Supporting Information

for

Scope and limitations of the dual-gold-catalysed
hydrophenoxylation of alkynes

Adrián Gómez-Suárez1, Yoshihiro Oonishi1,2, Anthony R. Martin1,3 and Steven P. Nolan*4,5

Address: 1EaStCHEM School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9ST, U.K, 2Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan, 3Institut de Chimie de Nice, UMR 7272, Université de Nice Sophia Antipolis, CNRS, Parc Valrose, 06108 Nice cedex 2, France, 4Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia and 5Universiteit Gent, Department of Inorganic and Physical Chemistry, Krijgslaan 281, S-3, B-9000 Ghent, Belgium.

Email: Steven P. Nolan - stevenpnolan@gmail.com

*Corresponding author

Experimental procedures and characterisation data
for all the compounds
Table of Contents
1. General considerations... S3
2. Synthesis & characterization of vinyl ether derivatives (6) ... S3
3. References ... S11
4. NMR Spectra ... S12
1. General considerations

Unless otherwise stated, all solvents and reagents were used as purchased and all reactions were performed under air. Deuterated solvents (CD$_2$Cl$_2$, CDCl$_3$) were filtered through basic alumina in order to remove traces of HCl. NMR spectra were recorded on 500, 400 and 300 MHz spectrometers at room temperature in CD$_2$Cl$_2$ or CDCl$_3$. Chemical shifts (δ) are reported in ppm, relative to the solvent residual peak CD$_2$Cl$_2$ (5.32 ppm for 1H and 54.00 ppm for 13C) and CDCl$_3$ (7.26 ppm for 1H and 77.16 ppm for 13C). Data for 1H NMR are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, br = broad signal, m = multiplet), coupling constants (J) in Hz and integration. Flash chromatography was performed on silica gel 60 Å pore diameter and 40–63 μm particle size. Elemental analysis was carried out by the analytical services of London Metropolitan University. High-resolution mass spectrometry was performed by the EPSRC National Mass Spectrometry Service Centre (Grove Building Ext., Swansea University, Singleton Park, Swansea, SA2 8PP, UK). [{Au(IPr)}$_2$(µ-OH)][BF$_4$] was synthesized following the reported methodologies [1]:

2. Synthesis & characterization of vinyl ether derivatives (6)

General procedure

As described in reference [2], [{Au(NH$_2$C$_3$)}$_2$(µ-OH)][BF$_4$] (0.5–1.0 mol %) was added to a solution of alkyne (0.5 mmol) and phenol (0.55 mmol, 1.1 equiv) in toluene (1 mL). The reaction mixture was stirred at 80 or 110 °C. After the reaction was completed, the solvent was concentrated in vacuum. The residue was purified by flash column chromatography on silica gel to give the corresponding product.

(Z)-4-((1,2-Diphenylvinyl)oxy)benzonitrile (3aa)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (1a) (89.0 mg, 0.50 mmol), 4-hydroxybenzonitrile (2a) (65.5 mg, 0.55 mmol) and [{Au(IPr)}$_2$(µ-OH)][BF$_4$] (6.5 mg, 5 µmol, 1.0 mol %) in toluene (1 mL) at 110 °C for 24 h, was purified by column chromatography on silica gel (n-hexane/EtOAc = 95/5) to give 6aa (74 mg, 50%, average of two runs) as a white solid.

1H NMR (CDCl$_3$, 500 MHz): δ 7.58-7.55 (m, 4H), 7.54-7.51 (m, 2H), 7.38-7.28 (m, 5H), 7.25-7.22 (m, 1H), 7.11-7.07 (m, 2H), 6.75 (s, 1H).

13C{1H} NMR (CDCl$_3$, 101 MHz): δ 159.94, 148.60, 135.02, 134.36, 134.05, 129.11, 129.03, 128.99, 128.78, 128.03, 125.79, 118.95, 117.43, 117.04, 105.72; HRMS (NIS) calcd for C$_{21}$H$_{16}$NO [(M+H)$^+$] 298.1226, found 298.1233.

(Z)-1-(4-((1,2-Diphenylvinyl)oxy)phenyl)ethanone (3ab)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (1a) (89.0 mg, 0.50 mmol), 4-hydroxyacetophenone (2b) (74.8 mg, 0.55 mmol) and [{Au(IPr)}$_2$(µ-OH)][BF$_4$] (3.2 mg, 2.5 µmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 14 h, was purified by column chromatography on silica gel (n-hexane/EtOAc = 95/5) to give 3ab (140 mg, 90%, average of two runs) as a white solid.

