Supporting Information

for

Synthesis of cyclic \boldsymbol{N}^{1}-pentylinosine phosphate, a new structurally reduced cADPR analogue with calciummobilizing activity on PC12 cells

Ahmed Mahal ${ }^{\ddagger, 1}$, Stefano D’Errico ${ }^{\ddagger, 1}$, Nicola Borbone ${ }^{1}$, Brunella Pinto ${ }^{1}$, Agnese Secondo ${ }^{2}$, Valeria Costantino ${ }^{1}$, Valentina Tedeschi ${ }^{2}$, Giorgia Oliviero ${ }^{*, 1}$, Vincenzo Piccialli ${ }^{3}$ and Gennaro Piccialli ${ }^{1,4}$
Address: ${ }^{1}$ Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D.
Montesano 49, 80131, Napoli, Italy, ${ }^{2}$ Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy, ${ }^{3}$ Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Napoli, Italy and ${ }^{4}$ Institute of Protein Biochemistry, National Council Research of Italy, Via Pietro Castellino 111, 80131 Napoli, Italy
Email: Giorgia Oliviero - golivier@unina.it
*Corresponding author
${ }^{\ddagger}$ These authors contributed equally

Structural characterizations

$\mathbf{2}^{\prime}, 3^{\prime}$ - O-Isopropylidene- N^{1}-[5^{\prime} '- O-(2-cyanoethyl- N, N-diisopropylphosphoroamidite)pentyl] inosine (7)
Compound 5 ($70 \mathrm{mg}, 0.18 \mathrm{mmol}$) was coevaporated with anhydrous benzene ($3 \times 1 \mathrm{~mL}$) and then dissolved in anhydrous THF (1.0 mL) . To this solution DIPEA ($0.040 \mathrm{~mL}, 0.21 \mathrm{mmol}$) and then $(i \operatorname{Pr})_{2} \mathrm{NP}(\mathrm{OCE}) \mathrm{Cl}(0.050 \mathrm{~mL}, 0.21 \mathrm{mmol})$ were added and the mixture was stirred at room temperature for 1 h . After the completion of the reaction (TLC monitoring: hexane/AcOEt, 6:4), the mixture was diluted with $\mathrm{AcOEt}(10 \mathrm{~mL})$ and extracted with buffer phosphate solution at $\mathrm{pH} 7(2 \times$ 10 mL). The organic layer was separated and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and the crude was purified over $2 \% \mathrm{KOH}$ coated silica gel column eluted with increasing amounts of AcOEt in hexane (from 20 to 40%). The fractions were collected and the solvents removed under reduced pressure, affording pure compound 7 (75 mg , 70%) as a $1: 1$ mixture of diastereomers.

Oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}, assignments by HH-COSY experiment) $\delta 8.34$ (s, $1 \mathrm{H}, 2 \times 2-$ H), $8.23(\mathrm{~s}, 0.5 \mathrm{H}, 8-\mathrm{H}), 8.20(\mathrm{~s}, 0.5 \mathrm{H}, 8-\mathrm{H}), 6.22-6.18$ (two overlapped doublets, $J=3.7,2.8 \mathrm{~Hz}$, $1 \mathrm{H}, 2 \times 1$ '-H), $5.40-5.33$ (two overlapped multiplets, $1 \mathrm{H}, 2 \times 2^{\prime}-\mathrm{H}$), 5.13-5.06 (two overlapped multiplets, $1 \mathrm{H}, 2 \times 3$ ' -H), 4.46-4.39 (two overlapped multiplets, $1 \mathrm{H}, 2 \times 4$ x -H), 4.11 (two overlapped triplets, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{~N}$), 4.00-3.80 (complex signal, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{OP}$ and 2 x $\mathrm{CNCH}_{2} \mathrm{CH}_{2} \mathrm{OP}$), 3.70-3.60 (complex signal, $2 \mathrm{H}, 2 \times 5$ ' $-\mathrm{H}_{\mathrm{a}, \mathrm{b}}$), 2.84-2.78 (two overlapped multiplets, $2 \mathrm{H}, 2 \times \mathrm{CHN}$), 2.75 (two overlapped triplets, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{CN}$), 1.88-1.77 (two overlapped multiplets, $2 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), 1.73-1.62 (two overlapped multiplets, $2 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), 1.57 (two overlapped singlets, $3 \mathrm{H}, 2 \times \mathrm{CH}_{3}$), 1.54-1.44 (two overlapped multiplets, $2 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), 1.36 (two overlapped singlets, $3 \mathrm{H}, 2 \times \mathrm{CH}_{3}$), 1.18 (d, $J=3.4 \mathrm{~Hz}, 6 \mathrm{H}, 4 \times \mathrm{CH} \mathrm{CHN}_{3}$), $1.16(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.4 \times \mathrm{CH}_{3} \mathrm{CHN}\right) .{ }^{31} \mathrm{P}$ NMR (202 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 149.5(\mathrm{~s})$. HRESI-MS m/z 595.3015 ($[\mathrm{M}+\mathrm{H}]^{+}$, requires 595.3009); UV ($\left.\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\text {max }} 266 \mathrm{~nm}$.

