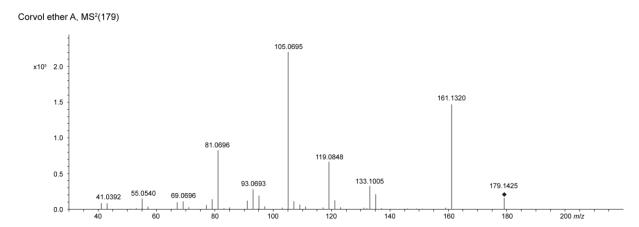
Supporting Information

for

The EIMS fragmentation mechanisms of the sesquiterpenes corvol ethers A and B, *epi*-cubebol and isodauc-8-en-11-ol


Patrick Rabe and Jeroen S. Dickschat*

Address: Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany

Email: Jeroen S. Dickschat - dickschat@uni-bonn.de

* Corresponding author

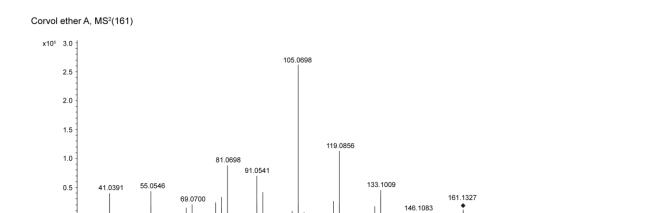

HRMS spectra

Figure S1: MS^2 for m/z = 179 of **1**.

Table S1: Elemental compositions of fragment ions in Figure S1

Table 31. Elemental compositions of fragment ions in Figure 31.				
molecular formula	<i>m</i> / <i>z</i> found	m/z calculated	∆ (ppm)	
[C ₁₂ H ₁₉ O] ⁺	179.1425	179.1430	-2.8	
$[C_{12}H_{17}]^{+}$	161.1320	161.1325	– 3.1	
$[C_{10}H_{13}]^+$	133.1005	133.1012	+5.3	
$[C_9H_{11}]^+$	119.0848	119.0855	+5.9	
$[C_8H_9]^{\dagger}$	105.0695	105.0699	+3.8	
$[C_7H_9]^+$	93.0693	93.0699	+3.2	
$[C_6H_9]^+$	81.0696	81.0699	+3.7	
$[C_5H_9]^+$	69.0696	69.0699	+4.3	
$[C_4H_7]^+$	55.0540	55.0542	+3.6	
$[C_3H_5]^+$	41.0392	41.0386	+14.6	

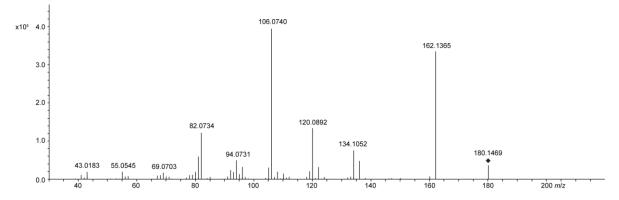
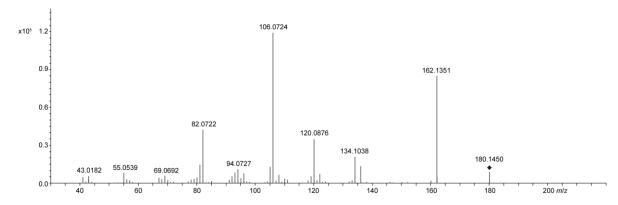
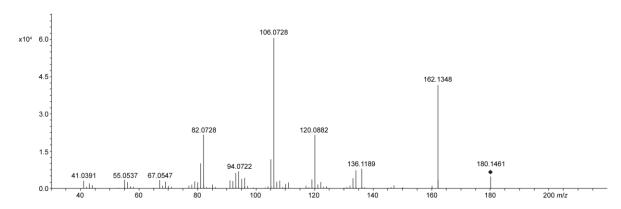
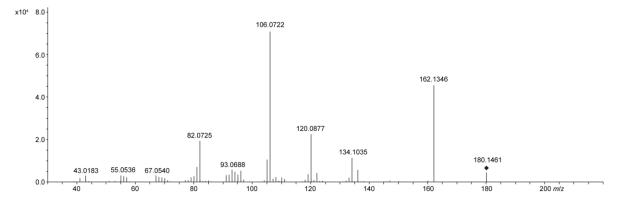


Figure S2: MS^2 for m/z = 161 of **1**.

