Supporting Information
for
Characterization of the synthetic cannabinoid

MDMB-CHMCZCA

Carina Weber¹§, Stefan Pusch¹§, Dieter Schollmeyer¹, Sascha Münster-Müller², Michael Pütz²* and Till Opatz¹*

Address: ¹Johannes Gutenberg University Mainz, Institute of Organic Chemistry, Duesbergweg 10–14, 55128 Mainz, Germany and ²Bundeskriminalamt – Federal Criminal Police Office (BKA), Forensic Science Institute, KT 45 – Toxicology, Äppelallee 45, 65203 Wiesbaden, Germany

Email: Michael Pütz - michael.puetz@bka.bund.de; Till Opatz - opatz@uni-mainz.de

§Equal contributors
*Corresponding author

NMR spectra, UV and ECD spectra, IR and VCD spectra, HPLC/ESI-MS”, chiral HPLC, and computational chemistry
1 NMR Spectra

This section contains the NMR spectra of pure \((S)-3\) from test purchase 1 (internet shop, Dec 2015).
Figure 1.1: 1H NMR spectrum (600 MHz, CDCl$_3$) of 3.

Figure 1.2: 13C NMR spectrum (151 MHz, CDCl$_3$) of 3.
Figure 1.3: COSY spectrum (600 MHz, CDCl$_3$) of 3 (triethylammonium impurity marked with black boxes).

Figure 1.4: NOESY spectrum (600 MHz, CDCl$_3$) of 3.
Figure 1.5: HSQC spectrum (600 MHz, CDCl₃) of 3.

Figure 1.6: HMBC spectrum (600 MHz, CDCl₃) of 3.
Figure 1.7: \([^{1}H,^{15}N]\)-HSQC spectrum (600 MHz, CDCl\(_3\)) of 3.

Figure 1.8: \([^{1}H,^{15}N]\)-HMBC spectrum (600 MHz, CDCl\(_3\)) of 3.
2 UV and ECD Spectra

This section contains the UV and ECD spectra of pure \((S)\)-3 from test purchase 1 (internet shop, Dec 2015).

2.1 TD-B3LYP/6-311++G**/IEFPCM

![UV and ECD Spectra](image)

Figure 2.1: Observed (top) and calculated (bottom) UV spectra for \((S)\)-3 in MeCN.

![UV and ECD Spectra](image)

Figure 2.2: Observed (top) and calculated (bottom) ECD spectra for \((S)\)-3 in MeCN.

Fitting results: \(\sigma/\gamma = 0.27\) eV, \(s = 3\) nm, similarity UV: 0.9465, similarity ECD: 0.6473, similarity enantiomeric ECD: 0.3034, ESI: 0.3439.
2.2 TDA-B3LYP/6-311++G**/IEFPCM

![Graph](image1)

Figure 2.3: Observed (top) and calculated (bottom) UV spectra for (S)-3 in MeCN.

![Graph](image2)

Figure 2.4: Observed (top) and calculated (bottom) ECD spectra for (S)-3 in MeCN.

Fitting results: $\sigma/\gamma = 0.28 \text{ eV}$, $s = 11 \text{ nm}$, similarity UV: 0.9762, similarity ECD: 0.4830, similarity enantiomeric ECD: 0.4130, ESI: 0.0700.
2.3 TDA-RIJCOSX-B3LYP/def2-TZVPP/COSMO

Figure 2.5: Observed (top) and calculated (bottom) UV spectra for (S)-3 in MeCN.

Figure 2.6: Observed (top) and calculated (bottom) ECD spectra for (S)-3 in MeCN.

Fitting results: $\sigma/\gamma = 0.24 \text{ eV}, s = 14 \text{ nm}$, similarity UV: 0.9854, similarity ECD: 0.4137, similarity enantiomeric ECD: 0.5367, ESI: 0.1230 (inverted).
2.4 TDA-RIJCOSX-B3LYP/def2-TZVPP/SMD

![UV and ECD Spectra](image)

Figure 2.7: Observed (top) and calculated (bottom) UV spectra for (S)-3 in MeCN.

![Fitting results](image)

Figure 2.8: Observed (top) and calculated (bottom) ECD spectra for (S)-3 in MeCN.

Fitting results: $\sigma/\gamma = 0.26$ eV, $s = 16$ nm, similarity UV: 0.9833, similarity ECD: 0.2221, similarity enantiomeric ECD: 0.6548, ESI: 0.4327 (inverted).
2.5 TDA-RIJCOSX-B3LYP/ma-def2-TZVPP/COSMO

Figure 2.9: Observed (top) and calculated (bottom) UV spectra for (S)-3 in MeCN.

Figure 2.10: Observed (top) and calculated (bottom) ECD spectra for (S)-3 in MeCN.

