Supporting Information File 1
for
The digital code driven autonomous synthesis of

ibuprofen automated in a 3D-printer-based robot

Philip J. Kitson, Stefan Glatzel, and Leroy Cronin*
Address: WestCHEM, School of Chemistry, The University of Glasgow, University

Avenue, Glasgow G12 8QQ, UK

Email: Leroy Cronin - Lee.Cronin@glasgow.ac.uk

*Corresponding author

Full experimental details, the source code of the process control
software, along with information on the 3D printing settings for the

reactor vessel fabrication

S1

Contents

General experimental FEMATKSc.viii i et e e e rtre e e e tre e e e saba e e e eenbeeeeesnneeeeeenneeas S3
[20e] oYo) de [T T={ =Yg o I ofoT o 1S3 { { Ui 4 Lo Yo PRSP S4
3D Printer MOdifiCatiONSciiiiieiiie et st ene e b e sS4
Process CONTIOl SOFEWAIE ...couveiiiiieiie ettt et ettt e s bt e e s bt e s st e e sabeesbeeesareenane S6
Full process control SOftWare COAE. ... et S7
D TeTY F=d Yo VY=Y IR S27
DEVICE MOAE ...ttt ettt e st e e st e e sttt e sabe e s bt e e beeesabeeesabeesabeesneeesabeenans S27
o T0T o o) £=T T3 V7 014 V=T RSP UR S30

S2

General experimental remarks

All chemical reagents and solvents were purchased from Sigma Aldrich and used without
further purification.

'H NMR and *C NMR: *H NMR and crude *C NMR spectra were recorded on a Bruker Avance
400 MHz machine at 298 K, and chemical shifts are reported in ppm relative to residual solvent
signal (multiplicities are given as s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, with
coupling constants reported in Hz). Final product *C NMR and two dimensional NMR spectra
were recorded on a Bruker Avance Il 500 MHz machine at 298 K.

Mass spectrometry: Mass spectra were obtained using a Q-trap, time-of-flight MS (MicroTOF-
Q MS) instrument equipped with an electrospray (ESI) source supplied by Bruker Daltonics Ltd.
Analysis was carried out in MeOH, collected in positive ion mode. The spectrometer was
calibrated with the standard tune-mix to give a precision of ca.1.5 ppm in the region of m/z 100-
3000.

S3

Robot design and construction

3D Printer modifications

A RepRap 3D printer kit, model Prusa i3, was purchased from RepRap Source (Germany,
www.reprapsource.com) and assembled according to manufacturer specifications. The firmware
running on the mainboard of the printer is Marlin (https://github.com/MarlinFirmware/Marlin).
This printer was then modified to incorporate the required liquid handling elements for the
synthesis of ibuprofen.

e IR ——

Figure S1: Prusa i3 RepRap printer modified for the automated synthesis of Ibuprofen. (a) Arduino control boards for in-
house developed pumps. (b) Extruder / needle holder carriage for 3Dprinting / liquid deposition. (c) 3D printed reaction
vessel. (d) In-house developed pumps for liquid handling.

We designed a custom holder for the mounting point of the syringes required for the liquid
handling capabilities of the robot (Figure S1). This carriage was designed around the existing
RepRap extruder mounting points and Luer (Male) to 1/4"-28 Flat Bottom (Female),
ETFE/polypropylene connectors from Kinesis (UK, Part #: P-675). This carriage contained space for
six Luer connectors, five of which were fitted with PTFE-lined dispensing tips (length: 1.5”;
internal diameter: 0.006”; Fisnar Europe Ltd.). These were then connected to PTFE 0.8 mm ID

4

https://github.com/MarlinFirmware/Marlin

tubing (kinesis using standard %”-28 connectors. This tubing was then connected to in-house
developed syringe pumps for liquid handling.

S 911.0 mm

9.5 mm

Figure S2:Top left: Photograph of the 3D printed needle holder carriage in place on the modified 3D printer chassis. Top

right:render of the 3D printed needle holder carriage. Bottom: Annotated CAD design of the 3D printed needle holder
carriage.

The designed carriage was exported as an STL (stereo-lithography) file and converted to 3D
printer instructions (gcode) using the open-source software slic3r (http://slic3r.org/). The thus
obtained carriage file was printed on the same 3D printer using polypropylene (PP) supplied by
Barnes plastic welding Itd. Finally, the designed holder was fixed to the exiting X-axis carriage of
the 3D printer with two 25 mm M3 screws.

S5

http://slic3r.org/

Process control software

The software to control our robotic platform was written in python and developed and run in the
Integrated Development Environment PyCharm Community Edition
(https://www.jetbrains.com/pycharm/) the 3D printing is handled by the open-source 3D printer

web interface Octoprint (http://octoprint.org/) (see Figure S3). The full source code is
reproduced below.

P

Figure $3: Left: Screenshot of the Process control software running in the PyCharm environment. Right: Sreenshot of the
Octoprint 3D printing web interface.

S6

Full process control software code.

#/*
*/
#/*
*/
#/*
*/
#/*
*/
#/*
*/
#/*
*/
#/*
*/
#/*
*/
#/*
*/
#/*
*/
#/*
*/

!/usr/bin/env python

ReactoBotIbuprofenSynthesis.py

(c) 2013 - 2014 Stefan Glatzel, The Cronin Group, University of Glasgow

WARNING! This file intentionally has almost no error handling!

It is solely intended to be a hardcoded synthesis of Ibuprofen.

