Supporting Information

for

The marine sponge *Agelas citrina* as a source of the new pyrrole–imidazole alkaloids citrinamines A–D and *N*-methylagelongine

Christine Cychon, Ellen Lichte and Matthias Köck*

Address: Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany

Email: Matthias Köck - mkoeck@awi.de

*Corresponding author

NMR data

Figure S1. 1D 1H-NMR spectrum of citrinamine A (1) in DMSO-d_6 .. S2
Figure S2. 1D 13C-NMR spectrum of citrinamine A (1) in DMSO-d_6 .. S2
Figure S3. 1D 1H-NMR spectrum of citrinamine B (2) in DMSO-d_6 .. S3
Figure S4. 1D 13C-NMR spectrum of citrinamine B (2) in DMSO-d_6 .. S3
Figure S5. 1H, 13C-HMBC and the structure of citrinamine C (3) .. S4
Table S1. 1H, 13C, and 15N chemical shifts of citrinamines C (3) and D (4) .. S5
Figure S6. 1D 1H-NMR spectrum of *N*-methylagelongine (5) in DMSO-d_6 .. S6
Figure S7. 1D 13C-NMR spectrum of *N*-methylagelongine (5) in DMSO-d_6 .. S6
Citrinamine A (1)

Figure S1. 1D 1H NMR spectrum of citrinamine A (1) in DMSO-d_6, 303 K, 400 MHz.

Figure S2. 1D 13C-NMR spectrum of citrinamine A (1) in DMSO-d_6, 303 K, 850 MHz.
Citrinamine B (2)

Figure S3. 1D 1H-NMR spectrum of citrinamine B (2) in DMSO-d_6, 303 K, 400 MHz.

Figure S4. 1D 13C-NMR spectrum of citrinamine B (2) in DMSO-d_6, 303 K, 850 MHz.
Citrinamines C (3) and D (4)

Figure S5. 1H,13C-HMBC and the structure of citrinamine C (3) (key correlations and bonds in red).
Table S1. 1H, 13C, and 15N chemical shifts of citrinamines C (3) and D (4) (600 MHz, DMSO-d_6).*

<table>
<thead>
<tr>
<th>Position</th>
<th>citrinamine C (3)</th>
<th>citrinamine D (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ_{H}, mult. (J/Hz)</td>
<td>δ_{C} / δ_{N}</td>
</tr>
<tr>
<td>1-NH</td>
<td>11.81, s (161)</td>
<td>11.78, s (161)</td>
</tr>
<tr>
<td>2</td>
<td>6.98, m</td>
<td>121.2</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>94.9</td>
</tr>
<tr>
<td>4</td>
<td>6.86, m</td>
<td>111.1</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>126.6</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>159.9</td>
</tr>
<tr>
<td>7-NH</td>
<td>8.22, t (5.8)</td>
<td>(102)</td>
</tr>
<tr>
<td>8</td>
<td>3.45b; 2.96, m</td>
<td>42.2</td>
</tr>
<tr>
<td>9</td>
<td>3.72, m</td>
<td>80.8</td>
</tr>
<tr>
<td>10</td>
<td>4.09, d (4.8)</td>
<td>34.5</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>117.6</td>
</tr>
<tr>
<td>12-NH</td>
<td>9.66, s</td>
<td>(127)</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>154.6</td>
</tr>
<tr>
<td>14-NH</td>
<td>9.74, s</td>
<td>(131)</td>
</tr>
<tr>
<td>15</td>
<td>6.38, s</td>
<td>106.4</td>
</tr>
<tr>
<td>16</td>
<td>3.31, s</td>
<td>58.5</td>
</tr>
<tr>
<td>1’-NH</td>
<td>11.81, s</td>
<td>(161)</td>
</tr>
<tr>
<td>2’</td>
<td>6.98, m</td>
<td>121.2</td>
</tr>
<tr>
<td>3’</td>
<td>-</td>
<td>94.9</td>
</tr>
<tr>
<td>4’</td>
<td>6.86, m</td>
<td>111.1</td>
</tr>
<tr>
<td>5’</td>
<td>-</td>
<td>126.6</td>
</tr>
<tr>
<td>6’</td>
<td>-</td>
<td>159.3</td>
</tr>
<tr>
<td>7’-NH</td>
<td>8.37, t (5.7)</td>
<td>(106)</td>
</tr>
<tr>
<td>8’</td>
<td>3.93, m</td>
<td>40.8</td>
</tr>
<tr>
<td>9’</td>
<td>6.05, m</td>
<td>127.4</td>
</tr>
<tr>
<td>10’</td>
<td>6.35, d (16.0)</td>
<td>116.6</td>
</tr>
<tr>
<td>11’</td>
<td>-</td>
<td>121.3</td>
</tr>
<tr>
<td>12’-NH</td>
<td>12.48, s</td>
<td>(130)</td>
</tr>
<tr>
<td>13’</td>
<td>-</td>
<td>147.1</td>
</tr>
</tbody>
</table>

*a 1H and 13C chemical shifts are referenced to the DMSO-d_6 signal (2.50 ppm and 39.5 ppm, respectively). 15N NMR shifts were not calibrated with an external standard. Therefore, the δ value has an accuracy of about 1 ppm in reference to NH$_3$ (0 ppm) and the 15N NMR shifts are given without decimals.

*b No multiplicity information could be given because of overlapped signals.
N-Methylgalangolone (5)

Figure S6. 1D 1H-NMR spectrum of N-methylgalangolone (5) in DMSO-d_6, 303 K, 600 MHz.

Figure S7. 1D 13C-NMR spectrum of N-methylgalangolone (5) in DMSO-d_6, 303 K, 600 MHz.