2',3'-O-Isopropylidene- N^{1} - $\mathbf{5}^{\prime}{ }^{\prime}$ - O -(bis(2-cyanoethyl)phosphate)pentyl] inosine (9)

Compound 5 ($70 \mathrm{mg}, 0.18 \mathrm{mmol}$) was coevaporated with anhydrous benzene $(3 \times 2 \mathrm{~mL})$ and then dissolved in anhydrous THF (1.0 mL). To this solution $(\mathrm{iPr})_{2} \mathrm{NP}(\mathrm{OCE})_{2}(57 \mathrm{mg}, 0.21 \mathrm{mmol})$ and $1 H$-tetrazole ($38 \mathrm{mg}, 0.54 \mathrm{mmol}$) were added and the mixture was stirred at room temperature for 2 h. After the completion of the reaction (TLC monitoring: $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 9.5: 0.5$), t - BuOOH (5.5 M in decane, $0.33 \mathrm{~mL}, 1.8 \mathrm{mmol}$) was added and the reaction was stirred for 2 h at room temperature (TLC monitoring: $\mathrm{AcOEt} / \mathrm{CH}_{3} \mathrm{OH}, 8.5: 1.5$). The solvents were evaporated under reduced pressure and the crude product was purified over a silica gel column eluted with increasing
amounts of $\mathrm{CH}_{3} \mathrm{OH}$ in AcOEt (from 0 to 5\%). The fractions were collected and the solvents removed under reduced pressure, affording the pure compound $\mathbf{9}$ ($71 \mathrm{mg}, 68 \%$ over two steps).

Oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, assignments by HH-COSY experiment) $\delta 8.32(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 8.31$ ($\mathrm{s}, 1 \mathrm{H}, 8-\mathrm{H}$), 6.16 (d, $\left.J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 5.29-5.23\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.03-4.98\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right)$, 4.38-4.32 (m, 1H, 4'-H), 4.30-4.23 (m, 4H, $2 \times \mathrm{CNCH}_{2} \mathrm{CH}_{2} \mathrm{OP}$), 4.21-4-15 (m, 2H, $\mathrm{CH}_{2} \mathrm{OP}$), 4.12 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 3.76 (dd, $J=12.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}_{\mathrm{a}}$), $3.70\left(\mathrm{dd}, J=12.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\right.$ H_{b}), $2.90\left(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right.$), 1.90-1.74 (complex signal, $4 \mathrm{H}, 2 \mathrm{xCH}_{2}$), $1.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.55-1-45 (m, 2H, CH2 $), 1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 158.3,149.7,148.6$, $141.3,125.3,118.5,115.3,92.4,88.5,85.9,82.9,69.9,64.3,63.3,47.7,30.6,30.5,30.0,27.5,25.3$, 23.5, 20.2, 20.1. ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-1.60(\mathrm{~s})$. HRESI-MS m/z $581.2120\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, requires 581.2125$)$; $\mathrm{UV}\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\max } 267 \mathrm{~nm}$.

Compound 9 ($20 \mathrm{mg}, 0.034 \mathrm{mmol}$) was dissolved in a mixture of TEA/pyridine ($1: 1,1.0 \mathrm{~mL}$) and the solution was kept at room temperature for 16 h (TLC monitoring: $\mathrm{AcOEt} / \mathrm{MeOH}, 7: 3$). The solvents were evaporated under reduced pressure ant the crude was coevaporated with pyridine ($3 \times$ $1 \mathrm{~mL})$ to obtain compound $\mathbf{1 0}(18 \mathrm{mg}, 90 \%)$ as pyridinium salt that was used for the next synthetic step without purification.

Oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$, assignments by HH-COSY experiment) $\delta 8.56-8.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Py}$), 8.34 (s, 1H, 2-H), 8.30 (s, 1H, 8-H), 7.90-7.80 (m, 1H, Py), 7.48-7.40 (m, 2H, Py), 6.17 (d, J=2.8 $\left.\mathrm{Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 5.30-5.25\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.03-5.98\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 4.37-4.31\left(\mathrm{~m}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 4.12(\mathrm{t}, J$ $\left.=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.03-3.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OP}\right), 4.02-3.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CNCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.75(\mathrm{dd}, J=$ $\left.11.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.69\left(\mathrm{dd}, J=11.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 2.77\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right)$, 1.88-1.78 (m, 2H, CH2 $), 1.74-1.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), $1.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.54-1.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 1.37$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 158.2,149.9,149.5,148.8,141.2,135.6,124.9,123.9$, $118.6,115.0,92.7,88.4,86.2,83.5,69.5,64.1,63.3,47.5,30.9,30.4,30.2,27.3,25.4,23.5,20.1$, 19.8. ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-1.68$ (s). HRESI-MS m/z 526.1709 ($\left.\mathrm{M}-\mathrm{H}\right]^{-}$, requires 526.1703); UV ($\left.\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\text {max }} 266 \mathrm{~nm}$.

$\mathbf{2}^{\prime}, 3$ ' $\boldsymbol{\prime}-O$-Isopropylidene- N^{1}-($\mathbf{5}^{\prime} \boldsymbol{\prime}$ - O-phosphatepentyl)inosine (11)

Compound 9 ($50 \mathrm{mg}, 0.086 \mathrm{mmol}$) was dissolved in methanol/concentrated aqueous ammonia (1:1, 1.0 mL) and the reaction was allowed to stir at $50{ }^{\circ} \mathrm{C}$ for 16 h (TLC monitoring: isopropanol/ammonia/water, 6:3:1). The solvents were removed under reduced pressure and the crude was purified by a C-18 reversed-phase silica gel column, with increasing amount of $\mathrm{CH}_{3} \mathrm{OH}$
in water (from 0 to 50%). The fractions were collected and the solvents removed under reduced pressure, affording pure compound $\mathbf{1 1}(30 \mathrm{mg}, 72 \%)$ as ammonium salt.

Amorphous white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$, assignments by HH-COSY experiment) $\delta 8.41$ (s, 1H, 2-H), 8.29 (s, 1H, 8-H), 6.29 (bs, 1H, 1'-H), 5.51-5.46 (m, 1H, 2'-H), 5.17-5-12 (m, 1H, 3'H), 4.55-4.49 (m, 1H, 4'-H), $4.17\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$), 3.92-3.85 (m, 2H, CH2OP), 3.84-3.74 ($\mathrm{m}, 2 \mathrm{H}, 5^{\prime}-\mathrm{H}_{\mathrm{a}, \mathrm{b}}$), 1.90-1.80 (m, 2H, CH 2), 1.73-1-66 (complex signal, $5 \mathrm{H}, \mathrm{CH}_{2}$ and CH_{3}), 1.51-1-43 (complex signal, $5 \mathrm{H}, \mathrm{CH}_{2}$ and CH_{3}). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 157.9$, 148.7, 147.3, 140.3, 123.7, 114.9, 90.3, 86.5, 83.6, 80.9, 80.7, 65.3, 61.4, 47.5, 29.3, 29.2, 28.4, 25.9, 24.2, 22.0. ${ }^{31} \mathrm{P}$ NMR (202 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.84$ (s). HRESI-MS $m / z 473.1441$ ([M-H] ${ }^{-}$, requires 473.1437); UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\text {max }} 265 \mathrm{~nm}$.

5'-O-tert-Butyldimethylsilyl-2',3'-O-isopropylidene-1-(2,4-dinitrophenyl)inosine(13)

To a solution of $\mathbf{1 2}(1.2 \mathrm{~g}, 2.8 \mathrm{mmol})$ in DMF $(12 \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.56 \mathrm{~g}, 1.1 \mathrm{mmol})$ and 2,4dinitrochlorobenzene ($2.3 \mathrm{~g}, 1.1 \mathrm{mmol}$) were added and the reaction was stirred for 4 h at $80^{\circ} \mathrm{C}$ (TLC monitoring $\mathrm{CHCl}_{3} / \mathrm{MeOH}, 9.5: 0.5$). The solvent was evaporated under reduced pressure and the crude was purified over a silica gel column eluted with increasing amounts of $\mathrm{CH}_{3} \mathrm{OH}$ in CHCl_{3} (from 0 to 5%). The fractions were collected and the solvents removed under reduced pressure, affording pure compound $\mathbf{1 3}(1.0 \mathrm{~g}, 63 \%)$.