It assumes that the robot is in full working order and all the syringes

are preloaded with the correct chemicals in the correct amounts.

system imports
import datetime
import math
import os

import time

additional modules
import serial
from OctoClient import OctoClient

print ("## setting variables")

#general variables

various debug levels, level above 2 will trigger every break, level above 5
will produce verbose output from the pumps

debuglLevelVerboseOutput = 9

debugLevelTriggerBreaks = 3
debugLevelEnableSkipping = 6

runInDebuglevel = 10

newLineChar = "

newParagraphChar = "\n"
syringePumpLevelReturnString = "Current syringe level: "
numberOfErrors = 0

S7

general "chemistry" settings
stdOverDraw =
stdNumberOfFillEmptyCycles =
stdEquilibrationTime =
stdDropletSize =

necessary command codes for the pumps
getCurrentLevelOPCode =
setAbsoluteOPCode =

setRelativeOPCode =

homeSyringeOPCode =

endCommandChar =

COM ports number ist one less than in
isoButylBenzenePort =

propanoicAcidPort =
triFluoroMethaneSulfonicAcidPort =
diAcetoxyIodoBenzenePort =

workUpPort =

reactoBotPort =

syringe positions [X, Y, Z]
isoButylBenzenePosition =
propanoicAcidPosition =
triFluoroMethaneSulfonicAcidPosition =
diAcetoxylodoBenzenePosition =
workUpPosition =

sufficientZHeight =

OctoPrint address
octoPrintAddress =
octoPrintPort =
octoPrintAPIKey =

amounts of all chemicals needed in mL

isoButylBenzeneAmount =
propanoicAcidAmount =
triFluoroMethaneSulfonicAcidAmount =
diAcetoxyIodoBenzeneAmount =
workUpAmount =

10
11
12
19
H\nvv

"COM XX'" (COM15 -> 14)
11 # coMiz
15 # COM16
14 # CoM15

4 # coM5
5 # CoM6
6 # CoM7

136, 80, 15]
170, 80, 15]
170, 97, 151
153, 97, 151
153, 80, 15]

45

LR

##
##
#i
#i
#i

gCode file path for the reaction vessel

gCodeFileName =
gCodeFilePath =
gCodeFileName)

"15mL Reaction Vessel T2.gcode"
os.path.join(os.path.dirname(_file),

print ("## connecting to all pumps and blocking the COM ports")

establishing the serial connections
standardConnectionSpeed =
isoButylBenzenePump =
standardConnectionSpeed)
propanoicAcidPump =
standardConnectionSpeed)

9600
serial.Serial (isoButylBenzenePort,

serial.Serial (propanoicAcidPort,

S8

triFluoroMethaneSulfonicAcidPump =

serial.Serial (triFluoroMethaneSulfonicAcidPort, standardConnectionSpeed)
diAcetoxyIodoBenzenePump = serial.Serial (diAcetoxyIodoBenzenePort,
standardConnectionSpeed)

workUpPump = serial.Serial (workUpPort,

standardConnectionSpeed)

def returnFormattedTimeStamp () :

mwmn

returns a formatted time stamp with colon and space to use 1in print or log

output

:return: formatted time stamp

mwmn

return datetime.datetime.fromtimestamp (time.time()) .strftime ('%Y-%m-%d

SH:%M:%S'") + ": "

def homeSyringeCommand () :

men

returns the formatted and encoded command string to home a syringe pump

:return: formatted and encoded command string

men

return bytes (str (homeSyringeOPCode) + endCommandChar, encoding="UTEF-8")

def getCurrentLevelCommand () :

men

returns the formatted and encoded command string to get the current level of

a syringe pump

:return: formatted and encoded command string

mon

return bytes (str (getCurrentLevelOPCode) + endCommandChar, encoding="UTF-8")

def setRelativeCommand (mLToMove) :

mn

returns the formatted and encoded command string to trigger a relative level

change in a syringe pump

:param mLToMove: (float) level to go to
:return: formatted and encoded command string

return bytes (str(setRelativeOPCode) + " " + str (mLToMove) + endCommandChar,
encoding="UTEF-8")

def setAbsoluteCommand (mLToMove) :

mn

returns the formatted and encoded command string to move a syringe pump to

an absolute level

S9

:param mLToMove: (float) level to go to

:return: formatted and encoded command string

return bytes (str (setAbsoluteOPCode) + " " + str (mLToMove) + endCommandChar,
encoding="UTEF-8")

def printErrorMessage (errorMessage, breakAfter=False):
won
encases an error message 1in exclamation marks and breaks after the error if

so desired

:param errorMessage: (string) message to present

:param breakAfter: (boolean) wait for acknowledgement by the user (default:
False)

:return: True

mon

print (returnFormattedTimeStamp () + errorMessage + newLineChar)

if breakAfter or runInDebuglLevel > debuglevelTriggerBreaks:

input ("Acknowledge error and continue? Press Enter to continue...")

return True

def debugSkipStep (step):

mmn

handles debug mode step skipping and returns true or false depending on
whether the user wants to skip a given

step or not

:param step: (string) description of the step that the user is queried to
skip

:return: (boolean) skip step or not

skipStep = ""

if runInDebuglLevel > debugLevelEnableSkipping:

while skipStep != "yes":
skipStep = input("Do you want to skip \"" + step + "\"? (type

\"yes\" or \"no\" and press enter)\n")

if skipStep == "no"
break
if skipStep == "yes":
print (returnFormattedTimeStamp () + "skipping \"" + step + "\"" +
newLineChar)
return True
else:
return False
else:

S10

return False

def getCurrentSyringeLevel (syringePump) :
getting the current syringe level
print (returnFormattedTimeStamp () + "getting current syringe level..." +

newLineChar)

syringePump.write (getCurrentLevelCommand ())

answer = b""
while answer|[:len (syringePumpLevelReturnString)] !=
bytes (syringePumplLevelReturnString, encoding="UTF-8"):
answer = syringePump.readline () .strip()
if runInDebugLevel > debugLevelVerboseOutput:

print("a: " + bytes.decode (answer, encoding="UTF-8"))

removing the initial part of the return string

currentLevel = bytes.decode (answer|[len (syringePumplLevelReturnString) :],
encoding="UTEF-8")

splitting the remaining string by spaces

currentLevel = currentLevel.split ()
assuming that the first part of that string is the remaining volume in mL
(as float)

currentLevel = float (currentLevel[0])

print (returnFormattedTimeStamp () + "current syringe level: " +

str (currentLevel) + " mL" + newLineChar)

return currentLevel

def dispenseDropWise (syringePump, totalAmount, totalTime,

dropletSize=stdDropletSize) :

mn

method to emulate drop wise dispensing of a liquid over a given period of

time

:param syringePump: (Serial.serial) pump to communicate with

:param totalAmount: (float) total amount to dispense in mL

:param totalTime: (integer) time in minutes during which to dispense the
liquid

:param dropletSize: (float) dispensing step size in mL (default: 0.1)