1H NMR (CDCl$_3$, 500 MHz): δ 7.88-7.86 (m, 2H), 7.61-7.58 (m, 4H), 7.36-7.28 (m, 5H), 7.24-7.21 (m, 1H), 7.09-7.06 (m, 2H), 6.74 (s, 1H), 2.51 (s, 3H); 13C{1H} NMR (CDCl$_3$, 101 MHz): δ 196.75, 160.51, 149.03, 135.46, 134.34, 131.69, 130.85, 129.11, 128.99, 128.78, 128.03, 125.79, 118.95, 117.43, 117.04, 105.72; HRMS (NIS) calcd for C$_{22}$H$_{19}$O$_2$ [(M+H)$^+$] 315.1380, found 315.1385.
(Z)-Methyl 4-[(1,2-diphenylvinyl)oxy]benzoate (3ac)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (1a) (89.0 mg, 0.50 mmol), methyl 4-hydroxybenzoate (2c) (83.7 mg, 0.55 mmol) and [{Au(IPr)}_2(μ-OH)][BF_4] (3.2 mg, 2.5 µmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 3 h, was purified by column chromatography on silica gel (n-hexane/EtOAc = 9/1) to give 3ac (140 mg, 85%, average of two runs) as a white solid.

^1H NMR (CDCl_3, 400 MHz) δ 7.97-7.88 (m, 2H), 7.64-7.53 (m, 4H), 7.39-7.17 (m, 6H), 7.09-6.99 (m, 2H), 6.72 (s, 1H), 3.85 (s, 3H); ^13C[^1H] NMR (CDCl_3, 101 MHz) δ 166.7, 160.4, 149.1, 135.5, 134.4, 131.9, 129.1, 128.9, 128.8, 127.8, 125.9, 124.2, 117.1, 116.1, 52.1; HRMS (NIS) calcd for C_{22}H_{19}O_[(M+H)^+] 331.1329, found 331.1327.

(Z)-4-((1,2-Diphenylvinyl)oxy)benzaldehyde (3ad)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (1a) (89.0 mg, 0.50 mmol), phenol (2d) (67.0 mg, 0.50 mmol) and [{Au(IPr)}_2(μ-OH)][BF_4] (3.2 mg, 2.5 µmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 6 h, was purified by column chromatography on silica gel (CH_2Cl_2), to give 3ad (142 mg, 94%, average of two runs) as a colourless solid.

^1H NMR (CDCl_3, 300 MHz) δ 9.83 (s, 1H), 7.78-7.76 (m, 2H), 7.62-7.59 (m, 4H), 7.36-7.15 (m, 8H), 6.80 (s, 1H); ^13C[^1H] NMR (CDCl_3, 75 MHz) δ 151.6, 150.4, 136.5, 135.3, 129.4, 129.1, 129.0, 127.9, 126.6, 117.6, 117.2; HRMS (APCI) calcd for C_{21}H_{17}O_[(M+H)^+] 301.1223, found 301.1222.

(Z)-5-((1,2-Diphenylvinyl)oxy)benzo[d][1,3]dioxole (3ae)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (1a) (89.0 mg, 0.50 mmol), sesamol (2e) (70.0 mg, 0.50 mmol) and [Au(IPr)]_2(μ-OH)][BF_4] (3.2 mg, 2.5 µmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 1 h, was purified by column chromatography on silica gel (n-hexane/EtOAc = 95/5) to give 3ae (150 mg, 94%, average of two runs) as a white solid.

^1H NMR (CDCl_3, 300 MHz; CDCl_3): δ 7.69-7.67 (m, 2H), 7.62-7.60 (m, 2H), 7.37-7.23 (m, 6H), 6.65 (d, J = 8.5 Hz, 1H; + d, J = 2.5 Hz, 1H; + s, 1H), 6.49 (dd, J = 8.5, 2.5 Hz, 1H), 5.88 (s, 2H).

^13C[^1H] NMR (101 MHz, CDCl_3): δ 151.46, 150.08, 148.47, 142.66, 136.07, 134.85, 129.03, 128.66, 128.52, 127.52, 126.23, 116.82, 108.30, 108.23, 101.40, 99.18. HRMS (APCI) calcd. for C_{21}H_{17}O_3 [(M+H)^+] 317.1172, found 317.1170.

(Z)-2-((1,2-Diphenylvinyl)oxy)naphthalene (3af)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (1a) (89.0 mg, 0.50 mmol), naphthol (2f) (79.3 mg, 0.55 mmol) and [{Au(IPr)}_2(μ-OH)][BF_4] (3.2 mg, 2.5 µmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 3 h, was purified by column chromatography on silica gel (n-hexane/EtOAc = 95/5) to give 3af (158 mg, 98%, average of two runs) as a white solid.

