Supporting Information

for

Synthesis of three-dimensional porous hyper-crosslinked polymers via thiol-yne reaction

Mathias Lang¹, Alexandra Schade¹ and Stefan Bräse^{*1,2}

Address: ¹Institute of Organic Chemistry, Karlsruhe Institute of Technology – Campus South, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany and ²Institute of Toxicology and Genetics, Karlsruhe Institute of Technology – Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Email: Stefan Bräse - bräse@kit.edu

Experimental procedures and additional measurements

Contents

General Remarks	S2
Synthetic procedures	S3
Adsorption measurements	S5
PXRD patterns	S6
TGA measurements	S7
Pore size distributions	S9
References	S10

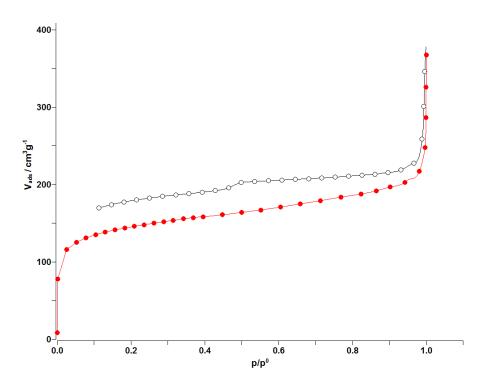
^{*} Corresponding author

General remarks

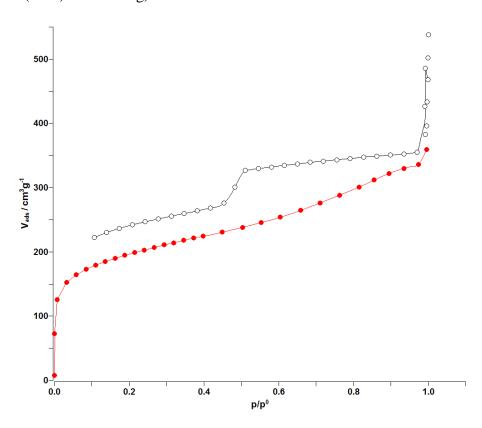
IR spectra were recorded on a Bruker Alpha spectrometer using the attenuated total reflection technique (ATR). The absorption band is given in wave numbers \tilde{v} in cm⁻¹. The intensities of the bands were characterized as follows: vs = very strong 0–10% T, s = strong 11–40% T, m = medium 41–70% T, w = weak 71–90% T, vw = very weak, 91–100% T. Dinitrogen (N_2) adsorption experiments were carried out on a Thermo ScientificTM Surfer at 77 K. Specific surface areas (BET and Langmuir) were calculated at a relative pressure range of $p/p_0 = 0.05$ -0.3. Cumulative volumes were calculated at a relative pressure of $p/p_0 = 0.99$. Elemental analyses were performed on an Elementar vario MICRO device using a Sartorius M2P precision balance. The following abbreviations were used: calcd. = calculated data, found = measured data. Thermogravimetric analyses (TGA) were performed under N₂ on a Shimadzu TGA-50 thermogravimetric analyser with a heat rate of 10 °C min⁻¹. Powder X-ray diffraction (PXRD) patterns were measured at room temperature using a STORE STADI-P diffractometer with CuKα radiation. Scanning electron microscopy was carried out on a Zeiss Supra 55 and a Zeiss Merlin. Solvents, reagents and chemicals were purchased from Sigma-Aldrich, ABCR and Fisher Scientific. All solvents, reagents and chemicals were used as purchased unless stated otherwise. Tetrakis(4-ethynylphenyl)methane [1], tetrakis(4mercaptophenyl)methane [2] and 1,4-bis(tris(4'-ethynyl-phenyl)methyl)benzene [3] were synthesized according to literature procedures.