:return: True

mmn

getting the current syringe level

currentLevel = getCurrentSyringelevel (syringePump)

if currentlLevel >= totalAmount:

print (returnFormattedTimeStamp () + "dispensing " + str(totalAmount) + "

mL in " + str(

totalTime) + " min." + newLineChar)
getting the floor division i.e. 1.45 mL in 0.5 mL droplets will give 2
totalNumberOfDroplets = totalAmount // dropletSize
if runInDebuglLevel > debugLevelVerboseOutput:

S11

print (returnFormattedTimeStamp () + "total number of droplets: " +
str (totalNumberOfDroplets) + newLineChar)

remainingLiquid = totalAmount - (totalNumberOfDroplets * dropletSize)
if runInDebugLevel > debugLevelVerboseOutput:
print (returnFormattedTimeStamp () + "size of last droplet: " +

str(remainingLiquid) + newLineChar)
timeBetweenDroplets = (totalTime * 60) / totalNumberOfDroplets
if runInDebuglevel > debugLevelVerboseOutput:
print (returnFormattedTimeStamp () + "time between droplets: " +
str (timeBetweenDroplets) + newLineChar)
dispensedDroplets = 0
while dispensedDroplets < totalNumberOfDroplets:
dispensedDroplets += 1
print (returnFormattedTimeStamp () + "dispensing droplet " +
str (dispensedDroplets) +
" of " + str(totalNumberOfDroplets) + " (" + str(dropletSize) +
" mL)" 4+ newLineChar)
syringePump.write (setRelativeCommand (-dropletSize))
waitForMovementToFinish (syringePump)
print (returnFormattedTimeStamp () + "waiting " + str(
timeBetweenDroplets) + " s to next droplet.”" + newLineChar)

time.sleep (timeBetweenDroplets)

if remainingLiquid > 0:
print (returnFormattedTimeStamp () + "dispensing the remaining liquid

(" + str(
remainingLiquid) + " mL)" + newLineChar)
syringePump.write (setRelativeCommand (-remainingLiquid))
waitForMovementToFinish (syringePump)
else:

printErrorMessage ("ERROR! Syringe does not contain enough liquid!
(Current level: " + str(currentlLevel) +
" mL. Requested amount: " + str(totalAmount) + " mL.")

return True

def waitForMovementToFinish (serialConnectionForListening, waitForM400=False) :

won

waits on a serial connection to receive "ok" as acknowledgement of a
finished movement.

if waitForM400 is set it sends "M400" after it receives an initial "ok",
because the Marlin firmware on RepRap

printers acknowledges received commands directly with "ok" and only signals
finished movements after being "asked"

to do so with "M400"

:param serialConnectionForListening: (Serial.serial) serial connection to
listen on
:param waitForM400: (boolean) the Marlin firmware on RepRap printers
acknowledges received commands with "ok"
-> send M400 (wait for movement to finish) and wait again for "ok"
for movement finished

:return: True

mn

S12

answer = b""
while answer != b"ok":
answer = serialConnectionForListening.readline () .strip()
if runInDebuglLevel > debuglLevelVerboseOutput:
print (returnFormattedTimeStamp () + "a: " + bytes.decode (answer,
encoding="UTF-8") + newLineChar)

answer = b""

if waitForM400:

serialConnectionForListening.write (b"M400\n")

while answer != b"ok":
answer = serialConnectionForListening.readline () .strip()
if runInDebuglLevel > debuglLevelVerboseOutput:
print (returnFormattedTimeStamp () + "a: " + bytes.decode (answer,
encoding="UTF-8") + newLineChar)

return True

def agitateSample (serialConnectionToPrinter, agitationTime,
agitationAmplitude=10, agitationSpeed=10000) :

mon

:param serialConnectionToPrinter:

:param agitationTime:

:param agitationAmplitude:

:param agitationSpeed:

:return:

won

print (returnFormattedTimeStamp () + "agitating sample for " +
str(agitationTime / 3600) + "™ h..." + newLineChar)

switch to relative movements

serialConnectionToPrinter.write (b"G91\n")

#read the "ok" from the printer, otherwise it will stay in the buffer and
mess up the next check

waitForMovementToFinish (serialConnectionToPrinter)

set the percentage to 0 and record the start time
percentDone = 0
start = time.time ()

while time.time() < start + agitationTime:
serialConnectionToPrinter.write (
bytes ("Gl Y" + str(agitationAmplitude) + " F" + str(agitationSpeed)
+ "\n", encoding="UTF-8")
)
wait for movement to finish

waltForMovementToFinish (serialConnectionToPrinter, True)

serialConnectionToPrinter.write(
bytes ("Gl Y-" + str(agitationAmplitude) + " F" + str(agitationSpeed)
+ "\n", encoding="UTF-8")
)

wait for movement to finish

513

wailtForMovementToFinish (serialConnectionToPrinter, True)

if math.floor (100 * (time.time() - start) / agitationTime) >
percentDone:
percentDone = math.floor (100 * (time.time() - start) /
agitationTime)
print(

"{0}: Agitation to {1}% done. Approximately {2} h, {3} min, {4}
sec remaining.{5}".format (
returnFormattedTimeStamp (),

percentDone,
str(math.floor ((start + agitationTime - time.time()) /
3600)),
str(math.floor ((start + agitationTime - time.time() -
(math.floor ((start + agitationTime - time.time()) / 3600) * 3600)) / 60)),
str(
round (
start + agitationTime - time.time() - (
(math.floor ((start + agitationTime - time.time ()
- (math.floor ((start + agitationTime - time.time()) / 3600) * 3600)) / 60) *
60) +
(math.floor ((start + agitationTime -
time.time()) / 3600) * 3600)

)l
newLineChar

switch back to absolute movements

serialConnectionToPrinter.write (b"G90\n")