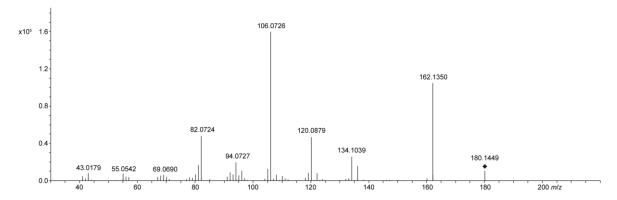

Table S2: Elemental compositions of fragment ions in Figure S2.

molecular formula	<i>m</i> /z found	m/z calculated	∆ (ppm)
$[C_{12}H_{17}]^{+}$	161.1327	161.1325	+1.2
$[C_{11}H_{14}]^{+}$	146.1083	146.1090	-4.8
$[C_{10}H_{13}]^{+}$	133.1009	133.1012	-2.3
$[C_9H_{11}]^+$	119.0856	119.0855	+0.8
$[C_8H_9]^+$	105.0698	105.0699	-1.0
$\left[C_7H_7\right]^+$	91.0541	91.0542	–1.1
$[C_6H_9]^+$	81.0698	81.0699	– 1.2
$[C_5H_9]^+$	69.0700	69.0699	+1.4
$\left[C_4 H_7 \right]^+$	55.0546	55.0542	+7.3
$[C_3H_5]^+$	41.0391	41.0386	+12.2

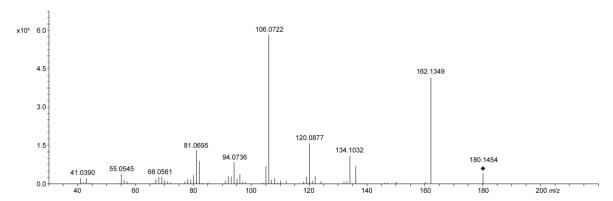

A) (1-13C)Corvol ether A, MS2(180)

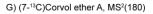

B) (2-13C)Corvol ether A, MS2(180)

C) (3-13C)Corvol ether A, MS2(180)

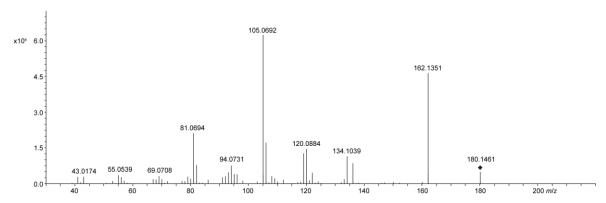


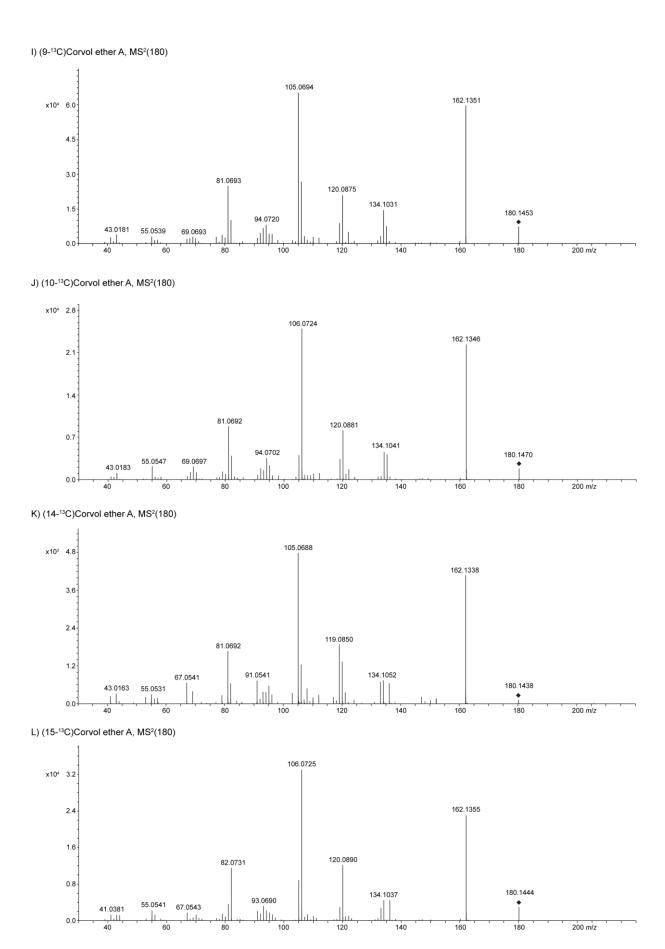
D) (4-13C)Corvol ether A, MS2(180)




