mathrm{CH}_{3}\right) ; \boldsymbol{m} / \boldsymbol{z}(\mathbf{E S I}+): 243\left(\mathrm{MNa}^{+}, 100 \%\right)$ and 226 (20). (+)-HRMS [M+Na] ${ }^{+} 243.1353$ (calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}, 243.1356$).

4-(4-Methoxy-2,3,6-trimethylphenyl)butan-2-ol (15)

4-(4-Methoxy-2,3,6-trimethylphenyl)but-3-en-2-ol (14, $0.415 \mathrm{~g}, 1.9 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(14 \mathrm{~mL}) . \mathrm{Pd} / \mathrm{C}(0.062 \mathrm{~g}, 0.6 \mathrm{mmol})$ was added to the mixture and the reaction was purged with H_{2}. The reaction was stirred under an atmosphere of H_{2} at rt for 2 h . TLC was used to determine the reaction had completed and the Pd / C catalyst was removed by filtration using celite, solvent removed in vacuo and the title compound $\mathbf{1 5}$ obtained as white crystals ($0.349 \mathrm{~g}, 83 \%$).
$\mathbf{R}_{\mathbf{f}}$ (4:1 \boldsymbol{n}-hexanes:EtOAc) 0.39 ; m.p $90-92{ }^{\circ} \mathrm{C}$; IR (ATR) $\mathrm{v}_{\text {max }} 3294,2914,1594,1468$, $1114 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right) \delta_{\mathrm{H}} 6.56\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right), 3.87(1 \mathrm{H}, \mathrm{dddq}, J=5.9,5.9$, $5.9,0.9 \mathrm{~Hz}, \mathrm{H}-2), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.80-2.72\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-4 \mathrm{a}\right), 2.65-2.57\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-4 \mathrm{~b}\right)$, $2.32\left(3 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{CH}_{3}\right), 2.23\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{CH}_{3}\right), 2.14\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{3}\right), 1.61-1.56\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-2\right)$, $1.26(3 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \mathrm{H}-1) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right) \delta_{\mathrm{C}} 155.4$ (C-4'), 136.0 (C-2'), 133.7 (C-6'), 131.0 ($\mathrm{C}-1^{\prime}$), 123.0 (C-3'), 110.5 (C-5'), 68.5 (C-2), 55.7 (OMe), 39.3 (C-3),
25.9 (C-4), 23.7 (C-1), $20.5\left(6^{\prime}-\mathrm{CH}_{3}\right), 15.9\left(2^{\prime}-\mathrm{CH}_{3}\right), 12.1\left(3^{\prime}-\mathrm{CH}_{3}\right) ; \boldsymbol{m} / \boldsymbol{z}$ (ESI+): $245\left(\mathrm{MNa}^{+}\right.$, 100%) and 227 (15). (+)-HRMS [M+Na] 245.1509 (calculated for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na}, 245.1512$).

4-(4-Methoxy-2,3,6-trimethylphenyl)butan-2-one (13)

4-(4-Methoxy-2,3,6-trimethylphenyl)butan-2-ol (15, $0.349 \mathrm{~g}, 1.6 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.2 \mathrm{~mL})$. DMP $(1.36 \mathrm{~g}, 3.2 \mathrm{mmol})$ was added to the mixture which was then stirred for 1 h . TLC was used to determine the reaction had gone to completion. Sat. aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ (80 mL) was used to quench the reaction, followed by $\mathrm{NaHCO}_{3}(60 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent removed in vacuo to give the title compound 13 as pale yellow crystals $(0.315 \mathrm{~g}, 90 \%)$.
$\mathbf{R}_{\mathbf{f}}\left(\mathbf{4}: \mathbf{1} \boldsymbol{n}\right.$-hexanes: EtOAc) 0.57 ; m.p $83-90{ }^{\circ} \mathrm{C}$ (lit. $\left..^{1} 86.5-87{ }^{\circ} \mathrm{C}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{4 0 0}\right.$ $\mathrm{MHz}) \delta_{\mathrm{H}} 6.56$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}$) 3.79 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 2.90-2.86 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-4$), 2.57-2.53 ($2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}_{2}-3$), $2.29\left(3 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{CH}_{3}\right), 2.20\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{CH}_{3}\right), 2.17\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{CH}_{3}\right), 2.14\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{3}\right)$; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}$) $\delta_{\mathrm{C}} 208.6$ (C-2), 155.7 (C-4'), 136.0 (C-2'), 133.8 (C-6'), 129.7 ($\mathrm{C}-1^{\prime}$), 123.2 ($\mathrm{C}-3^{\prime}$), 110.5 (C-5'), 55.7 (OMe), 43.6 (C-3), 30.0 (C-1), 23.8 (C-4), 20.5 ($6^{\prime}-$ $\left.\mathrm{CH}_{3}\right), 15.9\left(2^{\prime}-\mathrm{CH}_{3}\right), 12.1\left(3^{\prime}-\mathrm{CH}_{3}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR values are in agreement with literature values. ${ }^{1}$