#read the "ok" from the printer, otherwise it will stay in the buffer and
mess up the next check

waitForMovementToFinish (serialConnectionToPrinter)

return True

def raiseZForXYMovement () :

mon

:return:

print (returnFormattedTimeStamp () + "raising Z" + newLineChar)

myReactoBot.write (bytes ("Gl Z" + str(sufficientZHeight) + " F100\n",
encoding="UTF-8"))

wait for movement to finish

print (returnFormattedTimeStamp() + "...waiting..." + newLineChar)

wailtForMovementToFinish (myReactoBot, True)

print (returnFormattedTimeStamp () + "done..." + newParagraphChar)

return True

S14

def lowerZForChemicalDispensing(syringePosition) :

mon

:param syringePosition:

:return:

o

print (returnFormattedTimeStamp () + "lowering Z" + newLineChar)

myReactoBot.write (bytes ("Gl 2" + str(syringePosition[2]) + " F100\n",
encoding="UTEF-8"))

wait for movement to finish

print (returnFormattedTimeStamp () + "...waiting..." + newLineChar)

waitForMovementToFinish (myReactoBot, True)

print (returnFormattedTimeStamp () + "done..." + newParagraphChar)

return True

def moveToSyringeXYPosition (syringePosition) :

men

:param syringePosition:

:return:

print (returnFormattedTimeStamp () + "move to syringePosition X / Y" +
newLineChar)

myReactoBot.write (

bytes ("Gl X" + str(syringePosition[0]) + " Y" + str(syringePosition[1])

+ " F10000\n", encoding="UTF-8"))

wait for movement to finish

print (returnFormattedTimeStamp () + "...waiting..." + newLineChar)

wailtForMovementToFinish (myReactoBot, True)

print (returnFormattedTimeStamp () + "done..." + newParagraphChar)

return True

def moveToSyringeFillPosition():

mon

:return:

raiseZForXYMovement ()

move X back home

myReactoBot.write (bytes ("Gl X0 F10000\n", encoding="UTF-8"))
wait for movement to finish

waitForMovementToFinish (myReactoBot, True)

lower Z into beaker
myReactoBot.write (bytes ("Gl Z0 F100\n", encoding="UTF-8"))
wait for movement to finish

waitForMovementToFinish (myReactoBot, True)

515

return True

def dispenseChemical (syringePump) :

A

:param syringePump:
:return:
mmn

print (returnFormattedTimeStamp () + "dispensing chemical (homing syringe)...
+ newLineChar)

syringePump.write (homeSyringeCommand ())

wait for movement to finish

print (returnFormattedTimeStamp () + "...waiting..." + newLineChar)

waitForMovementToFinish (syringePump)

print (returnFormattedTimeStamp () + "done..." + newParagraphChar)

return True

def fillSyringe (syringePump, amountOfChemical, overDraw=stdOverDraw,
numberOfFillEmptyCycles=stdNumberOfFillEmptyCycles,
equilibrationTime=stdEquilibrationTime) :

homing the syringe

men

:param syringePump:

:param amountOfChemical:

:param overDraw:

:param numberOfFillEmptyCycles:

:param equilibrationTime:

:return:

won

print (returnFormattedTimeStamp () + "homing the syringe..." + newLineChar)
syringePump.write (homeSyringeCommand ())

wait for homing to finish

waitForMovementToFinish (syringePump)

setting a minimum cycling liquid of 4 mL (to accommodate glass syringes,
which need to wet the plunger to seal ok)

totalAmountForCycling = amountOfChemical + overDraw

#1f totalAmountForCycling < 4:

totalAmountForCycling = 4

running the fill cycles
finishedCycles = 0
while finishedCycles < numberOfFillEmptyCycles:
increment the cycle number so it's displayed correctly
finishedCycles += 1
print (returnFormattedTimeStamp () + "fill cycle " + str(finishedCycles) +
newLineChar)
print (returnFormattedTimeStamp () + "drawing in " +
str(totalAmountForCycling) + " mL" + newLineChar)
actually telling the syringe to move
syringePump.write (setAbsoluteCommand (totalAmountForCycling))

S16

waiting for movement
waitForMovementToFinish (syringePump)
print (returnFormattedTimeStamp () + "waiting " + str(equilibrationTime)
" s to equilibrate" + newLineChar)
equilibrating
time.sleep(equilibrationTime)
print (returnFormattedTimeStamp () + "expelling all liquid again" +
newLineChar)
expelling liquid again
syringePump.write (homeSyringeCommand ())
waiting for movement

waitForMovementToFinish (syringePump)

filling the desired amount of chemical

print (returnFormattedTimeStamp () + "drawing in correct amount (" +
str (amountOfChemical) + " mL)" + newLineChar)

syringePump.write (setAbsoluteCommand (amountOfChemical))

waitForMovementToFinish (syringePump)

waiting for pressure equilibration
print (returnFormattedTimeStamp () + "waiting " + str(equilibrationTime) + "
to equilibrate"™ + newLineChar)

time.sleep(equilibrationTime)

return True

def fillAllSyringes (acknowledgeEveryFill=True) :

men

:param acknowledgeEveryFill:

:return:

if runInDebuglevel > debuglLevelTriggerBreaks:
acknowledgeEveryFill = True

###

filling syringe 1 with isoButylBenzene

#H##

print (returnFormattedTimeStamp () + "ReactoBot ready to fill syringe 1

(isoButylBenzene, COM" +
str (isoButylBenzenePort + 1) + ", " + str(isoButylBenzeneAmount) + "
mL) ? The pump is going to over draw by 1 mL "
"and
expel all liquid again three times before drawing in the correct amount of

chemical." + newLineChar)
if acknowledgeEveryFill:
input ("The cycle starts with homing the syringe! Ready? Press Enter to

continue...")

print (returnFormattedTimeStamp () + "Beginning fill cycle..." + newLineChar)
if not debugSkipStep ("filling of isoButylBenzenePump") :

fillSyringe (isoButylBenzenePump, isoButylBenzeneAmount)
print (returnFormattedTimeStamp() + "...filling cycle for isoButylBenzene

done." + newParagraphChar)