Figure S3: MS² for m/z = 180 of A) $(1^{-13}C)-1$, B) $(2^{-13}C)-1$, C) $(3^{-13}C)-1$, D) $(4^{-13}C)-1$.


E) (5-13C)Corvol ether A, MS2(180)


F) (6-13C)Corvol ether A, MS²(180)



H) $(8-^{13}C)$ Corvol ether A, $MS^2(180)$

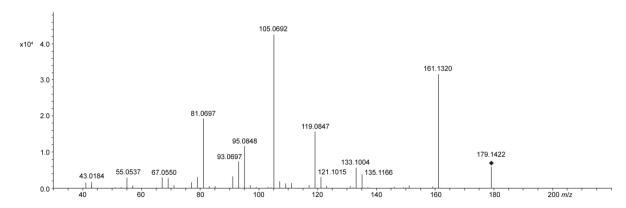


Figure S3: MS² for m/z = 180 of E) $(5^{-13}C)-1$, F) $(6^{-13}C)-1$, G) $(7^{-13}C)-1$, H) $(8^{-13}C)-1$.

Figure S3: MS² for m/z = 180 of I) $(9^{-13}C)-1$, J) $(10^{-13}C)-1$, K) $(14^{-13}C)-1$, L) $(15^{-13}C)-1$.

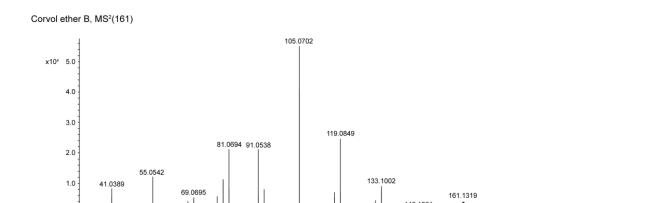

Corvol ether B, MS²(179)

Figure S4: MS^2 for m/z = 179 of **2**.

Table S3: Elemental compositions of fragment ions in Figure S4.

molecular formula	<i>m</i> /z found	<i>m</i> /z calculated	Δ (ppm)
$[C_{12}H_{19}O]^{+}$	179.1422	179.1430	-4.5
$[C_{12}H_{17}]^{+}$	161.1320	161.1325	– 3.1
$[C_{10}H_{13}]^+$	133.1004	133.1012	-6.0
$[C_9H_{11}]^+$	119.0847	119.0855	- 6.7
$[C_8H_9]^+$	105.0692	105.0699	- 6.7
$[C_7H_{11}]^+$	95.0848	95.0855	-7.4
$[C_6H_9]^+$	81.0697	81.0699	– 2.5
$\left[C_5H_7\right]^+$	67.0550	67.0542	+11.9
$[C_4H_7]^+$	55.0540	55.0542	-3.6
$[C_2H_3O]^+$	43.0184	43.0179	+11.6

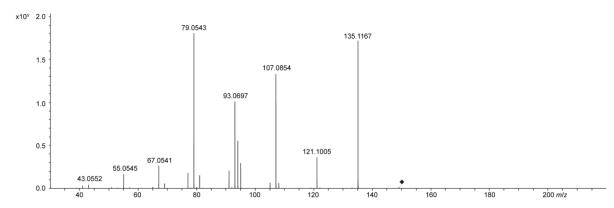

Figure S5: MS^2 for m/z = 161 of **2**.

Table S4: Elemental compositions of fragment ions in Figure S5.