5-(4-Methoxy-2,3,6-trimethylphenyl)-3-methylpent-1-yn-3-ol (9)

4-(4-Methoxy-2,3,6-trimethylphenyl)butan-2-one (13, $91 \mathrm{mg}, 4.0 \mathrm{mmol}$) was dissolved in dry 1:1 THF/Et $2 \mathrm{O}(2 \mathrm{~mL})$ at $-5{ }^{\circ} \mathrm{C}$ under an atmosphere of N_{2}. Ethynylmagnesium bromide
solution ($0.5 \mathrm{M}, 1.0 \mathrm{~mL}, 4.8 \mathrm{mmol}$) was added to the mixture and allowed to stir for 3 h at $0{ }^{\circ} \mathrm{C}$. The reaction was quenched with sat. aq $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and the aqueous layer extracted with EtOAc $(5 \times 10 \mathrm{~mL})$. The organic layer was washed with brine (5 mL) and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed in vacuo, giving a yellow crude oil. The pure product was obtained through silica gel column chromatography ($9: 1 n$-hexanes/EtOAc) affording title compound $\mathbf{9}$ as a white solid ($93 \mathrm{mg}, \mathbf{9 5 \%}$). $\mathbf{R}_{\mathbf{f}}$ ($\mathbf{9}: 1 \boldsymbol{n}$-hexanes:EtOAc) 0.22; m.p 62-66
 2.87-2.81 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-5$), $2.53(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 2.34\left(3 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{CH}_{3}\right), 2.24\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{CH}_{3}\right), 2.14$ $\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{3}\right), 1.80-1.74\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-4\right), 1.58\left(3-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right) \delta_{\mathrm{C}}$ 155.5 (C-4'), 136.1 (C-2'), 133.8 (C-6'), 130.2 (C-1'), 122.9 (C-3'), 110.5 (C-5'), 87.6 (C-2), 71.7 (C-1), $68.0(\mathrm{C}-3), 55.6(\mathrm{OMe}), 42.9(\mathrm{C}-4), 29.8\left(3-\mathrm{CH}_{3}\right), 24.8(\mathrm{C}-5), 20.3\left(6{ }^{\prime}-\mathrm{CH}_{3}\right), 15.7$ $\left(2^{\prime}-\mathrm{CH}_{3}\right), 12.0\left(3^{\prime}-\mathrm{CH}_{3}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR values are in agreement with literature values. ${ }^{2}$

Methyl 6-(4-methoxy-2,3,6-trimethylphenyl)-4-((methoxycarbonyl)oxy)-4-methylhex-2ynoate (19)

5-(4-Methoxy-2,3,6-trimethylphenyl)-3-methylpent-1-yn-3-ol (9, $0.1 \mathrm{~g}, 0.4 \mathrm{mmol}$) was dissolved in THF (2 mL). n - $\mathrm{BuLi}(1.6 \mathrm{M}, 0.5 \mathrm{~mL}, 0.8 \mathrm{mmol}$) was added dropwise to the solution at $0{ }^{\circ} \mathrm{C}$. The reaction was then stirred at this temperature for 30 min . Methyl chloroformate ($0.06 \mathrm{~mL}, 0.8 \mathrm{mmol}$) was added to the reaction and allowed to stir at rt for 2 h . TLC was used to determine that the reaction had gone to completion. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The aqueous layer was further extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$, solvent removed in vacuo to give a yellow crude oil. The compound was purified using silica gel chromatography (9:1 n hexane/EtOAc), yielding the title compound 19 a colourless oil ($0.063 \mathrm{~g}, 43 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta_{\mathrm{H}} 6.56\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.79(3 \mathrm{H}, \mathrm{s}$, OMe), $2.75\left(2 \mathrm{H}, \mathrm{pd}, J=5.2,13.6 \mathrm{~Hz}, \mathrm{H}_{2}-6\right), 2.32\left(3 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{CH}_{3}\right), 2.23\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{CH}_{3}\right), 2.14$
$\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{3}\right), 2.12-2.06\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-5 \mathrm{a}\right), 2.01-1.93\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-5 \mathrm{~b}\right), 1.83\left(3-\mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}$) $\delta_{\mathrm{C}} 155.7$ (C-4'), 153.7 (C=O), 153.6 (C=O), 136.1 (C-2'), 133.9 (C-6'), 129.2 (C-1'), 123.1 (C-3'), 110.5 (C-5'), 86.3 (C-3), 77.4 (C-2), $76.0(\mathrm{C}-4), 55.7$ (OMe), 54.9 (OMe), $53.0(\mathrm{OMe}), 40.5(\mathrm{C}-5), 25.7\left(4-\mathrm{CH}_{3}\right), 24.2(\mathrm{C}-6), 20.3\left(6^{\prime}-\mathrm{CH}_{3}\right), 15.7$ $\left(2^{\prime}-\mathrm{CH}_{3}\right), 12.1\left(3^{\prime}-\mathrm{CH}_{3}\right)$. In a separate fraction, $18(0.021 \mathrm{~g}, 17 \%)$ as a pale yellow oil (see below for full characterisation data).