^1H NMR (CDCl_3, 300 MHz) δ 7.82-7.72 (m, 2H), 7.71-7.57 (m, 5H), 7.43-7.14 (m, 10H), 6.75 (s, 1H); ^13C[^1H] NMR (CDCl_3, 75 MHz) δ 154.3, 149.7, 135.9, 134.8, 134.5, 130.0, 129.7, 129.1, 128.7, 128.7, 128.6, 127.8, 127.6, 127.1, 126.5, 126.1, 124.3, 118.3, 117.1, 111.1; HRMS (APCI) calcd for C_{24}H_{19}O [(M+H)^+] 323.1430, found 323.1430.
(Z)-[1-(3,5-Dimethylphenoxy)ethene-1,2-diyl]dibenzenes (3ai)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (1a) (89.0 mg, 0.50 mmol), 3,5-dimethylphenol (2i) (67.0 mg, 0.55 mmol) and [{Au(IPr)}2(µ-OH)][BF4]− (3.2 mg, 2.5 µmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 2 h, was purified by column chromatography on silica gel (n-hexane/EtOAc = 95/5) to give 3ai (142 mg, 94%, average of two runs) as a white solid.

1H NMR (CDCl3, 400 MHz) δ 7.68-7.62 (m, 2H), 7.62-7.57 (m, 2H), 7.37-7.15 (m, 6H), 6.65 (brs, 2H), 6.64 (s, 1H), 6.59 (brs, 1H), 2.21 (s, 6H); 13C{1H} NMR (CDCl3, 101 MHz) δ 156.4, 149.8, 139.5, 139.5, 136.3, 135.0, 129.1, 128.6, 127.4, 126.1, 124.0, 116.7, 114.1, 21.5; HRMS (APCI) calcd for C22H20O [M+H]+ 300.1509, found 300.1507.

(Z)-(1-(4-Chloro-3,5-dimethylphenoxy)ethene-1,2-diyl)dibenzenes (3aj)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from alkyn 1a (89.0 mg, 0.50 mmol), phenol (2j) (86.0 mg, 0.50 mmol) and [{Au(IPr)}2(µ-OH)][BF4]− (3.2 mg, 2.5 µmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 6 h, was purified by column chromatography on silica gel (pentane/EtOAc = 95/5), to give 3aj (164 mg, 98%, average of two runs) as a colourless solid.

1H NMR (CDCl3, 300 MHz) δ 7.64 (ddd, J = 14.4, 7.7, 1.5 Hz, 4H), 7.38-7.22 (m, 6H), 6.80 (s, 2H), 6.69 (s, 1H), 2.30 (s, 6H); 13C{1H} NMR (CDCl3, 75 MHz) δ 154.2, 149.5, 137.6, 135.9, 134.8, 129.1, 128.7, 128.7, 128.6, 127.6, 126.1, 117.0, 116.2, 21.1; HRMS (APCI) calcd for C22H20ClO [M+H]+ 335.1197, found 335.1195.

(Z)-[1-(2-Chloro-4-fluorophenoxy)ethene-1,2-diyl]dibenzenes (3ak)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (1a) (89.0 mg, 0.50 mmol), 2-chloro-4-fluorophenol (2k) (81.0 mg, 0.55 mmol) and [{Au(IPr)}2(µ-OH)][BF4]− (6.5 mg, 5 µmol, 1.0 mol %) in toluene (1 mL) at 110 °C for 6 h, was purified by column chromatography on silica gel (n-hexane/EtOAc = 95/5) to give 3ak (143 mg, 88%, average of two runs) as a white solid whose NMR data were consistent to those reported in the literature [3].

1H NMR (CDCl3, 300 MHz) δ 7.70-7.61 (m, 2H), 7.61-7.54 (m, 2H), 7.39-7.13 (m, 7H), 6.77 (dd, J = 9.1, 5.0 Hz, 1H), 6.73-6.64 (m, 2H); 13C{1H} NMR (CDCl3, 75 MHz) δ 157.3 (d, JCF = 243 Hz), 149.7, 148.1 (d, JCF = 2.8 Hz), 135.2, 134.4, 129.0, 128.88, 128.87, 128.7, 127.8, 126.0, 123.4 (d, JCF = 11 Hz), 117.8 (d, JCF = 26 Hz), 117.2, 116.6 (d, JCF = 8.6 Hz), 114.5 (d, JCF = 23 Hz); 19F NMR (CDCl3, 282 MHz) δ -120.3.

(Z)-[1-(2-Chloro-5-fluorophenoxy)ethene-1,2-diyl]dibenzenes (3al)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (1a) (89.0 mg, 0.50 mmol), 2-chlorophenol (2l) (70.7 mg, 0.55 mmol) and [{Au(IPr)}2(µ-OH)][BF4]− (6.5 mg, 5 µmol, 1.0 mol %) in toluene (1 mL) at 110 °C for 3 h, was purified by column chromatography on silica gel (n-hexane/EtOAc = 95/5) to give 3al (141 mg, 92%, average of two runs) as a colourless liquid whose NMR data were consistent to those reported in the literature [3].