Yellow solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, assignments by HH-COSY experiment) $\delta 8.97$ ($\mathrm{s}, 1 \mathrm{H}$, ArH), 8.64-8.62 (m, 1H, ArH), 8.12-8.11 (m, 1H, 2-H), 8.06-8.05 (m, 1H, 8-H), 7.77-7.68 (m, 1H, ArH), 6.17-6.15 (m, 1H, 1'-H), 5.11-5.03 (m,1H, 2'-H), 4.93-4.90 (m, 1H, 3'-H), 4.49-4.45 (m, 1H, 4'-H), 3.92-3.79 (m, 2H, 5 '-H), $1.63(\mathrm{~s}, 3 \mathrm{H}$, isopropylidene), 1.39 (s, 3 H , isopropylidene), 0.86-0.83 (s, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 0.043\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.027\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 155.1, 148.1, 147.0, 145.1, 139.0, 135.6, 132.9, 128.9, 124.3, 121.3, 114.3, 114.1, 92.0, 91.4, 87.5, 87.0, 85.7, 81.3, 63.6, 27.2, 25.8, 25.3, 18.3, -5.4; HRESI-MS m/z $589.2085\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, requires 589.2078); UV $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } 264 \mathrm{~nm}$.

5'-O-tert-Butyldimethylsilyl-2', ${ }^{\prime}$ '- O-isopropylidene- N^{1}-(5-hydroxypentyl)inosine (14)

To a solution of $\mathbf{1 3}(0.50 \mathrm{~g}, 0.85 \mathrm{mmol})$ in DMF (2.0 mL) 5-amino-1-pentanol ($0.90 \mathrm{~g}, 8.5 \mathrm{mmol}$) was added and the mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 16 h (TLC monitoring $\mathrm{CHCl}_{3} / \mathrm{MeOH}, 9.5: 0.5$). The solvent was evaporated under reduced pressure and the crude was purified over a silica gel column eluted with increasing amounts of $\mathrm{CH}_{3} \mathrm{OH}$ in CHCl_{3} (from 0 to 5%). The fractions were
collected and the solvents removed under reduced pressure, affording pure compound $\mathbf{1 4}$ (0.33 g , $77 \%)$.

Yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, assignments by HH-COSY experiment) $\delta 8.30(\mathrm{~s}, 1 \mathrm{H}, 2-$ H), $8.20(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 6.15\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 5.31-5.29\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 4.96-4.93\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-\right.$ H), 4.35-4.33 (m, 1H, 4'-H), 4.13-4.06 (m, 2H, CH ${ }_{2}$ N), $3.84\left(\mathrm{dd}, J=11.2,4.1 \mathrm{~Hz}, 2 \mathrm{H}, 5{ }^{\prime}-\mathrm{H}_{\mathrm{a}}\right.$), 3.77 (dd, $J=11.2,4.7 \mathrm{~Hz}, 2 \mathrm{H}, 5{ }^{\prime}-\mathrm{H}_{\mathrm{b}}$), $3.54\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 1.81-1.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.60-1.53$ (complex signal, $3 \mathrm{H}, \mathrm{CH}_{2}$ and isopropylidene), $1.46-1.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.36(\mathrm{~s}, 3 \mathrm{H}$, isopropylidene), $0.81\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-0.0010\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right),-0.0070\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 158.1,149.5,148.5,140.8,125.3,115.0,92.5,88.9,86.1,82.8,64.7,62.5,47.8$, 33.0, 30.5, 27.4, 26.3, 25.5, 23.8, 19.1, -5.3 ppm ; HRESI-MS m/z $509.2789\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, requires 509.2795); UV ($\left.\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\text {max }} 265 \mathrm{~nm}$.