5-(4-Methoxy-2,3,6-trimethylphenyl)-3-methylpent-1-yn-3-yl methyl carbonate (18)

5-(4-Methoxy-2,3,6-trimethylphenyl)-3-methylpent-1-yn-3-ol (9, $0.1 \mathrm{~g}, 0.4 \mathrm{mmol}$) was dissolved in THF (2 mL). n - $\mathrm{BuLi}(1.6 \mathrm{M}, 0.5 \mathrm{~mL}, 0.8 \mathrm{mmol})$ was added dropwise to the solution stirring at $0{ }^{\circ} \mathrm{C}$. The reaction was then stirred at this temperature for 30 min . Methyl chloroformate $(0.46 \mathrm{~mL}, 0.6 \mathrm{mmol})$ was added to the reaction and allowed to stir at rt for 2 h . TLC was used to determine that the reaction had gone to completion. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The aqueous layer was further extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$, solvent removed in vacuo to give a yellow crude oil. The compound was purified using silica gel chromatography (9:1 n hexane/EtOAc), yielding the title compound 18 a pale yellow oil ($0.062 \mathrm{~g}, 51 \%$). $\mathbf{R}_{\mathbf{f}}$ ($\mathbf{9}: \mathbf{1} \boldsymbol{n}$ hexanes:EtOAc) $0.53 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right) \delta_{\mathrm{H}} 6.58(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), $3.80(3 \mathrm{H}, \mathrm{s}$, OMe), $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.90-2.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-5\right), 2.69(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 2.35\left(3 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{CH}_{3}\right)$, $2.26\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{CH}_{3}\right), 2.15\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{CH}_{3}\right), 2.14-2.06\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-4 \mathrm{a}\right), 1.96-1.88\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-\right.$ 4b), $1.82\left(3-\mathrm{CH}_{3}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{1 0 0} \mathbf{~ M H z}\right) \delta_{\mathrm{C}} 155.6\left(\mathrm{C}-4^{\prime}\right), 153.8(\mathrm{C}=\mathrm{O}), 136.1\left(\mathrm{C}-2^{\prime}\right)$, 133.9 (C-6'), 129.6 (C-1'), 123.0 (C-3'), 110.5 (C-5'), 83.1 (C-2), 76.8 (C-3), 74.2 (C-1), 55.6 (OMe), 54.5 (OMe), 40.9 ($\mathrm{C}-4), 26.3\left(3-\mathrm{CH}_{3}\right), 24.3(\mathrm{C}-5), 20.3\left(6{ }^{\prime}-\mathrm{CH}_{3}\right), 15.7\left(2^{\prime}-\mathrm{CH}_{3}\right)$, $12.0\left(3^{\prime}-\mathrm{CH}_{3}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR values are in agreement with literature values. ${ }^{2}$

4-Hydroxyphenyl acetate (16)