4L

s

517

#H##
done filling syringe 1 with isoButylBenzene
#H##

#H##

filling syringe 2 with propanoicAcid

#H#

print (returnFormattedTimeStamp () + "ReactoBot ready to fill syringe 2
(propanoicAcid, COM" +

str (propanoicAcidPort + 1) + ", " + str(propanoicAcidAmount) + " mL)?
The pump is going to over draw by 1 mL "
"and

expel all ligquid again three times before drawing in the correct amount of

chemical." + newLineChar)
if acknowledgeEveryFill:
input ("The cycle starts with homing the syringe! Ready? Press Enter to

continue...")

print (returnFormattedTimeStamp () + "Beginning fill cycle..." + newLineChar)
if not debugSkipStep ("filling of propanoicAcidPump") :
fillSyringe (propanoicAcidPump, propanoicAcidAmount)

print (returnFormattedTimeStamp () + "...filling cycle for propanoicAcid
done." + newParagraphChar)

#H##

done filling syringe 2 with propanoicAcid

###

###

filling syringe 3 with triFluoroMethaneSulfonicAcid

#H##

print (returnFormattedTimeStamp () + "ReactoBot ready to fill syringe 3
(triFluoroMethaneSulfonicAcid, COM" +
str (triFluoroMethaneSulfonicAcidPort + 1) + ", " +

str (triFluoroMethaneSulfonicAcidAmount) + " mL)? The pump "

"is going to over draw by 1 mL and expel all liquid again three times before

drawing in the correct amount "

"of chemical." + newLineChar)
if acknowledgeEveryFill:
input ("The cycle starts with homing the syringe! Ready? Press Enter to

continue...")

print (returnFormattedTimeStamp () + "Beginning fill cycle..." + newLineChar)
if not debugSkipStep ("filling of triFluoroMethaneSulfonicAcidPump") :
fillSyringe (triFluoroMethaneSulfonicAcidPump,
triFluoroMethaneSulfonicAcidAmount, 1)

print (returnFormattedTimeStamp () + "...filling cycle for
triFluoroMethaneSulfonicAcid done." + newParagraphChar)

#H##

done filling syringe 3 with triFluoroMethaneSulfonicAcid

###

#H##

filling syringe 4 with diAcetoxyIodoBenzene

518

#H#
print (returnFormattedTimeStamp () + "ReactoBot ready to fill syringe 4
(diAcetoxyIodoBenzene, COM" +

str (diAcetoxylodoBenzenePort + 1) + ", +
str (diAcetoxyIodoBenzeneAmount) + " mL)? The pump is going to "

"over draw by 1 mL and expel all liquid again three times before drawing in the
correct amount of chemical."
+ newLineChar)
if acknowledgeEveryFill:
input ("The cycle starts with homing the syringe! Ready? Press Enter to
continue...")

print (returnFormattedTimeStamp () + "Beginning fill cycle..." + newLineChar)
if not debugSkipStep("filling of diAcetoxyIodoBenzenePump") :

fillSyringe (diAcetoxyIodoBenzenePump, diAcetoxyIlodoBenzeneAmount)

print (returnFormattedTimeStamp () + "...filling cycle for
diAcetoxyIodoBenzene done." + newParagraphChar)

#H##

done filling syringe 4 with diAcetoxyIodoBenzene

#H##

#H##

filling syringe 5 with workUp

#H##

print (returnFormattedTimeStamp () + "ReactoBot ready to fill syringe 5
(workUp, COM" +
str (workUpPort + 1) + ", " + str(workUpAmount) + " mL)? The pump is
going to over draw by 1 mL and expel all "
"liqguid again three
times before drawing in the correct amount of chemical." + newLineChar)
if acknowledgeEveryFill:
input ("The cycle starts with homing the syringe! Ready? Press Enter to
continue...")

print (returnFormattedTimeStamp () + "Beginning fill cycle..." + newLineChar)
if not debugSkipStep("filling of workUpPump") :

fillSyringe (workUpPump, workUpAmount)

print (returnFormattedTimeStamp () + "...filling cycle for workUp done." +
newParagraphChar)

###

done filling syringe 5 with workUp

#H##

return True

def performReactionl () :

. Into printed vessel is deposited 4-iso butyl benzene (syringe 1) and
propanoic acid (syringe 2).

o [Pause to allow evaporation of low b.p. solvent]

. Slow (drop wise) addition of tri fluoro methane sulfonic acid
(syringe 3)

o [agitation - 18hr]

519

:return:

##
FIRST CHEMICAL

##

print (returnFormattedTimeStamp() + "-------------——"——"—-"———"—"—"———— "o+

newLineChar)
print (returnFormattedTimeStamp () + " step 1 - chemical 1" + newLineChar)
print (returnFormattedTimeStamp () + "----------------—"—"—"———————- +
newParagraphChar)

if not debugSkipStep ("step 1 - chemical 1"):
move to first syringe X / Y
moveToSyringeXYPosition (isoButylBenzenePosition)
move to first syringe Z
lowerZForChemicalDispensing (isoButylBenzenePosition)

dispense chemical (simply home syringe, as they are pre-filled)

dispenseChemical (isoButylBenzenePump)

1ift syringe up again
raiseZForXYMovement ()

##
SECOND CHEMICAL

#i
s (EeturnitormatteciiimeStamp () + To—sss——mecomosecoosmsaso=as +

newLineChar)
print (returnFormattedTimeStamp () + " step 1 - chemical 2" + newLineChar)

print (returnFormattedTimeStamp () + "-————-—-———-————-"—"——-"—"——-—"—~—~——~—— +

newParagraphChar)

if not debugSkipStep("step 1 - chemical 2"):
move to second syringe X / Y
moveToSyringeXYPosition (propanoicAcidPosition)
move to second syringe Z
lowerZForChemicalDispensing (propanoicAcidPosition)

dispense chemical (simply home syringe, as they are pre-filled)

dispenseChemical (propanoicAcidPump)

1lift syringe up again
raiseZForXYMovement ()

if not debugSkipStep ("wait for ether to evaporate"):
wait 60 minutes for di-ethyl-ether to evaporate
evaporationTime = 3600
agitateSample (myReactoBot, agitationTime=evaporationTime,
agitationAmplitude=15, agitationSpeed=3000)
print (returnFormattedTimeStamp () + "evaporation time over." +

newLineChar)