1H NMR (CDCl3, 300 MHz) δ 7.72-7.65 (m, 2H), 7.65-7.57 (m, 2H), 7.43 (dd, J = 7.8, 1.7 Hz, 1H), 7.39-7.18 (m, 6H), 6.99 (dt, J = 7.7, 1.7 Hz, 1H), 6.93-6.79 (m, 2H), 6.72 (s, 1H); 13C{1H} NMR (CDCl3, 75 MHz) δ 151.7, 149.5, 135.4, 134.5, 130.6, 129.1, 128.8, 128.8, 128.7, 127.8, 127.7, 125.9, 123.0, 122.9, 117.1, 116.3.
According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (1a) (89.0 mg, 0.50 mmol), 2-allylphenol (2m) (74.0 mg, 0.55 mmol) and [{Au(IPr)}_2(µ-OH)][BF_4] (6.5 mg, 5 µmol, 1.0 mol %) in toluene (1 mL) at 110 °C for 3 h, was purified by column chromatography on silica gel (n-hexane/EtOAc = 95/5) to give 3am (144 mg, 92%, average of two runs) as a white solid.

^1H NMR (CDCl_3, 300 MHz): δ 7.66-7.59 (m, 2H), 7.58-7.51 (m, 2H), 7.39-7.15 (m, 7H), 7.02-6.84 (m, 2H), 6.73 (dd, J = 7.8, 1.6 Hz, 1H), 6.67 (s, 1H), 6.25-6.06 (m, 1H), 5.25-5.09 (m, 2H); ^13C{^1H} NMR (CDCl_3, 101 MHz) δ 153.8, 149.7, 137.0, 136.1, 134.9, 130.6, 129.0, 128.7, 128.6, 128.5, 128.4, 127.51, 127.45, 126.0, 122.0, 116.9, 116.1, 114.5, 34.3; HRMS (APCI) calcd for C_{23}H_{21}O [(M+H)^+] 313.1587, found 313.1588.

(Z)-[1-(2-Allylphenoxy)ethene-1,2-diyl]dibenzene (3an)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (1a) (89.0 mg, 0.50 mmol), 2,4-di-tert-butylphenol (2o) (103.2 mg, 0.50 mmol) and [{Au(IPr)}_2(µ-OH)][BF_4] (3.2 mg, 2.5 µmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 14 h, was purified by column chromatography on silica gel (n-hexane/EtOAc = 95/5) to give 3an (160 mg, 83%, average of two runs) as an off-white solid.

^1H NMR (CDCl_3, 300 MHz): δ 7.62-7.58 (m, 2H), 7.57-7.53 (m, 2H), 7.40 (d, J = 2.5 Hz, 1H), 7.35-7.21 (m, 5H), 7.20-7.15 (m, 1H), 6.93 (dd, J = 8.5, 2.5 Hz, 1H), 6.69 (d, J = 8.7 Hz, 1H), 6.67 (s, 1H), 1.58 (s, 9H), 1.26 (s, 9H); ^13C{^1H} NMR (CDCl_3, 101 MHz) δ 152.7, 149.60, 143.77, 134.95, 129.04, 128.61, 128.30, 127.35, 126.43, 124.51, 123.79, 117.49, 114.69, 35.40, 34.44, 31.72, 30.63; HRMS (APCI) calcd for C_{28}H_{33}O [(M+H)^+] 385.2526, found 385.2519.

(Z)-[1-(2,4-Di-tert-butylphenoxy)ethene-1,2-diyl]dibenzene (3ap)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (1a) (89.0 mg, 0.50 mmol), catechol (2p) (55.1 mg, 0.50 mmol) and [Au(IPr)]_2(µ-OH)][BF_4] (3.2 mg, 2.5 µmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 6 h, was purified by column chromatography on silica gel (n-hexane/EtOAc = 95/5) to give 3ap (100 mg, 70%, average of two runs) as a colourless liquid, whose NMR data were consistent to those reported in the literature [4].

^1H NMR (300 MHz; CDCl_3): δ 7.60-7.57 (m, 2H), 7.54-7.50 (m, 2H), 7.36-7.28 (m, 5H), 7.27-7.21 (m, 1H), 7.03 (dd, J = 8.0, 1.5 Hz, 1H), 6.88 (td, J = 7.7, 1.5 Hz, 1H), 6.75 (dd, J = 8.1, 1.5 Hz, 1H), 6.71 (s, 1H), 6.64 (dd, J = 8.1, 7.4, 1.6 Hz, 1H), 5.87 (s, 1H); ^13C{^1H} NMR (101 MHz, CDCl_3): δ 149.27, 145.79, 143.16, 135.41, 134.45, 128.91, 128.84, 128.77, 127.81, 125.79, 123.22, 120.62, 117.44, 115.78, 115.08.
1,2-Bis(((Z)-1,2-diphenylvinyl)oxy)benzene (4ap)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (1a) (178.0 mg, 1 mmol), catechol (2p) (55.1 mg, 0.50 mmol) and [Au(IPr)]2(μ-OH)][BF4] (3.2 mg, 0.25 μmol, 0.5 mol%) in toluene (1 mL) at 80 °C for 18 h, was purified by column chromatography on silica gel (n-hexane/EtOAc = 95/5) to give 4ap (256 mg, 55%, average of two runs) as a colourless liquid, whose NMR data were consistent to those reported in the literature [4].