Hydroquinone ($1.0 \mathrm{~g}, 9.1 \mathrm{mmol}$) was dissolved in $\mathrm{AcOH}(2 \mathrm{~mL})$ under N_{2}. Acetic anhydride ($0.43 \mathrm{~mL}, 4.5 \mathrm{mmol}$) was added dropwise to the mixture over 30 min . The mixture was allowed to stir at $110{ }^{\circ} \mathrm{C}$ for 2 h . The solvent was removed in vacuo and the crude mixture was dissolved in toluene. Unreacted starting material was removed by filtration and the solvent was removed in vacuo affording title compound 16 as a pale brown-yellow solid $(0.55 \mathrm{~g}, 40 \%)$. $\mathbf{R}_{\mathbf{f}}$ (2:1 n-hexanes: EtOAc) 0.77 ; m.p $50-52{ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left.^{3} 60-62{ }^{\circ} \mathrm{C}\right) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right) \delta_{\mathrm{H}} 6.88(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2), 6.71(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{H}-3), 2.28(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{COCH}_{3}\right) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right) \delta_{\mathrm{C}} 170.9\left(\mathbf{C O C H}_{3}\right), 153.7(\mathrm{C}-4), 144.0(\mathrm{C}-1)$, $122.4(\mathrm{C}-2), 116.2(\mathrm{C}-3), 21.2\left(\mathrm{COCH}_{3}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR values are in agreement with literature values. ${ }^{3}$

4-((5-(4-Methoxy-2,3,6-trimethylphenyl)-3-methylpent-1-yn-3-yl)oxy)phenyl acetate (8) and 4-((5-(4-methoxy-2,3,6-trimethylphenyl)-3-methylpent-1-yn-3-yl)oxy)phenol (20)

The phenol 16 ($98 \mathrm{mg}, 0.64 \mathrm{mmol}$) was dissolved in MeCN (0.7 mL). Anhydrous copper(II) chloride ($0.01 \mathrm{mg}, 0.064 \mathrm{mmol}$) and $\mathrm{DBU}(0.12 \mathrm{~mL}, 0.83 \mathrm{mmol})$ was added to the mixture at $-20^{\circ} \mathrm{C}$ and stirred for 15 min . The carbonate 18 ($195 \mathrm{mg}, 0.64 \mathrm{mmol}$) in $\mathrm{MeCN}(1.8 \mathrm{~mL})$ was then added dropwise and stirred overnight at $0{ }^{\circ} \mathrm{C}$. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$
$(5 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. A brown crude oil purified using silica gel column chromatography (4:1 n-hexanes/EtOAc) yielded title compound 6 as a pale yellow oil ($42 \mathrm{mg}, 17 \%$) and title compound 20 as a colourless oil ($45 \mathrm{mg}, 21 \%$).

4-((5-(4-Methoxy-2,3,6-trimethylphenyl)-3-methylpent-1-yn-3-yl)oxy)phenyl acetate (8)
$\mathbf{R}_{\mathbf{f}}\left(\mathbf{4}: 1 \mathbf{n}\right.$-hexanes:EtOAc) 0.51 ; IR (ATR) $\mathrm{v}_{\text {max }} 3282,2936,2153,1761,1596,1500,1466$, 1369, 1212, 1171, 1118, 1091, $1013 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (CD $\mathbf{N O D}_{3} \mathbf{O D}, 400 \mathbf{M H z}$) $\delta_{\mathrm{H}} 7.23(2 \mathrm{H}, \mathrm{d}, J=$ $9.1 \mathrm{~Hz}, \mathrm{H}-2), 7.00(2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{H}-3), 6.58\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime \prime}\right), 3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.14(1 \mathrm{H}$, s, H-1'), 2.99-2.83 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-5^{\prime}$), $2.28\left(3 \mathrm{H}, \mathrm{s}, 6^{\prime \prime}-\mathrm{CH}_{3}\right), 2.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCOCH}_{3}\right), 2.21(3 \mathrm{H}, \mathrm{s}$, $\left.2^{\prime \prime}-\mathrm{CH}_{3}\right), 2.09\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.98-1.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-4^{\prime}\right), 1.62\left(3^{\prime}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D}_{3} \mathbf{O D}\right.$, $100 \mathbf{M H z}) \delta_{\mathrm{C}} 171.4\left(\mathrm{OCOCH}_{3}\right), 156.8\left(\mathrm{C}-4^{\prime \prime}\right), 154.6(\mathrm{C}-4), 147.6(\mathrm{C}-1), 136.7\left(\mathrm{C}-2^{\prime \prime}\right), 134.8$ (C-6"), 131.2 (C-1"), 123.6 (C-3"), 123.3 (C-2), 123.0 (C-3) 111.5 (C-5"), 85.8 (C-2'), 77.3 ($\mathrm{C}-1^{\prime}$), $77.0\left(\mathrm{C}-3^{\prime}\right), 56.0(\mathrm{OMe}), 43.3\left(\mathrm{C}-4^{\prime}\right), 27.3\left(3^{\prime}-\mathrm{CH}_{3}\right), 25.5\left(\mathrm{C}-5^{\prime}\right), 20.9\left(\mathrm{OCOCH}_{3}\right), 20.4$ (6"-CH3), $15.8\left(2^{\prime \prime}-\mathrm{CH}_{3}\right), 12.1\left(3^{\prime \prime}-\mathrm{CH}_{3}\right) ; \boldsymbol{m} / \boldsymbol{z}$ (ESI+): 403 ($\mathrm{MNa}^{+}, 100 \%$), 341 (90), 265 (50) and 168 (80); (+)-HRMS $[\mathrm{M}+\mathrm{Na}]^{+} 403.1869$ (calculated for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}, 403.1880$).