Fitting results: $\sigma/\gamma = 0.22$ eV, $s = 11$ nm, similarity UV: 0.9871, similarity ECD: 0.4887, similarity enantiomeric ECD: 0.3950, ESI: 0.0937.
2.6 TDA-RIJCOSX-CAM-B3LYP/def2-TZVPP/COSMO

Figure 2.11: Observed (top) and calculated (bottom) UV spectra for (S)-3 in MeCN.

Figure 2.12: Observed (top) and calculated (bottom) ECD spectra for (S)-3 in MeCN.

Fitting results: $\sigma/\gamma = 0.25 \text{ eV}$, $s = 34 \text{ nm}$, similarity UV: 0.9589, similarity ECD: 0.3943, similarity enantiomeric ECD: 0.3910, ESI: 0.0033.
2.7 TD-CAM-B3LYP/def2-TZVPP/IEFPCM

![Graph showing UV and ECD spectra for (S)-3 in MeCN.]

Figure 2.13: Observed (top) and calculated (bottom) UV spectra for (S)-3 in MeCN.

![Graph showing observed and calculated ECD spectra for (S)-3 in MeCN.]

Figure 2.14: Observed (top) and calculated (bottom) ECD spectra for (S)-3 in MeCN.

Fitting results: $\sigma/\gamma = 0.29$ eV, $s = 24$ nm, similarity UV: 0.9431, similarity ECD: 0.3274, similarity enantiomeric ECD: 0.4607, ESI: 0.1333 (inverted).
2.8 TD-\(\omega\text{B97XD/def2-TZVPP/IEFPCM}\)

![UV and ECD Spectra](image)

Figure 2.15: Observed (top) and calculated (bottom) UV spectra for (S)-3 in MeCN.

![UV and ECD Spectra](image)

Figure 2.16: Observed (top) and calculated (bottom) ECD spectra for (S)-3 in MeCN.

Fitting results: \(\sigma/\gamma = 0.29\text{ eV}, s = 26\text{ nm},\) similarity UV: 0.9428, similarity ECD: 0.2600, similarity enantiomeric ECD: 0.4873, ESI: 0.2274 (inverted).
3 IR and VCD Spectra

This section contains the IR and VCD spectra of pure (S)-3 from test purchase 1 (internet shop, Dec 2015).

![IR and VCD Spectra](image)

Figure 3.1: Observed (top) and calculated (bottom) IR spectra for (S)-3 in CDCl₃.

![VCD Spectra](image)

Figure 3.2: Observed (top) and calculated (bottom) VCD spectra for pure (S)-3 in CDCl₃.

Fitting results: $\gamma = 8 \text{ cm}^{-1}$, $s = 0.982$, similarity IR: 0.9535, similarity VCD: 0.8263, similarity enantiomeric VCD: 0.0255, ESI: 0.8008.
4 Crystal Structure Determination

![Molecular structure of (S)-3 in the solid state (ORTEP-ellipsoids drawn at 30% probability, C: black, H: gray, N: blue, O: red).](image)

Figure 4.1: Molecular structure of (S)-3 in the solid state (ORTEP-ellipsoids drawn at 30% probability, C: black, H: gray, N: blue, O: red).

Table 4.1: Crystal structure determination of (S)-3.

<table>
<thead>
<tr>
<th>Crystal data:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>molecular formula</td>
<td>C${27}$H${34}$N$_2$O$_3$</td>
</tr>
<tr>
<td>molar mass</td>
<td>434.6 g mol$^{-1}$</td>
</tr>
<tr>
<td>crystal system</td>
<td>orthorhombic</td>
</tr>
<tr>
<td>space group</td>
<td>$P2_12_12_1$</td>
</tr>
<tr>
<td>absorption coefficient (μ)</td>
<td>0.62 mm$^{-1}$ (corrected with 6 crystal faces)</td>
</tr>
<tr>
<td>transmission</td>
<td>$T_{\text{min}} = 0.91, T_{\text{max}} = 0.98$</td>
</tr>
<tr>
<td>habitus</td>
<td>colorless needle</td>
</tr>
<tr>
<td>crystal size</td>
<td>0.04 \times 0.05 \times 0.2 mm3</td>
</tr>
<tr>
<td>lattice constants (from 21059 reflections with 2.8° $< \theta < 68.1°$)</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>5.61656(18) Å</td>
</tr>
<tr>
<td>b</td>
<td>13.3920(5) Å</td>
</tr>
</tbody>
</table>
Crystal Structure Determination

\begin{align*}
c &= 31.5475(11) \text{Å} \\
V &= 2372.91(14) \text{Å}^3 \\
Z &= 4 \\
F(000) &= 936
\end{align*}

temperature

110 K

density (calculated)