Table 34. Elemental compositions of nagment ions in Figure 33.				
molecular formula	<i>m</i> /z found	<i>m</i> /z calculated	∆ (ppm)	
$[C_{12}H_{17}]^{+}$	161.1319	161.1325	-3.7	
$[C_{10}H_{13}]^{+}$	133.1002	133.1012	- 7.5	
$[C_9H_{11}]^+$	119.0849	119.0855	-5.0	
$[C_8H_9]^+$	105.0702	105.0699	+2.9	
$[C_7H_7]^+$	91.0538	91.0542	-4.4	
$[C_6H_9]^+$	81.0694	81.0699	-6.2	
$[C_5H_9]^+$	69.0695	69.0699	-5.8	
$[C_4H_7]^+$	55.0542	55.0542	0.0	
$[C_3H_5]^+$	41.0389	41.0386	+7.3	

200 m/z

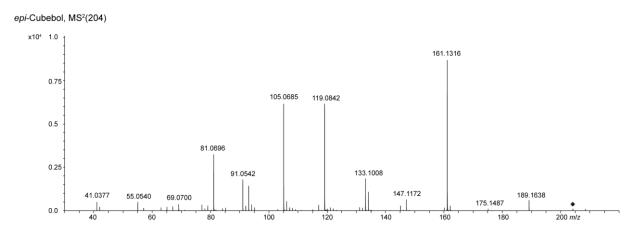


Figure S6: MS^2 for m/z = 150 of **2**.

Table S5: Elemental compositions of fragment ions in Figure S6.

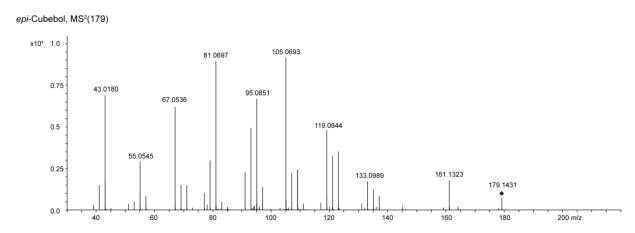

molecular formula	<i>m</i> /z found	m/z calculated	∆ (ppm)
[C ₁₀ H ₁₅] ⁺	135.1167	135.1168	-0.7
$[C_9H_{13}]^+$	121.1005	121.1012	-5.8
$[C_8H_{11}]^+$	107.0854	107.0855	-0.9
$[C_7H_9]^+$	93.0697	93.0699	– 2.1
$[C_6H_7]^+$	79.0543	79.0542	+1.2
$[C_5H_7]^+$	67.0541	67.0542	–1.5
$[C_4H_7]^+$	55.0545	55.0542	+5.4
$\left[C_{3}H_{7}\right] ^{+}$	43.0552	43.0542	+23.2

Figure S7: MS^2 for m/z = 204 of **3**.

Table S6: Elemental compositions of fragment ions in Figure S7.

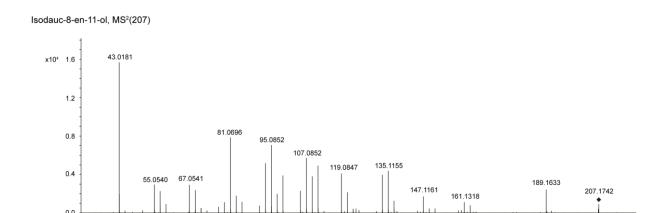

Table 30. Elemental compositions of magnifications in Figure 37.			
molecular formula	<i>m</i> / <i>z</i> found	m/z calculated	∆ (ppm)
$[C_{14}H_{21}]^{+}$	189.1638	189.1638	0.0
$[C_{13}H_{19}]^{+}$	175.1487	175.1482	+2.9
$[C_{12}H_{17}]^{+}$	161.1316	161.1325	– 5.6
$[C_{11}H_{15}]^{+}$	147.1172	147.1168	+2.7
$[C_{10}H_{13}]^{+}$	133.1008	133.1012	-3.0
[C ₉ H ₁₁] ⁺	119.0842	119.0855	– 10.9
$[C_8H_9]^{\dagger}$	105.0685	105.0699	– 13.3
$[C_7H_7]^+$	91.0542	91.0542	0.0
$[C_6H_9]^+$	81.0696	81.0699	-3.7
$[C_5H_9]^{\dagger}$	69.0700	69.0699	+1.4
$[C_4H_7]^+$	55.0540	55.0542	-3.6
$[C_3H_5]^+$	41.0377	41.0386	– 21.9

Figure S8: MS^2 for m/z = 179 of **3**.