5'-O-tert-Butyldimethylsilyl-2',3'-O-isopropylidene- N^{1}-(5-acetoxypentyl)inosine (15)

Compound $\mathbf{1 4}(0.33 \mathrm{~g}, 0.65 \mathrm{mmol})$ was dissolved in a mixture of $\mathrm{Ac}_{2} \mathrm{O}$-pyridine ($1: 1,2.0 \mathrm{~mL}$) and the solution was kept at room temperature for 2 h (TLC monitoring: $\mathrm{CHCl}_{3} / \mathrm{MeOH}, 9.5: 0.5$).The solvents were evaporated under reduced pressure to give compound $15(0.35 \mathrm{~g}, 99 \%)$ that was used for the next synthetic step without purification.

Yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, assignments by HH-COSY experiment) $\delta=8.31$ (s, 1 H , $2-\mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 6.16\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 5.32-5.30\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 4.97-4.95(\mathrm{~m}, 1 \mathrm{H}$, 3'-H), 4.37-4.35 (m, 1H, 4'-H), 4.15-4.09 (m, 2H, CH2N), 4.07-4.04 (t, J=6.3 Hz, 2H, CH ${ }_{2} \mathrm{O}$), 3.85 (dd, $J=11.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}_{\mathrm{a}}$), $3.78\left(\mathrm{dd}, J=11.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 1.86-$ $1.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.73-1.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.58\left(\mathrm{~s}, 3 \mathrm{H}\right.$, isopropylidene), 1.48-1.40(m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $1.37\left(\mathrm{~s}, 3 \mathrm{H}\right.$, isopropylidene), $0.82\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 0.0050\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right),-0.0020\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 172.5,157.9,149.7,149.4,148.3,140.75,125.2,114.9,92.3,88.8,86.0,82.7$, 65.1, 64.6, 47.5, 30.2, 29.1, 27.5, 26.3, 25.5, 23.8, 22.0, 20.8, 20.8, 19.0, -5.2; HRESI-MS m/z $551.2909\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, requires 551.2901$)$; UV ($\left.\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\max } 266 \mathrm{~nm}$.

$\mathbf{2}^{\prime}, 3$ '- O-Isopropylidene- N^{1}-(5-acetoxypentyl)inosine (16)

Compound $15(0.30 \mathrm{~g}, 0.54 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and then $\mathrm{NH}_{4} \mathrm{~F}(0.40 \mathrm{~g}, 11$ mmol) was added. The reaction was refluxed for 16 h (TLC monitoring: $\mathrm{CHCl}_{3} / \mathrm{MeOH}, 9.5: 0.5$). The solvent was evaporated under reduced pressure and the crude was purified over a silica gel
column eluted with increasing amounts of $\mathrm{CH}_{3} \mathrm{OH}$ in CHCl_{3} (from 0 to 10%). The fractions were collected and the solvents removed under reduced pressure, affording pure compound $\mathbf{1 6}(0.21 \mathrm{~g}$, $91 \%)$.

Yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, assignments by HH-COSY experiment) $\delta 8.31$ (s, 1H,2H), $8.30(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 6.13\left(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 5.24-5.22\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 4.99-4.97\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-\right.$ H), 4.32-4.30 (m, 1H, 4'-H), $4.08\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.03\left(t, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.76-$ $3.68\left(\mathrm{~m}, 2 \mathrm{H}, 5^{\prime}-\mathrm{H}_{\mathrm{a}, \mathrm{b}}\right), 1.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 1.79-1.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.66-1.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.56$ (s, 3 H , isopropylidene), 1.44-1.38 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $1.34\left(\mathrm{~s}, 3 \mathrm{H}\right.$, isopropylidene). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 172.7,158.0,149.6,148.4,141.1,125.2,115.1,92.2,88.3,85.8,82.7,65.2,63.2,47.6$, 30.2, 29.1, 27.5, 25.5, 23.8, 20.8; HRESI-MS $m / z 437.2041\left([M+H]^{+}\right.$, requires 437.2036); UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\text {max }} 267 \mathrm{~nm}$.