S20

##
THIRD CHEMICAL

##

s (returniformattecllneStemp () + Voms——cmmcmesoosoosomscssss= "o+
newLineChar)
print (returnFormattedTimeStamp () + " step 1 - chemical 3" + newLineChar)

print (returnFormattedTimeStamp () +

newParagraphChar)

if not debugSkipStep("step 1 - chemical 3"):
move to third syringe X / Y
moveToSyringeXYPosition (triFluoroMethaneSulfonicAcidPosition)

move to third syringe Z
lowerZForChemicalDispensing (triFluoroMethaneSulfonicAcidPosition)

dispenseDropWiseQuery = ""

while dispenseDropWiseQuery != "yes'":
dispenseDropWiseQuery = input ("Do you want to dispense the chemical
3 for step 1 drop wise? (type \"yes\" or \"no\" and press enter)\n")
if dispenseDropWiseQuery == "no
break

if dispenseDropWiseQuery == "yes":
print (returnFormattedTimeStamp () + "dispensing chemical drop wise."

+ newLineChar)
dispense chemical drop wise (over 10 minutes)
dispenseDropWise (triFluoroMethaneSulfonicAcidPump,
triFluoroMethaneSulfonicAcidAmount, 10)

else:
dispenseChemical (triFluoroMethaneSulfonicAcidPump)
print (returnFormattedTimeStamp () + "dispensing chemical directly." +

newLineChar)

1ift syringe up again
raiseZForXYMovement ()

move X back home
print (returnFormattedTimeStamp () + "Moving X-axis back home..." +

newLineChar)
myReactoBot.write (bytes ("Gl X0 F10000\n", encoding="UTF-8"))
wait for movement to finish
print (returnFormattedTimeStamp () + "...waiting..." + newLineChar)
wailtForMovementToFinish (myReactoBot, True)
print (returnFormattedTimeStamp () + "done..." + newLineChar)

if not debugSkipStep ("agitate sample for 18 h after step 1"):
shake sample for 18 h (= 64800 seconds)
agitateSample (myReactoBot, agitationTime=64800, agitationAmplitude=15,

agitationSpeed=3000)

return True

S21

def performReaction2():

. Slow (drop wise) addition of PhI (OAc)2
(diAcetoxyIodoBenzenePosition) in tri methyl ortho formate (syringe 4)

o [agitation - 3hr]

:return:

mon

##
FIRST CHEMICAL

#i#

print (returnFormattedTimeStamp () + "----—-—--——-—-—-——-————"———"———\——— "o+

newLineChar)
print (returnFormattedTimeStamp () +
print (returnFormattedTimeStamp () + "-—-—---—"-"-"""""""-"-"-"-"-"-"-"-~—"———

" step 2 - chemical 1" + newLineChar)

newParagraphChar)

if not debugSkipStep ("step 2 - chemical 1"):
move to first syringe X / Y
moveToSyringeXYPosition (diAcetoxyIodoBenzenePosition)
move to first syringe Z
lowerZForChemicalDispensing (diAcetoxyIodoBenzenePosition)

dispenseDropWiseQuery = ""

while dispenseDropWiseQuery != "yes'":
dispenseDropWiseQuery = input ("Do you want to dispense the chemical

for step 2 drop wise? (type \"yes\" or \"no\" and press enter)\n")

if dispenseDropWiseQuery == "no"

break

if dispenseDropWiseQuery == "yes":
print (returnFormattedTimeStamp () + "dispensing chemical drop wise.'

+ newLineChar)
dispense chemical drop wise (over 4 minutes)

dispenseDropWise (diAcetoxyIodoBenzenePump,
diAcetoxyIodoBenzeneAmount, 10)
else:
dispenseChemical (diAcetoxyIodoBenzenePump)
print (returnFormattedTimeStamp () + "dispensing chemical directly." +

newLineChar)

1ift syringe up again
raiseZForXYMovement ()

move X back home
myReactoBot.write (bytes ("Gl X0 F10000\n", encoding="UTF-8"))

wait for movement to finish
waitForMovementToFinish (myReactoBot, True)

if not debugSkipStep ("agitate sample for 3 h after step 2"):

S22

shake sample for 3 h (= 10800 seconds)
agitateSample (myReactoBot, agitationTime=10800, agitationAmplitude=15,
agitationSpeed=3000)

return True

def performReaction3():

mon

. Addition of KOH in MeOH/H20 (syringe 5)

:return:

mon

##

FIRST CHEMICAL

##

print (returnFormattedTimeStamp() + "-----------—-————————"—"————— "o+
newLineChar)

print (returnFormattedTimeStamp () + " step 3 - chemical 1" + newLineChar)

print (returnFormattedTimeStamp () + "-—-—---—"-"-"""""""-"-"-"-"-"-"-"-~—"——— "o+
newParagraphChar)

if not debugSkipStep ("step 3 - chemical 1"):
move to first syringe X / Y
moveToSyringeXYPosition (workUpPosition)
move to first syringe Z
lowerZForChemicalDispensing (workUpPosition)

dispense chemical (simply home syringe, as they are pre-filled)

dispenseChemical (workUpPump)

1ift syringe up again
raiseZForXYMovement ()

move X back home

myReactoBot.write (bytes ("Gl X0 F10000\n", encoding="UTF-8"))
wait for movement to finish

wailtForMovementToFinish (myReactoBot, True)

if not debugSkipStep ("agitate samples for 1 h after step 3"):
shake sample for 1 h (= 3600 seconds)
agitateSample (myReactoBot, agitationTime=3600, agitationAmplitude=15,
agitationSpeed=3000)

return True

if name == ' main_ ':
#H##
sending gCode and starting the print
###

this assumes that OctoPrint is already running and connected

S23

rrr

if not debugSkipStep ("printing of beaker"):

print (returnFormattedTimeStamp () + "connecting to OctoPrint..." +
newLineChar)

myOctoPrintClient = OctoClient (host=octoPrintAddress,
port=octoPrintPort, apiKey=octoPrintAPIKey)

print (returnFormattedTimeStamp () + "uploading gCode to OctoPrint..." +
newLineChar)

myOctoPrintClient.upload (pathName=gCodeFilePath,
octoPrintFileName=gCodeFileName, startPrint=True)