4-((5-(4-Methoxy-2,3,6-trimethylphenyl)-3-methylpent-1-yn-3-yl)oxy)phenol (20)

$\mathbf{R}_{\mathbf{f}}\left(\mathbf{4}: \mathbf{1} \boldsymbol{n}\right.$-hexanes:EtOAc) 0.30 ; IR (ATR) $\mathrm{v}_{\text {max }}$ 3394, 3273, 2984, 2112, 1596, 1505, 1449, $1369,1279,1214,1174,1116 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right) \delta_{\mathrm{H}} 7.10(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}$, $\mathrm{H}-3), 6.74(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{H}-2), 6.59\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime \prime}\right), 4.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.81(3 \mathrm{H}, \mathrm{s}$, OMe), 3.02-2.85 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-5^{\prime}$), 2.63 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1^{\prime}$), 2.35 ($3 \mathrm{H}, \mathrm{s}, 6^{\prime \prime}-\mathrm{CH}_{3}$), $2.26\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime \prime}-\right.$ CH_{3}), $2.16\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{CH}_{3}\right), 2.04-1.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-4^{\prime}\right), 1.61\left(3^{\prime}-\mathrm{CH}_{3}\right)$; ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (~} \mathbf{C D C l}_{3}, \mathbf{1 0 0}$ $\mathbf{M H z}) \delta_{\mathrm{C}} 155.5$ (C-4"), 151.7 (C-4), 149.2 (C-1), 136.3 (C-2"), 134.0 (C-6"), 130.4 (C-1'), 123.8 (C-3), 123.0 (C-3"), 115.5 (C-2) 110.6 (C-5"), 85.3 (C-2'), 76.1 (C-3'), 75.3 (C-1'), 55.7 (OMe), 42.1 ($\left.\mathrm{C}-4^{\prime}\right), 27.0\left(3^{\prime}-\mathrm{CH}_{3}\right), 24.8\left(\mathrm{C}-5^{\prime}\right), 20.4\left(6^{\prime \prime}-\mathrm{CH}_{3}\right), 15.8\left(2^{\prime \prime}-\mathrm{CH}_{3}\right)$, $12.1\left(3^{\prime \prime}-\mathrm{CH}_{3}\right) ; \boldsymbol{m} / \boldsymbol{z}$ (ESI+): $361\left(\mathrm{MNa}^{+}, 100 \%\right)$ and 217 (15); (+)-HRMS [M+Na] ${ }^{+}$ 361.1774 (calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}, 361.1778$).

4-((5-(4-Methoxy-2,3,6-trimethylphenyl)-3-methylpent-1-yn-3-yl)oxy)phenyl acetate (8)

Phenol $20(19 \mathrm{mg}, 0.056 \mathrm{mmol})$ was dissolved in pyridine $(0.05 \mathrm{~mL})$ and stirred under N_{2}. Acetic anhydride ($0.05 \mathrm{~mL}, 0.56 \mathrm{mmol}$) was added to the mixture, dropwise and was then allowed to stir at rt for 1.5 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The organic layer was then washed with $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, water (5 mL) and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed in vacuo giving the crude product as a colourless oil. The compound was purified using silica gel chromatography (4:1 n-hexanes/EtOAc), yielding the title compound $\mathbf{8}$ a colourless oil ($0.014 \mathrm{~g}, 66 \%$). Data as reported above.