Synthetic procedures

Synthesis of hyper-crosslinked polymers (HCPs) via thiol-yne reaction:


HCP **3**:

In a sealed reaction vessel, 70.0 mg of tetrakis(4-ethynylphenyl)methane (168 μ mol, 1.00 equiv), 75.4 mg of tetrakis(4-mercaptophenyl)methane (168 μ mol, 1.00 equiv) and 1.10 mg of AIBN (6.72 μ mol, 4.00 mol %) were dissolved in 4 mL toluene and stirred for 15 h at 80 °C. The evolved solid was filtered and washed with toluene (50 mL), ethyl acetate (50 mL), methanol (50 mL), dichloromethane (50 mL) and acetone (50 mL). Finally, the product was dried at 80 °C in vacuo for 16 h to yield 135 mg (90%) of HCP **3** as a yellowish powder. – IR (ATR) \tilde{v} (cm⁻¹) = 3023 (vw), 1590 (vw), 1485 (w), 1401 (vw), 1192 (vw), 1091 (vw), 1014 (w), 937 (w), 811 (w), 740 (vw), 625 (vw), 551 (vw). – C₅₈H₄₀S₄ (864.2): calc. C 80.52, H 4.66, S 14.84, found C 79.06, H 4.71, S 14.55.


HCP **5**:

In a sealed reaction vessel, 72.0 mg of 1,4-bis(tris(4'-ethynylphenyl)methyl)benzene (102 µmol, 1.00 equiv), 68.6 mg of tetrakis(4-mercaptophenyl)methane (153 µmol, 1.50 equiv) and 0.70 mg of AIBN (4.07 µmol, 4.00 mol %) were dissolved in 4 mL toluene and stirred for 15 h at 80 °C. The evolved solid was filtered and washed with toluene (50 mL), ethyl acetate (50 mL), methanol (50 mL), dichloromethane (50 mL) and acetone (50 mL). Finally the product was dried at 80 °C in vacuo for 16 h to yield 134 mg (95%) of HCP **5** as an orange powder. – IR (ATR) \tilde{v} (cm⁻¹) = 3016 (vw), 1589 (vw), 1484 (vw), 1399 (vw), 1191 (vw), 1089 (vw), 1014 (vw), 936 (vw), 808 (w), 729 (vw), 545 (vw). – $C_{374}H_{256}S_{24}$ (5513.3): calc. C 81.38, H 4.68, S 13.94, found C 79.34, H 4.49, S 13.20.

Adsorption measurements

Figure S1: The N_2 isotherms of HCP **3** (red: adsorption, black: desorption) at 77 K (specific surface area (BET) of 470 m²/g).

Figure S2: The N_2 isotherms of HCP **5** (red: adsorption, black: desorption) at 77 K (specific surface area (BET) of 650 m²/g).

PXRD patterns

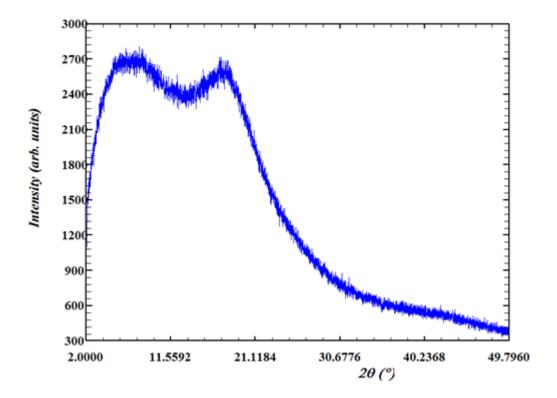
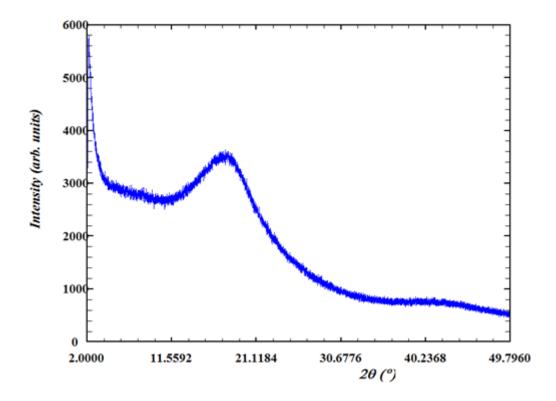
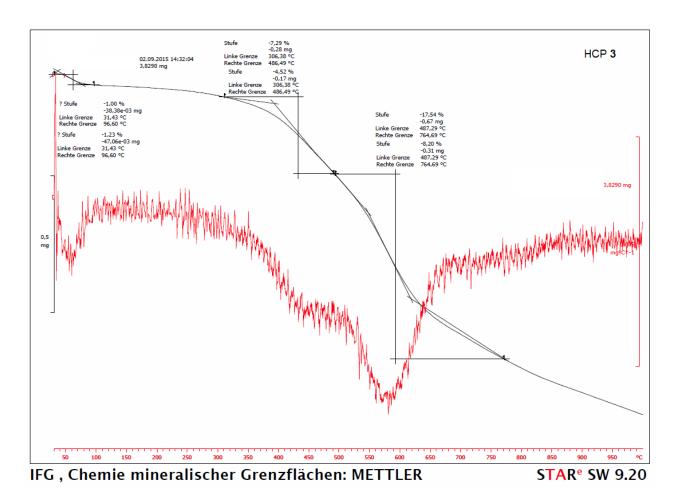




Figure S3: PXRD of HCP 3.