1H NMR (400 MHz; CDCl3): δ 7.82-7.77 (m, 8H), 7.42-7.33 (m, 10H), 7.32-7.27 (m, 2H), 6.90-6.86 (dt, J = 6.0, 3.6 Hz, 2H), 6.76 (s, 2H), 6.69 (dt, J = 6.4, 3.3 Hz, 2H).

13C(1H) NMR (CDCl3, 101 MHz): δ 150.00, 145.53, 136.01, 135.01, 129.19, 128.78, 128.71, 128.66, 127.59, 126.16, 122.60, 117.04, 116.33, 77.48, 77.16, 76.84.

1,3-Bis(((Z)-1,2-diphenylvinyl)oxy)benzene (4aq)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (1a) (89.0 mg, 0.50 mmol), resorcinol (2q) (28.0 mg, 0.25 mmol) and [Au(IPr)]2(μ-OH)][BF4] (3.2 mg, 2.5 μmol, 1.0 mol%) in toluene (1 mL) at 80 °C for 6 h, was purified by column chromatography on silica gel (n-hexane/EtOAc = 95/5) to give 4aq (198 mg, 84%, average of two runs) as a white solid, whose NMR data were consistent to those reported in the literature [4].

1H NMR (CDCl3, 300 MHz) δ 7.61-7.53 (m, 4H), 7.52-7.43 (m, 4H), 7.34-7.16 (m, 12H), 7.02 (t, J = 8.2 Hz, 1H), 6.74 (t, J = 2.3 Hz, 1H), 6.60 (brs, 3H), 6.58 (d, J = 2.3 Hz, 1H); 13C(1H) NMR (CDCl3, 75 MHz) δ 157.7, 149.7, 135.9, 134.7, 134.7, 130.4, 129.0, 128.6, 128.6, 128.4, 127.4, 126.1, 126.1, 116.7, 110.2, 105.6.

1,4-Bis(((Z)-1,2-diphenylvinyl)oxy)benzene (4ar)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from alkyne 1a (89.0 mg, 0.50 mmol), hydroquinone (2r) (28.0 mg, 0.25 mmol) and [Au(IPr)]2(μ-OH)][BF4] (3.2 mg, 2.5 μmol, 0.5 mol%) in toluene (1 mL) at 80 °C for 16 h, was purified by trituration in pentane after evaporation of the volatiles, to give 4ar (212 mg, 95%, average of two runs) as a colourless solid, whose NMR data were consistent to those reported in the literature [4].

1H NMR (CD2Cl2, 500 MHz) δ 7.62-7.60 (m, 2H), 7.56-7.54 (m, 2H), 7.33-7.26 (m, 5H), 7.22-7.18 (m, 1H), 6.88 (s, 2H), 6.61 (s, 1H); 13C(1H) NMR (CDCl3, 75 MHz) δ 151.6, 150.7, 136.5, 135.3, 129.4, 129.1, 129.0, 127.9, 126.6, 117.6, 117.2.

1,4-Bis(((Z)-1,2-diphenylvinyl)oxy)-2,5-dichlorobenzene (4as)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from alkyne 1a (89.0 mg, 0.50 mmol), hydroquinone 2s (45.0 mg, 0.25 mmol) and [Au(IPr)]2(μ-OH)][BF4] (3.2 mg, 2.5 μmol, 0.5 mol%) in toluene (1 mL) at 80 °C for 16 h, was purified by trituration in pentane after evaporation of the volatiles, to give 4as (64 mg, 47%, average of two runs) as an off-white solid.

1H NMR (CD2Cl2, 400 MHz): δ 7.61-7.54 (m, 8H), 7.36-7.23 (m, 12H), 6.91 (s, 2H), 6.72 (s, 2H); HRMS (APCI) calcd for C34H26O2Cl2 [(M+H)+] 534.1148, found 534.1140.
(Z)-4,4'-((1-Phenoxyethene-1,2-diyl)bis(methoxybenzene) (3bt)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from alkyne (1b) (119.2 mg, 0.50 mmol), phenol (2t) (52.0 mg, 0.55 mmol) and [[Au(IPr)₂(μ-OH)]BF₄] (6.5 mg, 5 μmol, 1.0 mol %) in toluene (1 mL) at 110 °C for 14 h, was purified by column chromatography on silica gel (pentane/EtOAc = 95/5) to give 2bt (148 mg, 89%, average of two runs) as a off-white solid.