O-Acetyl panicein $\mathbf{A}_{\mathbf{2}}$ (21)

The phenyl acetate $\mathbf{8}(42 \mathrm{mg}, 0.1 \mathrm{mmol})$ was degassed in a solution of toluene (8 mL) and heated in an atmosphere of N_{2} under reflux for 2 days. The solvent was removed in vacuo and the crude product was purified using silica gel column chromatography (4:1 n hexanes/EtOAc) to give the title compound 21 in a $1: 1$ mixture of starting material and product. The product was used immediately without further purification.
$\mathbf{R}_{\mathbf{f}}\left(\mathbf{4}: 1 \boldsymbol{n}\right.$-hexanes:EtOAc) 0.54 ; ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{4 0 0} \mathbf{~ M H z}\right) \delta_{\mathrm{H}} 6.82(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}$, H-4'), $6.82(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6$ '), $6.74(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{H}-3$ '), $6.55(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 6.36(1 \mathrm{H}, \mathrm{d}, J=9.8$ $\mathrm{Hz}, \mathrm{H}-11), 5.68$ ($1 \mathrm{H}, \mathrm{d}, J=9.8, \mathrm{H}-10$), 3.81 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 2.82-2.69 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-7$), 2.29 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCOCH}_{3}$), $2.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-13\right), 2.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-14\right), 2.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-15\right), 1.85-1.73$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-8\right), 1.65\left(\mathrm{H}_{3}-12\right) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right) \delta_{\mathrm{C}} 169.9\left(\mathrm{OCOCH}_{3}\right), 155.4(\mathrm{C}-$ 3), 151.0 (C-2'), 144.2 (C-5'), 136.0 (C-1), 133.7 (C-5), 130.3 (C-10), 130.3 (C-6), 123.0 (C2), 123.0 (C-1'), 122.8 (C-11), 121.9 (C-4'), 119.2 (C-3'), 116.7 (C-6'), 110.5 (C-4), 79.0 (C-9), 55.7 (OMe), $41.0(\mathrm{C}-8), 26.5(\mathrm{C}-12), 24.1(\mathrm{C}-7), 21.2\left(\mathrm{OCOCH}_{3}\right), 20.4(\mathrm{C}-13), 15.7$ (C-14), 12.1 (C-15).

tert-Butyl(4-((5-(4-methoxy-2,3,6-trimethylphenyl)-3-methylpent-1-yn-3-

 yl)oxy)phenoxy)dimethylsilane (22)

To a solution of phenol $\mathbf{2 0}(22 \mathrm{mg}, 0.065 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ with DIPEA (0.045 mL , $0.26 \mathrm{mmol})$ stirred under an atmosphere of N_{2} at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{TBSCl}(0.28 \mathrm{~mL}, 0.16$ $\mathrm{mmol})$. The solution was allowed to warm to room temperature and was stirred for 24 h . Sat. aq $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ was added and the layers separated. The aqueous layer was extracted with ether $(3 \times 3 \mathrm{~mL})$ and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed in vacuo giving the crude product as colourless oil. The compound was purified using silica gel chromatography ($4: 1 n$-hexanes/EtOAc), yielding the title compound 22 a colourless oil ($5.3 \mathrm{mg}, 18 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right) \delta_{\mathrm{H}} 7.09(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-2), 6.74(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-3)$, 6.56 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime \prime}$), 3.79 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.00-2.83 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-5^{\prime}$), 2.61 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1^{\prime}$), 2.32 (3 H , s, $\left.6^{\prime \prime}-\mathrm{CH}_{3}\right), 2.24\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime \prime}-\mathrm{CH}_{3}\right), 2.14\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{CH}_{3}\right), 2.01-1.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-4^{\prime}\right), 1.59\left(3^{\prime}-\right.$ $\left.\mathrm{CH}_{3}\right), 0.98\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.18\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathbf{C D C l}_{3}, 100\right.$ $\mathbf{M H z}) \delta_{\mathrm{C}} 155.4$ (C-4"), 151.6 (C-4), 149.7 (C-1), 136.3 (C-2"), 134.0 (C-6"), 130.4 (C-1'), 123.2 (C-3'), 123.0 (C-2), 120.2 (C-3) 110.5 (C-5"), 85.4 (C-2'), 75.8 (C-3'), 75.1 (C-1'), 55.7 (OMe), $42.1\left(\mathrm{C}-4^{\prime}\right), 29.8\left(3^{\prime}-\mathrm{CH}_{3}\right), 27.0\left(\mathrm{C}-5^{\prime}\right), 25.8\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 24.7$ $\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) 20.4\left(6^{\prime \prime}-\mathrm{CH}_{3}\right), 15.8\left(2^{\prime \prime}-\mathrm{CH}_{3}\right), 12.1\left(3^{\prime \prime}-\mathrm{CH}_{3}\right),-4.3\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