Table S7: Elemental compositions of fragment ions in Figure S8.

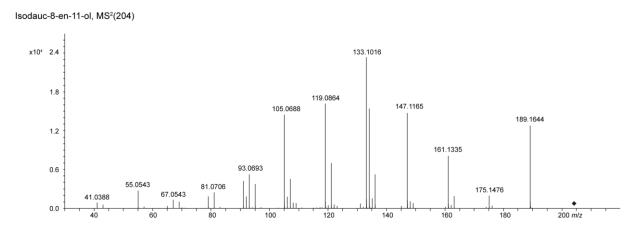

Table 37. Elemental compositions of fragment ions in Figure 36.				
molecular formula	<i>m</i> /z found	<i>m</i> /z calculated	∆ (ppm)	
[C ₁₂ H ₁₉ O] ⁺	179.1431	179.1430	+0.6	
$[C_{12}H_{17}]^{+}$	161.1323	161.1325	- 1.2	
$[C_{10}H_{13}]^{+}$	133.1008	133.1012	-3.0	
$[C_9H_{11}]^+$	119.0844	119.0855	-9.2	
$[C_8H_9]^+$	105.0693	105.0699	- 5.7	
$[C_7H_{11}]^+$	95.0851	95.0855	-4.2	
$[C_6H_9]^{\dagger}$	81.0697	81.0699	-2.5	
$[C_5H_7]^+$	67.0536	67.0542	-8.9	
$[C_4H_7]^+$	55.0545	55.0542	+5.4	
$[C_2H_3O]^{\dagger}$	43.0180	43.0179	+2.3	

Figure S9: MS^2 for m/z = 207 of **4**.

Table S8: Elemental compositions of fragment ions in Figure S9.

Table 56. Elemental compositions of fragment ions in Figure 59.				
molecular formula	<i>m</i> /z found	m/z calculated	∆ (ppm)	
$[C_{14}H_{23}O]^+$	207.1742	207.1743	-0.5	
$[C_{14}H_{21}]^{+}$	189.1633	189.1638	– 2.6	
$[C_{12}H_{17}]^{+}$	161.1318	161.1325	-4.3	
$[C_{11}H_{15}]^{+}$	147.1161	147.1168	-4.8	
$[C_{10}H_{15}]^{+}$	135.1155	135.1168	- 9.6	
$[C_9H_{11}]^+$	119.0847	119.0855	– 6.7	
$[C_8H_{11}]^+$	107.0852	107.0855	– 2.8	
$[C_7H_{11}]^+$	95.0852	95.0855	-3.2	
$[C_6H_9]^+$	81.0696	81.0699	<i>–</i> 3.7	
$[C_5H_7]^+$	67.0541	67.0542	– 1.5	
$\left[C_{4}H_{7}\right] ^{+}$	55.0540	55.0542	-3.6	
$[C_2H_3O]^+$	43.0181	43.0178	+7.0	

Figure S10: MS^2 for m/z = 204 of **4**.

Table S9: Elemental compositions of fragment ions in Figure S10.

molecular formula	<i>m</i> /z found	m/z calculated	Δ (ppm)
$[C_{14}H_{21}]^+$	189.1644	189.1638	+3.2
$[C_{13}H_{19}]^{+}$	175.1476	175.1482	-3.4
$[C_{12}H_{17}]^{+}$	161.1335	161.1325	+6.2
$[C_{11}H_{15}]^{+}$	147.1165	147.1168	-2.4
$[C_{10}H_{13}]^{+}$	133.1016	133.1012	+3.0
$[C_9H_{11}]^+$	119.0864	119.0855	+7.6
$[C_8H_9]^+$	105.0688	105.0699	-10.5
$[C_7H_9]^+$	93.0693	93.0699	-6.4
$[C_6H_9]^{\dagger}$	81.0706	81.0699	+8.6
$[C_5H_7]^+$	67.0543	67.0542	+1.5
$[C_4H_7]^+$	55.0543	55.0542	+1.8
$[C_3H_5]^+$	41.0388	41.0386	+4.9