$\mathbf{2}^{\prime}, \mathbf{3}^{\prime}$-O-Isopropylidene- $\boldsymbol{N}^{\mathbf{1}}$-(5-acetoxypentyl)inosine $\mathbf{5}^{\boldsymbol{\prime}}$-bis(2-cyanoethyl) phosphate (17)

Compound $\mathbf{1 6}(0.20 \mathrm{~g}, 0.46 \mathrm{mmol})$ was coevaporated with anhydrous benzene ($3 \times 2 \mathrm{~mL}$) and then dissolved in anhydrous THF (4.0 mL). To this solution $(\mathrm{iPr})_{2} \mathrm{NP}(\mathrm{OCE})_{2}(0.25 \mathrm{~g}, 0.92 \mathrm{mmol})$ and tetrazole ($0.10 \mathrm{~g}, 1.4 \mathrm{mmol}$) were added and the mixture was stirred at room temperature for 2 h . After the completion of the reaction (TLC monitoring: $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 9.5: 0.5$), t - $\mathrm{BuOOH}(5.5 \mathrm{M}$ in decane, $0.80 \mathrm{~mL}, 4.6 \mathrm{mmol}$) was added and the reaction was stirred for 2 h at room temperature (TLC monitoring: $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 9.5: 0.5$). The solvents were evaporated under reduced pressure and the crude was purified over a silica gel column eluted with increasing amounts of $\mathrm{CH}_{3} \mathrm{OH}$ in CHCl_{3} (from 0 to 10%). The fractions were collected and the solvents removed under reduced pressure, affording the pure compound $17(0.23 \mathrm{~g}, 80 \%$ over two steps $)$.

Yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, assignments by HH-COSY experiment) $\delta 8.32$ (s, 1H, 2H), $8.20(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 6.23\left(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 5.46-5.41\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.16-5.10\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-\right.$ H), 4.52-4.46 (m, 1H, 4'-H), 4.40-4-05 (complex signal, $10 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{OP}, 5^{\prime}-\mathrm{H}_{\mathrm{a}, \mathrm{b}}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{~N}$), $2.93\left(\mathrm{t}, J=5.8 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{CN}\right), 2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.86-1.77\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.74-1.64(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 1.60 ($\mathrm{s}, 3 \mathrm{H}$, isopropylidene), 1.50-1.41 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.39 ($\mathrm{s}, 3 \mathrm{H}$, isopropylidene). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 172.5,158.1,149.4,148.1,141.5,125.6,118.5,115.5,92.4,88.6,85.7,82.5$, 66.8, 64.9, 62.6, 47.7, 30.3, 29.5, 27.7, 25.4, 22.7, 20.9; ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-1.53$ (s). HRESI-MS $m / z 623.2237\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, requires 623.2231$)$; UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\text {max }} 265 \mathrm{~nm}$.

2',3'-O-Isopropylidene- N^{1}-(5-hydroxypentyl)inosine $\mathbf{5}^{\prime}$-monophosphate (18)

Compound $17(0.10 \mathrm{~g}, 0.16 \mathrm{mmol})$ was dissolved in methanol/concentrated aqueous ammonia (1:1, 2.0 mL) and the reaction was allowed to stir at $50{ }^{\circ} \mathrm{C}$ for 16 h (TLC monitoring: isopropanol/ammonia/water, 6:3:1). The solvents were removed under reduced pressure and the crude was purified by a $\mathrm{C}-18$ reversed-phase silica gel column with increasing amount of $\mathrm{CH}_{3} \mathrm{OH}$ in water (from 0 to 50%). The fractions were collected and the solvents removed under reduced pressure, affording the pure compound $18(55 \mathrm{mg}, 70 \%)$ as ammonium salt.

Amorphous white solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, assignments by HH-COSY experiment) δ $8.49(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 6.17\left(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 5.35-5.30\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.18-$ $5.12\left(\mathrm{~m}, 1 \mathrm{H}, 3{ }^{\prime}-\mathrm{H}\right), 4.51-4.47\left(\mathrm{~m}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 4.14-4.07\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.04-3.98(\mathrm{~m}$, $2 \mathrm{H}, 5^{\prime}-\mathrm{H}_{\mathrm{a}, \mathrm{b}}$), $3.55\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right.$), 1.86-1.76 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.62-1.54 (complex signal, $5 \mathrm{H}, \mathrm{CH}_{2}$ and isopropylidene), 1.37 ($\mathrm{s}, 3 \mathrm{H}$, isopropylidene); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$), 157.9 , $148.7,147.3,140.3,123.7,114.9,90.3,86.5,83.6,80.9,80.7,65.3,61.4,47.5,29.3,29.2,28.4$, 25.9, 24.2, 22.0; ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 1.84$ (s). HRESI-MS m/z 473.1443 ([M-H] ${ }^{-}$, requires 473.1437); $\mathrm{UV}\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\text {max }} 267 \mathrm{~nm}$.