^1H NMR (300 MHz; CDCl₃): δ 7.57 (d, J = 8.8 Hz, 2H), 7.51 (d, J = 8.8 Hz, 2H), 7.26-7.18 (m, 2H), 7.03 (d, J = 7.8 Hz, 2H), 6.94 (t, J = 7.3 Hz, 1H), 6.82 (dd, J = 9.0, 2.6 Hz, 4H), 6.53 (s, 1H), 3.65 (s, 6H). ^13C[^1H] NMR (126 MHz, CDCl₃): δ 159.60, 158.68, 156.54, 147.82, 130.16, 129.72, 128.72, 127.85, 127.19, 121.92, 116.26, 114.66, 114.06, 114.03, 55.32, 55.28. HRMS (APCI) calcd for C₂₂H₂₁O₃ [M⁺] 333.1485, found 333.1482.

(Z)-4,4'-(1-Phenoxyethene-1,2-diyl)bis(chlorobenzene) (3ct)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from alkyne 1c (123.5 mg, 0.50 mmol), phenol (2t) (52.0 mg, 0.55 mmol) and [[Au(IPr)₂(μ-OH)]BF₄] (6.5 mg, 5 μmol, 1.0 mol %) in toluene (1 mL) at 110 °C for 14 h, was purified by column chromatography on silica gel (pentane/EtOAc = 9/1) to give 3ct (140 mg, 82%, average of two runs) as a off-white solid.

^1H NMR (300 MHz; CDCl₃): δ 7.56-7.54 (m, 2H), 7.52-7.48 (m, 2H), 7.30-7.21 (m, 6H), 6.99-6.95 (m, 3H), 6.58 (s, 1H). ^13C[^1H] NMR (101 MHz, CDCl₃): δ 156.0, 142.8, 139.1, 137.0, 129.8, 127.9, 127.7, 127.0, 126.6, 125.6, 125.4, 122.6, 116.0, 110.6; HRMS (APCI) calcd for C₁₉H₁₄Cl₂O [M⁺] 341.0494, found 341.0491.

(Z)-[(1,4-Dimethoxybut-2-en-2-yl)oxy]benzene (3dt)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from alkyne 1d [5] (114.0 mg, 1.00 mmol), phenol (2t) (47.0 mg, 0.50 mmol) and [[Au(IPr)₂(μ-OH)]BF₄] (3.2 mg, 2.5 μmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 2 h, was purified by column chromatography on silica gel (n-hexane/EtOAc = 10/1) to give 3dt (89 mg, 85%, average of two runs) as a colourless liquid.

^1H NMR (CDCl₃, 300 MHz) δ 7.34-7.23 (m, 2H), 7.08-6.93 (m, 3H), 5.51 (t, J = 6.4, 0.9 Hz, 1H), 4.02 (dt, J = 6.4, 0.9 Hz, 2H), 3.91 (dt, J = 0.9 Hz, 2H), 3.35 (s, 3H), 3.31 (s, 3H); ^13C[^1H] NMR (CDCl₃, 75 MHz) δ 156.3, 149.9, 129.7, 122.5, 116.5, 114.9, 70.6, 66.4, 58.4, 58.2; HRMS (APCI) calcd for C₁₂H₁₈O₃ [M⁺] 208.1094, found 208.1093.

(Z)-2,2'-(1-Phenoxyethene-1,2-diyl)dipheno (3et)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from alkyne 1e [6] (95.0 mg, 0.50 mmol), phenol (2t) (52.0 mg, 0.55 mmol) and [[Au(IPr)₂(μ-OH)]BF₄] (6.5 mg, 5 μmol, 1.0 mol %) in toluene (1 mL) at 110 °C for 1 h, was purified by column chromatography on silica gel (n-hexane/EtOAc = 9/1) to give 3et (91 mg, 64%, average of two runs) as a off-white solid.

^1H NMR (CDCl₃, 400 MHz) δ 7.31-7.24 (m, 2H), 7.23-7.20 (m, 1H), 7.19 (ddd, J = 5.0, 1.0, 1.0 Hz, 1H), 7.17-7.13 (m, 1H), 7.10-7.07 (m, 3H), 7.04-6.95 (m, 3H), 6.94-6.90 (m, 1H); ^13C[^1H] NMR (CDCl₃, 101 MHz) δ 156.0, 142.8, 139.1, 137.0, 129.8, 127.9, 127.7, 127.0, 126.6, 125.6, 125.4, 122.6, 116.0, 110.6; HRMS (APCI) calcd for C₁₆H₁₃OS₂ [(M+H)⁺] 285.0402, found 285.0397.
(Z)-2,2'-(1-Phenoxyethene-1,2-diyl)bis(chlorobenzene) (3ft)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from alkyne 1f (123.0 mg, 0.50 mmol), phenol (2t) (47.0 mg, 0.50 mmol) and [{Au(IPr)}2(μ-OH)][BF4] (3.2 mg, 2.5 μmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 6 h, was purified by column chromatography on silica gel (pentane), to give 3ft (148 mg, 87%, average of two runs) as a colourless oil.