O-TBS panicein A_{2} (23)

The phenyl silane 22 ($5.3 \mathrm{mg}, 0.012 \mathrm{mmol}$) was degassed in a solution of toluene (4 mL) and heated in an atmosphere of N_{2} under reflux for 2 days. The solvent was removed in vacuo and the crude product was purified using silica gel column chromatography (4:1 n hexanes/EtOAc) to give the title compound 23 in a $1: 2$ mixture of starting material and product.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right) \delta_{\mathrm{H}} 6.69\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-4{ }^{\prime}\right), 6.60(1 \mathrm{H}, \mathrm{dd}, J=8.0$ and 2.4 Hz, H-6'), 6.53 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$), 6.48 ($\left.1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 6.33$ ($1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}, \mathrm{H}-11$), $5.65(1 \mathrm{H}, \mathrm{d}, J=9.8, \mathrm{H}-10), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.79-2.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-7\right), 2.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-13\right)$, $2.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-14\right), 2.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-15\right), 1.78-1.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-8\right), 1.45\left(\mathrm{H}_{3}-12\right), 0.98(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.17\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right) \delta_{\mathrm{C}} 155.4$ (C-3), 151.4 (C-2'), 145.8 (C-5'), 135.9 (C-1), 133.6 (C-5), 130.2 (C-10), 130.2 (C-6), 123.2 (C-2), 123.2 (C-1'), 122.9 (C-11), 120.2 (C-3'), 117.5 (C-4'), 116.6 (C-6'), 110.4 (C-4), 78.0 $(\mathrm{C}-9), \quad 55.6 \quad(\mathrm{OMe}), \quad 40.3 \quad(\mathrm{C}-8), \quad 26.9 \quad(\mathrm{C}-12), \quad 25.9 \quad\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), \quad 25.7$ $\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), \quad 23.9 \quad(\mathrm{C}-7), \quad 20.3 \quad(\mathrm{C}-13), \quad 15.6 \quad(\mathrm{C}-14), \quad 12.0(\mathrm{C}-15), \quad-4.5$ $\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

Panicein $\mathrm{A}_{2}(5)$

A mixture of chromenol acetate 21 and phenyl acetate $\mathbf{8}(0.019 \mathrm{~g}, 0.05 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(1 \mathrm{~mL})$, followed by the addition of aq $\mathrm{KOH}(1 \mathrm{M}, 0.05 \mathrm{~mL})$. The mixture was allowed to stir for 2.5 h , neutralised with $\mathrm{AcOH}(0.05 \mathrm{~mL})$ and extracted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo to give the crude product which was purified by silica gel column chromatography (9:1 n-hexanes/EtOAc), to give the title compound 5 as a pale yellow oil ($13.5 \mathrm{mg}, 80 \%$).
$\mathbf{R}_{\mathbf{f}}\left(\mathbf{4}: \mathbf{1} \boldsymbol{n}\right.$-hexanes:EtOAc) 0.32 ; IR (ATR) $\mathrm{v}_{\text {max }}$ 3321, 2934, 2252, 1650, 1532, 1453, 1362, $1221,1116 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\left.\mathbf{C D}_{\mathbf{3}} \mathbf{O D}, 500 \mathrm{MHz}\right) \delta_{\mathrm{H}} 6.61(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-3)^{\prime}\right), 6.54(1 \mathrm{H}$, dd, $\left.J=8.6,2.8 \mathrm{~Hz}, \mathrm{H}-44^{\prime}\right), 6.54(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 6.47\left(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 6.34(1 \mathrm{H}, \mathrm{d}, J=$ $9.8 \mathrm{~Hz}, \mathrm{H}-11), 5.71(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}, \mathrm{H}-10), 3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.78-2.66\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-7\right)$, 2.22 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-13$), 2.14 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-14$), 2.06 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15$), 1.72-1.65 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-8$), 1.41 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-12$); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{C D}_{\mathbf{3}} \mathbf{O D}, \mathbf{1 2 5} \mathbf{~ M H z}$) $\delta_{\mathrm{C}} 156.6$ (C-3), 152.1 (C-2'), 147.5 (C-5'), 136.5 (C-1), 134.6 (C-5), 131.9 (C-6), 131.6 (C-10), 124.2 (C-11), 123.5 (C-2), 123.2 (C-1') 117.5 (C-3'), 116.4 (C-4'), 113.8 (C-6'), 111.4 (C-4), 79.1 (C-9), 56.0 (OMe), 41.4 (C-8), 26.2 (C-12), 24.9 (C-7), 20.4 (C-13), 15.8 (C-14), 12.0 (C-15); m/z (ESI+): 361 ($\mathrm{MNa}^{+}, 100 \%$) (+)-HRMS $[\mathrm{M}+\mathrm{Na}]^{+} 361.1774$ (calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}, 361.1778$). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR values are in agreement with literature values. ${ }^{4}$