print (returnFormattedTimeStamp () + "printing..." + newLineChar)

inform the user of the print progress
previousCompletion = 0
while myOctoPrintClient.status () ['progress']['completion'] < 100.0:
if myOctoPrintClient.status () ['progress']['completion'] ==
previousCompletion:
time.sleep(10)
else:
previousCompletion =
myOctoPrintClient.status () ['"progress']['completion']
print (returnFormattedTimeStamp () +
myOctoPrintClient.status () ['progress']['completion'] + " %..." + newLineChar)

inform the user that the print is done
print (newLineChar + returnFormattedTimeStamp () + "print done
disconnecting from OctoPrint..." + newLineChar)
tell OctoPrint to disconnect from the printer so the printers' serial
port unblocks
myOctoPrintClient.disconnect ()
print (returnFormattedTimeStamp () + "disconnected..." + newParagraphChar)
P
needs to be created after OctoPrint is done, since the port is blocked
while printing
print (returnFormattedTimeStamp () + "connecting directly to ReactoBot..." +
newLineChar)
myReactoBot = serial.Serial (reactoBotPort, 115200)
print (returnFormattedTimeStamp () + "...waiting..." + newLineChar)
time.sleep(2)
print (returnFormattedTimeStamp () + "connected" + newParagraphChar)

if not debugSkipStep("initial homing of all axis"):
homing the printer to recover from a possible loss of position
print (returnFormattedTimeStamp () + "homing X, Y, Z..." + newLineChar)
myReactoBot.write (b"G28 F10000\n")
wait for movement to finish
print (returnFormattedTimeStamp () + "...waiting..." + newLineChar)
waitForMovementToFinish (myReactoBot, True)

print (returnFormattedTimeStamp () + "done" + newParagraphChar)

filling the syringes for the synthesis

S24

print(returnFormattedTimeStamp () + "###############" + newLineChar)
print (returnFormattedTimeStamp () + "###############" + newLineChar)

print (returnFormattedTimeStamp () + "#### preparation... filling all syringes

with the needed chemicals" + newParagraphChar)
print(returnFormattedTimeStamp () + "###############" + newLineChar)
if not debugSkipStep ("fill all syringes"):
fillAllSyringes (acknowledgeEveryFill=True)
print (returnFormattedTimeStamp () + "###############" + newLineChar)

print (returnFormattedTimeStamp () + "#### preparation done. all syringes

filled" + newLineChar)
print(returnFormattedTimeStamp () + "###############" + newLineChar)

print (returnFormattedTimeStamp () + "###############" + newParagraphChar)

if not debugSkipStep("raising Z to clear print"):
raising Z to clear print

raiseZForXYMovement ()

if not debugSkipStep("centering over print"):

print (returnFormattedTimeStamp () + "centering X and Y over print

(assuming print was made in the center of the build plate!)..." + newLineChar)

myReactoBot.write (b"G1l X100 Y100 F10000\n")

wait for movement to finish

print (returnFormattedTimeStamp () + "...waiting..." + newLineChar)
wailtForMovementToFinish (myReactoBot, True)
print (returnFormattedTimeStamp () + "done" + newParagraphChar)

###

reaction step 1

###

print (returnFormattedTimeStamp () + "########" + newLineChar)
print (returnFormattedTimeStamp () + "########" + newLineChar)

print (returnFormattedTimeStamp () + "#### starting reaction step 1...

newParagraphChar)
if not debugSkipStep ("perform reaction step 1"):
performReactionl ()
print (returnFormattedTimeStamp () + "#### reaction step 1 done" +
newLineChar)

print (returnFormattedTimeStamp () + "########" + newLineChar)
print(returnFormattedTimeStamp () + "########" + newParagraphChar)

#H#

reaction step 2

###

print (returnFormattedTimeStamp () + "########" + newLineChar)
print (returnFormattedTimeStamp () + "########" + newLineChar)

print (returnFormattedTimeStamp () + "#### starting reaction step 2...

newParagraphChar)
if not debugSkipStep ("perform reaction step 2"):
performReaction2 ()
print (returnFormattedTimeStamp () + "#### reaction step 2 done" +
newLineChar)
print (returnFormattedTimeStamp () + "########" + newLineChar)
print (returnFormattedTimeStamp () + "########" + newParagraphChar)

#H#

"o

"o

S25

reaction step 3

###

print (returnFormattedTimeStamp ()
print (returnFormattedTimeStamp ()
print (returnFormattedTimeStamp ()

newParagraphChar)

aL
L
L

"HEHHHFFHEH" + newLineChar)
"$#4#4#444#" + newLineChar)
"###4# starting reaction step 3..." +

if not debugSkipStep ("perform reaction step 3"):

performReaction3 ()
print (returnFormattedTimeStamp ()
newLineChar)
print (returnFormattedTimeStamp ()
print (returnFormattedTimeStamp ()

print (returnFormattedTimeStamp ()
newLineChar)

print (returnFormattedTimeStamp ()
newLineChar)

print (returnFormattedTimeStamp ()
newLineChar)

print (returnFormattedTimeStamp ()
newLineChar)

print (returnFormattedTimeStamp ()

newParagraphChar)

release motors

print (returnFormattedTimeStamp ()
myReactoBot.write (b"M84\n")
print (returnFormattedTimeStamp ()

L

4k

4k

"#### reaction step 3 done" +

"HEHHHFHHEH" + newLineChar)
"#####4#4" + newParagraphChar)

UHER AR+

TR+

" ibuprofen synthesis done" +

THER A AR+

U AT+

"releasing all motors" + newLineChar)

"...waiting..." + newLineChar)

wailtForMovementToFinish (myReactoBot)

print (returnFormattedTimeStamp ()

+

"done" + newParagraphChar)

S26

Design software

The 3D-printed reactors used in this work were designed using the FreeCAD software package
although any 3D modelling/CAD software with the ability to export models in an .STL file format
would suffice for this, and there are a number of other suitable alternative free/open source
candidates available on the internet. Reactor designs were translated into 3D printer instruction
files (G-code) using Slic3r software (available free from http://slic3r.org/).