1H NMR (CDCl3, 300 MHz) δ 8.18-8.15 (m, 1H), 7.66-7.62 (m, 1H), 7.50-7.47 (m, 1H), 7.44-7.41 (m, 1H), 7.33-7.30 (m, 6H), 7.17-7.13 (m, 2H), 7.05-7.00 (m, 1H), 6.93 (s, 1H); 13C(1H) NMR (CDCl3, 75 MHz) δ 155.7, 148.7, 136.1, 134.9, 133.6, 132.9, 132.6, 131.1, 130.6, 130.0, 129.8, 129.5, 128.5, 126.8, 126.5, 122.8, 117.6, 116.2; HRMS (ESI) calcd. for C20H15ClO5 [(M+H)+] 341.0494, found 341.0495.

(Z)-2-Phenoxybut-1-en-1-ylbenzene and (Z)-(1-phenoxybut-1-en-1-yl)benzene (3it /3it' = 1/0.23)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from 1i (65.0 mg, 0.50 mmol), phenol (2t) (52.0 mg, 0.55 mmol) and [{Au(IPr)}2(μ-OH)][BF4] (3.2 mg, 2.5 μmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 6 h, was purified by column chromatography on silica gel (pentane/EtOAc = 95/5) to give the inseparable mixture of 3it and 3it' (3it /3it' = 1/0.23, 90 mg, 80%, average of two runs) as a colourless liquid.

1H NMR (400 MHz; CDCl3): δ 7.54-7.52 (m, 2H), 7.51-7.48 (m, 0.6H), 7.33-7.21 (m, 6H), 7.17-7.13 (m, 1H), 7.06 (t, J = 1.1 Hz, 0.32H), 7.04-7.01 (m, 3H), 6.98-6.95 (m, 0.5H), 6.93-6.91 (m, 0.15H), 5.94 (s, 1H), 5.87 (t, J = 7.3 Hz, 0.23H), 2.31 (qd, J = 7.4, 0.8 Hz, 2H), 2.23 (quintet, J = 7.5 Hz, 0.48H), 1.14 (t, J = 7.4 Hz, 3H), 1.04 (t, J = 7.5 Hz, 0.74H). 13C(1H) NMR (126 MHz; CDCl3): δ 157.61, 155.50, 154.23, 151.33, 150.17, 150.09, 149.03, 135.75, 114.06, 26.41, 19.47, 13.97, 11.96. HRMS (APCI) calcd. for C16H14O [(M+H)+] 225.1274, found 225.1271.

(Z)-1-Methoxy-4-((1-phenylprop-1-en-2-yl)oxy)benzene and (Z)-1-methoxy-4-((1-phenylprop-1-en-1-yl)oxy)benzene (3ju /3ju' = 1/0.22)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from 1j (58.0 mg, 0.50 mmol), phenol 2u (68.3 mg, 0.55 mmol) and [{Au(IPr)}2(μ-OH)][BF4] (3.2 mg, 2.5 μmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 6 h, was purified by column chromatography on silica gel (n-hexane/EtOAc = 95/5) to give the inseparable mixture of 3ju and 3ju' (3ju /3ju' = 1/0.22, 104 mg, 87%, average of two runs) as a colourless liquid.

1H NMR (400 MHz; CDCl3): δ 7.58-7.55 (m, 2H), 7.49-7.46 (m, 0.45), 7.30-7.23 (m, 3H), 7.17-7.13 (m, 1H), 6.99-6.95 (m, 2H), 6.91-6.83 (m, 3H), 6.79-6.76 (m, 0.40), 5.89 (q, J = 7.0 Hz, 0.23), 5.78 (s, 1H), 3.79 (s, 3H), 3.73 (s, 0.62H), 1.93 (s, 3H), 1.77 (d, J = 7.0 Hz, 0.62H). 13C(1H) NMR (126 MHz; CDCl3): δ 155.50, 154.23, 151.33, 150.17, 150.09, 149.03, 135.75, 135.62, 128.50, 128.41, 128.16, 127.84, 126.38, 125.32, 121.65, 119.23, 116.17, 114.77, 114.75, 113.55, 112.35, 110.03, 108.34, 55.75, 55.71, 19.69, 11.52. HRMS (APCI) calcd. for C18H17O2 [(M+H)+] 241.1223, found 241.1223.
(Z)-3-(2-Phenoxyhex-1-en-1-yl)pyridine (3nt) and (Z)-3-(1-phenoxhex-1-en-1-yl)pyridine (3nt') (3nt/3nt' = 1/0.43)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from alkyne 1n (79.0 mg, 0.50 mmol), phenol (2t) (47.0 mg, 0.50 mmol) and [{Au(IPr)}₂(μ-OH)][BF₄] (19.5 mg, 0.34 mmol, 3.0 mol %) in toluene (1 mL) at 110 °C for 24 h, was purified by column chromatography on silica gel (n-hexane/EtOAc = 95/5~70/30) to give 3nt and 3nt' (3nt / 3nt' = 1/0.43, 96 mg, 76%, average of two runs) as a pale yellow oil.