Comparison of the NMR data obtained from the isolation of panicein $A_{2}(5)$ and the NMR data of the synthetic panicein $A_{2}(5)$.

Table 1: ${ }^{1} \mathrm{H}$ NMR Values $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ observed for synthetic (5) versus literature.

Atom no.	Isolated panicein A_{2} (5) ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)^{4}$	Synthetic panicein $\mathbf{A}_{\mathbf{2}}$ (5) ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)
H-4	$6.53(1 \mathrm{H}, \mathrm{s})$	$6.54(1 \mathrm{H}, \mathrm{s})$
H-7	2.71 (2H, m)	2.78-2.66 (2H, m)
H-8	1.68 (2H, m)	$1.72-1.65$ (2H, m)
H-10	5.71 (1H, d, $J=9.8 \mathrm{~Hz})$	5.71 (1H, d, $J=9.8 \mathrm{~Hz})$
H-11	$6.35(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz})$	$6.34(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz})$
H-12	1.40 (3H, s)	1.41 (3H, s)
H-13	2.22 (3H, s)	2.22 (3H, s)
H-14	2.13 (3H, s)	2.14 (3H, s)
H-15	2.06 (3H, s)	2.06 (3H, s)
OCH_{3}	3.72 (3H, s)	3.73 (3H, s)
H-3'	6.60 (1H, d, $J=8.6 \mathrm{~Hz})$	6.61 (1H, d, $J=8.6 \mathrm{~Hz})$
H-4'	$6.54(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.8 \mathrm{~Hz})$	$6.54(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.8 \mathrm{~Hz})$
H-6'	6.46 (1H, d, J=2.8 Hz)	6.47 (1H, d, J=2.8 Hz)

Table 2. ${ }^{13} \mathrm{C}$ NMR Values $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ observed for synthetic (5) versus literature.

Atom no.	Isolated panicein $\mathrm{A}_{2}(5)$ $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)^{4}$	Synthetic panicein $\mathbf{A}_{2}(5)$ ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)
C-1	135.4	136.5
C-2 ${ }^{\text {a }}$	122.6	123.5
C-3	155.3	156.6
C-4	110.7	111.4
C-5	133.6	134.6
C-6	130.9	131.9
C-7	25.2	24.9
C-8	41.5	41.4
C-9	78.7	79.1
C-10	130.6	131.6
C-11	123.3	124.2
C-12	26.5	26.2
C-13	20.8	20.4
C-14	16.2	15.8
C-15	12.5	12.0
OCH_{3}	55.8	56.0
$\mathrm{C}-1{ }^{\text {1a }}$	122.3	123.2
C-2'	150.9	152.1
C-3'	116.7	117.5
C-4'	115.6	116.4
C-5'	146.4	147.5
C-6'	113.0	113.8

a) Notates interchangeable signals

NCI results data sheet of synthetic panicein \mathbf{A}_{2} (5)

References:

(1) Samokhvalov, G. I.; Zakharova, N. I.; Sokolova, N. N.; Filippova, T. M.;

Raigorodskaya, O. I.; Murav’ev, V. V.; Tuguzova, A. M.; Khristoforov, V. L. Pharm. Chem. J. 1994, 28, 343-348.
(2) Davis, C. J.; Hurst, T. E.; Jacob, A. M.; Moody, C. J. J. Org. Chem. 2005, 70, 44144422.
(3) Kim, B.-T.; Kim, K.-H.; Kim, K.-S.; Lee, Y.-S.; Min, Y.-K.; Park, N.-K. Mono carbonylation of benzene diols. WO2003033449 A1, April 24, 2003.
(4) Zubía, E.; J. Ortega, M.; Luis Carballo, J.; Salvá, J. Tetrahedron 1994, 50, 8153-8160.

