Supporting Information File 2

for

Total synthesis of panicein A₂

Lili Yeung, Lisa I. Pilkington, Melissa M. Cadelis, Brent R. Copp and David Barker*

Address: School of Chemical Sciences, University of Auckland, 23 Symonds Street,

Auckland, New Zealand

Email: David Barker - d.barker@auckland.ac.nz

* Corresponding author

¹H/¹³C NMR spectra of synthesised compounds

Contents:

¹ H NMR and ¹³ C NMR spectra for 2,3,5-trimethylanisole	S3,S4
¹ H NMR and ¹³ C NMR spectra for 10	S5,S6
¹ H NMR and ¹³ C NMR spectra for 12	S7,S8
¹ H NMR and ¹³ C NMR spectra for 14	S9,S10
¹ H NMR and ¹³ C NMR spectra for 15	S11,S12
¹ H NMR and ¹³ C NMR spectra for 13	S13,S14
¹ H NMR and ¹³ C NMR spectra for 9	S15,S16
¹ H NMR and ¹³ C NMR spectra for 19	S17,S18
¹ H NMR and ¹³ C NMR spectra for 18	S19,S20

¹ H NMR and ¹³ C NMR spectra for 16	S21,S22
¹ H NMR and ¹³ C NMR spectra for 8	S23,S24
¹ H NMR and ¹³ C NMR spectra for 20	S25,S26
¹ H NMR and ¹³ C NMR spectra for 20 and 21	S27,S28
¹ H NMR and ¹³ C NMR spectra for 22	S29,S30
¹ H NMR and ¹³ C NMR spectra for 22 and 23	S31,S32
¹ H NMR and ¹³ C NMR spectra for 5	S33,S34

Figure 1: ¹H NMR of 2,3,5-trimethylanisole (CDCl₃, 400 MHz).

Figure 2: ¹³C NMR of 2,3,5-trimethylanisole (CDCl₃, 100 MHz).

Figure 3: ¹H NMR of **10** (CDCl₃, 400 MHz).

Figure 4: ¹³C NMR of **10** (CDCl₃, 100 MHz).

Figure 5: ¹H NMR of **12** (CDCl₃, 400 MHz).

Figure 6: ¹³C NMR of **12** (CDCl₃, 400 MHz).

Figure 7: ¹H NMR of **14** (CDCl₃, 400 MHz).

Figure 8: ¹³C NMR of 14 (CDCl₃, 100 MHz).

Figure 9: ¹H NMR of **15** (CDCl₃, 400 MHz).

Figure 10: ¹³C NMR of 15 (CDCl₃, 100 MHz).

Figure 11: ¹H NMR of **13** (CDCl₃, 400 MHz).

Figure 12: ¹³C NMR of 13 (CDCI₃, 100 MHz).

Figure 13: ¹H NMR of **9** (CDCl₃, 400 MHz).

Figure 14: ¹³C NMR of **9** (CDCl₃, 100 MHz).

Figure 15: ¹H NMR of **19** (CDCl₃, 400 MHz).

Figure 16: ¹³C NMR of **19** (CDCl₃, 100 MHz).

Figure 17: ¹H NMR of **18** (CDCl₃, 400 MHz).

Figure 18: ¹³C NMR of 18 (CDCl₃, 100 MHz).

Figure 19: ¹H NMR of **16** (CDCl₃, 400 MHz).

Figure 20: ¹³C NMR of 16 (CDCl₃, 100 MHz).

Figure 21: ¹H NMR of **8** (CD₃OD, 100 MHz).

Figure 22: ¹³C NMR of 8 (CD₃OD, 100 MHz).

Figure 23: ¹H NMR of 20 (CDCl₃, 400 MHz).

Figure 24: ¹³C NMR of 20 (CDCl₃, 100 MHz).

Figure 25: ¹H NMR of 20 and 21 (CDCl₃, 400 MHz).

Figure 26: ¹³C NMR of 20 and 21 (CDCI₃, 100 MHz).

Figure 27: ¹H NMR of **22** (CDCl₃, 400 MHz).

Figure 28: ¹³C NMR of 22 (CDCl₃, 100 MHz).

Figure 29: ¹H NMR of **22** and **23** (CDCl₃, 400 MHz).

Figure 30: : ¹³C NMR of 22 and 23 (CDCl₃, 100 MHz).

Figure 31: ¹H NMR of **5** (CD₃OD, 500 MHz).

Figure 32: : ¹³C NMR of 5 (CD₃OD, 125 MHz).