2', $^{\prime}$ '- O-isopropylidene- N^{1}-pentylinosine cyclic $5^{\prime}, 5$ ''-phosphate (19)

Compound $18(20 \mathrm{mg}, 0.040 \mathrm{mmol})$ was dissolved in DMF (20 mL) and then EDC ($9.6 \mathrm{mg}, 0.050$ mmol) was added. The reaction was allowed to stir for 48 h at room temperature (TLC monitoring: isopropanol/ammonia/water, 6:3:1). After removing the solvent under reduced pressure, the crude was dissolved in 1 mL of TEAB 0.1 M and then purified by HPLC (see General). The fractions containing the title compound were collected, concentrated and finally lyophilized to afford compound 19 ($6.6 \mathrm{mg}, 30 \%$) as triethylammonium salt.
Amorphous white solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$, assignments by HH-COSY experiment) $\delta 8.43$ (s, 1H, 2-H), $8.31(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 6.32\left(\mathrm{bs}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 5.77-5.72\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.21-5-16\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-\right.$ H), 4.53-4.49 (m, 1H, 4'-H), $4.19\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.04-3.98\left(\mathrm{~m}, 2 \mathrm{H}, 5^{\prime}-\mathrm{H}_{\mathrm{a}, \mathrm{b}}\right), 3.92-3.85$ (m, 2H, CH2 OP), 3.22 (q, $J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2}$ of triethylammonium), 1.90-1.80 (m, 2H, CH $)$, 1.75-1.68 (complex signal, $5 \mathrm{H}, \mathrm{CH}_{2}$ and CH_{3}), 1.53-1-45 (complex signal, $5 \mathrm{H}, \mathrm{CH}_{2}$ and CH_{3}), 1.29 $\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{CH}_{3}\right.$ of triethylammonium). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 157.7,148.5,147.6$, $140.2,122.9,115.2,90.1,86.7,83.4,80.7,65.3,64.7,47.2,29.1,28.6,28.4,25.7,24.1,22.0 ;{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-1.84(\mathrm{~s})$. HRESI-MS $m / z 455.1341$ ([M-H] ${ }^{-}$, requires 455.1337); UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\text {max }} 269 \mathrm{~nm}$.

N^{1}-Pentylinosine cyclic $5^{\prime}, 5^{\prime}$ ’-phosphate (4)

Compound $\mathbf{1 9}(5.0 \mathrm{mg}, 0.0090 \mathrm{mmol})$ was dissolved in a mixture of TFA- $\mathrm{H}_{2} \mathrm{O}(2: 8,0.5 \mathrm{~mL})$ and the reaction was allowed to stir for 16 h at room temperature (TLC monitoring: isopropanol/ammonia/water, 6:3:1). After removing the solvents under reduced pressure, the crude was dissolved in 0.5 mL of TEAB 0.1 M and then purified by HPLC (see General). The fractions containing the title compound were collected, concentrated and finally lyophilized to afford compound 4 ($3.7 \mathrm{mg}, 80 \%$) as triethylammonium salt.
Amorphous white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$, assignments by HH-COSY experiment) $\delta 8.39$ (s, 1H, 2-H), 8.35 ($\mathrm{s}, 1 \mathrm{H}, 8-\mathrm{H}$), $6.21\left(\mathrm{bs}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 5.40-5.35\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 4.53-4.49\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-\right.$ H), 4.45-4.40 (m, 1H, $\left.4^{\prime}-\mathrm{H}\right), 4.17\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.02-3.97\left(\mathrm{~m}, 2 \mathrm{H}, 5^{\prime}-\mathrm{H}_{\mathrm{a}, \mathrm{b}}\right), 3.90-3.85$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OP}$), $3.25\left(\mathrm{q}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$ of triethylammonium), 1.88-1.78 (m, 2H, CH_{2}), 1.67-1.56 (m, 2H, CH2 $), 1.46-1.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.31\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{CH}_{3}\right.$ of triethylammonium). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 156.9,149.9,148.2,140.2,122.7,88.5,83.9$, 74.6, 69.9, 65.0, 64.5, 47.4, 30.7, 28.3, 22.0; ${ }^{31}$ P NMR ($202 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-1.88$ (s). HRESI-MS $m / z 415.1029\left([M-H]^{-}\right.$, requires 415.1024$) ;$ UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\max } 269 \mathrm{~nm}$.