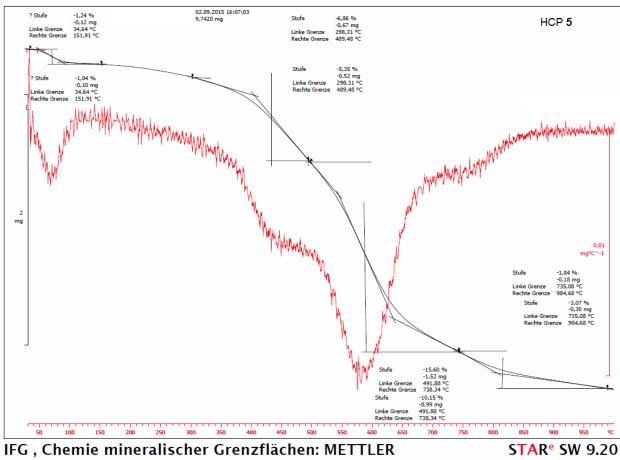
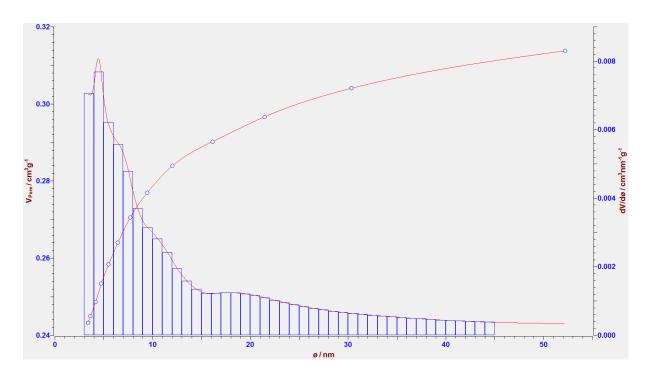


Figure S4: PXRD of HCP **5**.

TGA measurements


Figure S5: TGA curve of HCP **3**.

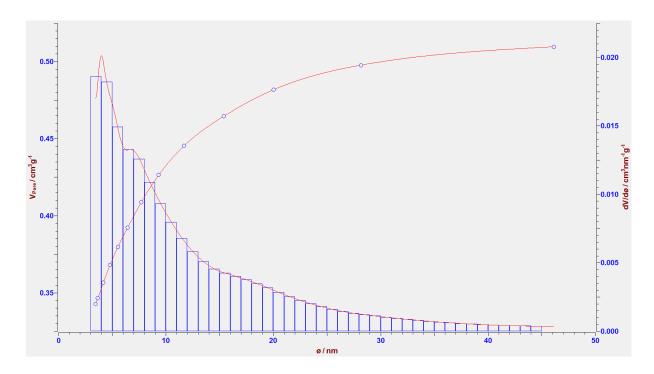

STARe SW 9.20

Figure S6: TGA curve of HCP **5**.

Pore size distributions

Figure S7: Pore size distribution of HCP **3** using the Horvath and Kawazoe model in the pressure range of $p/p_0 = 0.35-0.95$.

Figure S8: Pore size distribution of HCP **5** using the Horvath and Kawazoe model in the pressure range of $p/p_0 = 0.35-0.95$.

References

- 1. Pandey, P.; Farha, O. K.; Spokoyny, A. M.; Mirkin, C. A.; Kanatzidis, M. G.; Hupp, J. T.; Nguyen, S. T. *J. Mater. Chem.* **2011**, *21*, 1700–1703.
- 2. Monnereau, L.; Nieger, M.; Muller, T.; Bräse, S. Adv. Funct. Mater. **2014**, 24, 1054–1058.
- 3. Plietzsch, O.; Schade, A.; Hafner, A.; Huuskonen, J.; Rissanen, K.; Nieger, M.; Muller, T.; Bräse, S. *Eur. J. Org. Chem.* **2013**, 283–299.