^1H NMR (CDCl₃, 300 MHz) δ 8.77 (d, J = 1.8 Hz, 1H), 8.63 (br, 2.25H), 8.45 (dd, J = 4.7, 1.4 Hz, 1H), 8.36 (d, J = 3.7 Hz, 2.33H), 7.94 (dt, J = 8.1, 1.9 Hz, 2.36H), 7.71 (dt, J = 8.0, 2.0 Hz, 1H), 7.34-7.12 (m, 12H), 7.08-6.92 (m, 10H), 5.95-5.89 (m, 1+2.21H), 2.33-2.20 (m, 6.62H), 1.58-1.21 (m, 15.38H), 0.89 (t, J = 7.3 Hz, 10.38H); ^13C{^1H} NMR (CDCl₃, 75 MHz) δ 157.0, 155.7, 155.1, 149.7, 148.7, 147.5, 147.1, 146.4, 134.9, 132.6, 131.3, 129.8, 129.8, 123.5, 123.3, 122.9, 121.9, 120.4, 117.4, 115.6, 111.2, 32.9, 31.4, 29.3, 25.7, 22.6, 22.2, 14.0, 14.0. HRMS (ESI) calcd for C₁₇H₁₉N; ([M+H]+) 254.1539, found 254.1541.

(Z)-[4-(Benzyloxy)but-2-en-2-yl]oxy]benzene (3ot)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from alkyne 1o [7] (160.0 mg, 1.00 mmol), phenol (2t) (47.0 mg, 0.50 mmol) and [{Au(IPr)}₂(μ-OH)][BF₄] (3.2 mg, 0.25 mmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 2 h, was purified by column chromatography on silica gel (n-hexane/EtOAc = 95/5) to give 3ot (89 mg, 70%, average of two runs) as a colourless liquid.

^1H NMR (CDCl₃, 300 MHz) δ 7.34-7.18 (m, 7H), 7.03-6.94 (m, 1H), 6.94-6.86 (m, 2H), 5.21 (t, J = 6.8 Hz, 1H), 4.43 (s, 2H), 4.06 (s, 1H), 3.62 (s, 3H); ^13C{^1H} NMR (CDCl₃, 101 MHz) δ 156.1, 150.9, 138.6, 129.7, 128.4, 127.9, 127.6, 122.4, 117.0, 112.6, 72.4, 64.5, 18.6; HRMS (APCI) calcd for C₁₉H₁₉O₂ ([M+H]+) 293.1163, found 293.1167.

(Z)-[5-(Benzyloxy)pent-2-en-2-yl]oxy]benzene (3pt) and (Z)-[5-(benzyloxy)pent-2-en-3-yl]oxy]benzene (3pt') (3pt/3pt' = 1/0.17)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from alkyne 1p [8] (87.0 mg, 0.50 mmol), phenol (2t) (52.0 mg, 0.55 mmol) and [{Au(IPr)}₂(μ-OH)][BF₄] (3.2 mg, 0.25 mmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 3 h, was purified by column chromatography on silica gel (n-hexane/EtOAc = 95/5) to give 3pt and 3pt' (3pt / 3pt' = 1/0.17, 114 mg, 85%, average of two runs) as a colourless liquid.

^1H NMR (CDCl₃, 300 MHz) δ 7.33-7.14 (m, 7H+1.19H), 6.96-6.80 (m, 3+0.51H), 5.12 (q, J = 6.7 Hz, 0.17H), 5.03 (tq, J = 7.2, 1.1 Hz, 1H), 4.43 (s, 2H), 4.42 (s, 0.34H), 3.51 (t, J = 6.7 Hz, 0.34H), 3.41 (t, J = 7.2 Hz, 2H), 2.45-2.36 (m, 0.34H), 2.31 (dtq, J = 7.2, 7.2, 1.1 Hz, 2H), 1.75 (dt, J = 7.2, 1.1 Hz, 3H), 1.50-1.47 (m, 0.51H); ^13C{^1H} NMR (CDCl₃, 75 MHz) δ 156.6, 156.4, 148.6, 148.4, 138.7, 138.5, 129.6, 129.6, 128.5, 128.4, 127.8, 127.8, 127.7, 127.6, 121.8, 121.6, 116.4, 115.9, 112.7, 112.3, 73.0, 72.8, 69.8, 67.5, 33.5, 26.0, 18.5, 10.9.
3. References

4. NMR Spectra