Device model

Three similar reaction vessel 3D models were designed to be printed on the robotic platform of
different total internal capacities. The vessels were designed such that their external dimensions
were similar, but contained differing sized cavities within. Once printed the reaction vessels
conformed to with 5% of the dimensions of the 3D model designs. A fourth reactor vessel with
larger external and internal capacities was also produced in order to further scale up the
reaction, however it was found that the use of this reactor decreased the yield obtained (see
below).

S27

http://slic3r.org/

2 mm

8 mm
2 mm
6 mm
20 mm 20 mm 20 mm
8 mm i i J 7 mm
T 2mm g 8 mm 17:mm
17 mm + 2mm T T
10 mm 8 mm
R1 R2 R3
2 mm
13 mm 20 mm
2 mm :"'.’ ‘\“: 1
6 mm { ;
17 mm
J 8 mm

R4

Figure S4:Top left: Top view Annotated CAD design of the reaction vessels. Top right: render of the exterior of the 3D
printed reaction vessels. Bottom: Side view annotated CAD design of the 3D printed reaction vessels R1, R2 and R3 and
Top and side view of reaction vessel R4

Print settings

The device was printed in polypropylene (PP, supplied by Barnes Plastic Welding Equipment Ltd.,
Blackburn , UK), extruded at 260 °C onto a 12 mm thick PP print bed. A selection of significant
settings for PP printing on a RepRap type 3D printer are given below:

S28

Layer Height:

First Layer Height:
Perimeters:

Fill Density:

Perimeter Speed:

Small Perimeter Speed:
External Perimeter Speed:
Infill Speed:

Travel Speed:

First Layer Speed:

0.2 mm
0.35mm
5

100%

60 mm/s
60 mm/s
70%

120 mm/s
130 mm/s

30%

Other printing parameters were either redundant or had no significant impact on the print

quality of the objects printed

S29

Ibuprofen synthesis

The synthesis of ibuprofen in the automated robotic platform was achieved by running the
control software as described above. Once the reaction vessel was printed the syringe pumps
were filled with the relevant solutions by placing the solutions in vials into which the appropriate
dispensing syringe was inserted to allow the uptake of the appropriate volume of material. Care
was required when filling the trifluoromethanesulfonic acid syringe pump. The
trifluoromethanesulfonic acid was first transferred into a vial which had been purged with dry
nitrogen and fitted with a septum and a balloon filled with dry nitrogen to minimize contact with
atmospheric moisture. The dispensing syringe was then inserted into the septum to withdraw the
required material. Residual atmospheric moisture in the dead volume of the tubing tended to
cause some fuming within the vial as the trifluoromethansulfonic acid was withdrawn, however
this was minimal and contained within the vial. Once the syringe pumps were loaded with the
solutions the control software continued with the synthesis as described in the manuscript.

Initial test syntheses were performed using the debug mode described for the process control
software where each stage of the program could be skipped individually in order to isolate the
particular reaction stages. To this end the reaction mixtures at the end of individual stages were
analysed by 'H NMR in MeOD-d, to confirm the reaction progress. All test reactions were
performed in the 3D printed reaction ware as part of the automated sequence.

| | e

[T T T T T T T T T 1
9 8 7 6 5 4 3 2 1 ppm

Figure $5:'"H NMR (400 MHz, MeOD d4) comparison of friedel-crafts acylation of isobutyl benzene with propionic acid.
Top: reference spectra of isobutylbenzene (red spectrum) and propionic acid (blue spectrum). Bottom: crude reaction
mixture after completion of 1% stage of the synthesis procedure as performed in PP reaction vessel under automated

conditions. Yield by NMR for this reaction step is calculated to be approximately 71 %

S30

| s

[T T T T T T T T T

9 8 7 6 5 4 3 2 1 ppm

Figure S6:'H NMR (400 MHz, MeOD d,) comparison of 1,2-aryl migration of the product of step 1 with the reagents

PhI(OAc), and trimethyl orthoformate.. Top: reference spectra of trimethyl orthoformate (red spectrum) and Phl(OAc),
(blue spectrum). Bottom: crude reaction mixture after completion of 2" stage of the synthesis procedure as performed
in PP reaction vessel under automated conditions. NMR yield for this reaction was calculated to be approximately 64%

After completion of the automated reaction process, the crude reaction mixture was retrieved
from the reaction vessel by pipette and MeOH was removed in vacuo. To the solution was added
water and the aqueous layer was washed with Et,0 and made acidic by the addition of
concentrated HCI. The aqueous layer was then extracted with Et,0. The combined ethereal layers
were washed with distilled H,0 and brine, dried over MgSQ,, filtered and washed with Et,0, and
concentrated in vacuo. The residue was purified by reversed phase column chromatography on
C1s (60% MeCN/H,0) to give acid 4 (*H and "*C NMR spectra of retrieved ibuprofen are shown in
Figure S7 and S8). The automated procedures on the three different volume scales were
repeated 6 times each. An average yield could not be obtained for reactions with larger volume
reaction vessels, as these reactors did not give reproducible yields.

((R,S)-2-(4-(2-Methylpropyl)phenyl)propanoic acid), ibuprofen (4); *H NMR (CDCl;, 400 MHz): &
7.24(d, 2H, J = 4.6 Hz) 7.13 (d, 2H, J=8.1 Hz), 3.74 (m, 4H), 2.47 (d, 2H, J=7.2 Hz), 1.87 (m, 1H),
1.53 (d, 3H, J=7.2 Hz), 0.92 (d, 3H, J= 6.6); *C NMR (CDCl;, 100 MHz): § 180.4, 140.9, 137.0,
129.4, 127.3, 45.0, 44.9, 30.2, 22.4, 18.1; HMRS (MH+) calcd. for C;3H;50, : 207.1385, found:
207.1640. Isolated yield: See Table 3 in the manuscript.

S31

OH

Figure S7:'H NMR (400 MHz, CDCl,) of a purified ibuprofen sample obtained from automated synthesis robot.

S32

OH

T ™ T T T T T |
170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

Figure $8:°C NMR (400 MHz, CDCl3) of a purified ibuprofen sample obtained from automated synthesis robot.

S33