1.216 g cm\(^{-3}\)

Data collection:

- **diffractometer:** STOE IPDS 2T
- **radiation:** Cu-\(K_\alpha\), \(\mu\)S mirror
- **scan type:** \(\omega\) scans
- **scan width:** 1\(^\circ\)
- **scan range:** 2\(^\circ\) \(\leq \theta \leq 68.2\(^\circ\)

 -6 \(\leq h \leq 6\)

 -16 \(\leq k \leq 16\)

 -37 \(\leq l \leq 24\)

collected reflections: 17495

independent reflections: 4263 (\(R_{int} = 0.033\))

observed reflections: 3283 (\(I/\sigma_I \geq 2\))

Data correction, structure solution and refinement:

- **corrections:** Lorentz and polarization correction
- **solution:** SHELXT-2014\(^{[1]}\)
- **refinement:** SHELXL-2014\(^{[2]}\) (full-matrix method); 317 refined parameters, weighted refinement:

\[
w = [\sigma^2(F_o^2) + (0.0975 \cdot P)^2 + 2.22 \cdot P]^{-1}
\]

with

\[
P = \frac{1}{3}[\max(F_o^2, 0) + 2 \cdot F_c^2];
\]

- hydrogen atoms generated with appropriate geometric constraints and allowed to ride on their respective parent atoms, NH localized and refined, non-hydrogen atoms anisotropically refined

discrepancy factors

\(wR_2 = 0.2109\)

\(R_1 = 0.0657\) (observed reflections)

\(R_1 = 0.0923\) (all reflections)

goodness-of-fit (\(S\))

1.121

Flack parameter (\(x\))

-0.069(136)

maximum change of parameters

0.001 \(\cdot\) esd

maximum peak height in differential Fourier synthesis

0.53 \(e \text{ Å}^{-3}\), -0.30 \(e \text{ Å}^{-3}\)

comment

ester oxygen atom and one methyl group are disordered
Figure 5.1: HPLC/ESI-MS of pure (S)-3 from test purchase 1 (internet shop, Dec 2015).
Figure 5.2: ESI-MS3(435) of pure (S)-3 from test purchase 1 (internet shop, Dec 2015).
Figure 5.3: ESI-MS3 (435→290) of pure (S)-3 from test purchase 1 (internet shop, Dec 2015).
Figure 5.4: ESI-MS$^4(435\rightarrow290\rightarrow280)$ of pure (S)-3 from test purchase 1 (internet shop, Dec 2015).
Figure 5.5: ESI-MS⁴(435→290→262) of pure (S)-3 from test purchase 1 (internet shop, Dec 2015).
Figure 5.6: ESI-MS4(435→290→194) of pure (S)-3 from test purchase 1 (internet shop, Dec 2015).
Figure 5.7: HPLC/ESI-MS of (R/S)-3 after treatment of pure (S)-3 from test purchase 1 (internet shop, Dec 2015) with NaOMe/MeOH.
Figure 5.8: HPLC/ESI-MS of “pure” (S)-3 from test purchase 2 (internet shop, May 2016, contaminant: chloro-MDMB-CHMCZCA).
Figure 5.9: ESI-MS of chloro-MDMB-CHMCZCA contained as impurity in "pure" (S)-3 from test purchase 2 (internet shop, May 2016).
Figure 5.10: HPLC/ESI-MS of extracted (S)-3 from test purchase 3 (hashish-like resin, Jan 2016, contaminant: chloro-MDMB-CHMCZCA).
Figure 5.11: HPLC/ESI-MS of extracted (S)-3 from test purchase 4 (herbal mixture, Mar 2016).
Figure 5.12: HPLC/ESI-MS of extracted (S)-3 from test purchase 5 (herbal mixture, Mar 2016).
Figure 5.13: HPLC/ESI-MS of extracted (S)-3 from police seizure 1 (herbal mixture, Feb 2015, contaminant: chloro-MDMB-CHMCZCA).
Figure 5.14: HPLC/ESI-MS of extracted (S)-3 from police seizure 2 (herbal mixture, Feb 2015, contaminants: 5F-ADB/5F-MDMB-PINACA and MMB-CHMICA).
Figure 5.15: ESI-MSn of MMB-CHMICA contained as impurity in extracted (S)-3 from police seizure 2 (herbal mixture, Mar 2015).
Figure 5.16: HPLC/ESI-MS of extracted (S)-3 from police seizure 3 (herbal mixture, Aug 2016, contaminant: 5F-ADB/5F-MDMB-PINACA).
Figure 5.17: ESI-MSn of 5F-ADB/5F-MDMB-PINACA contained as impurity in extracted (S)-3 from police seizure 3 (herbal mixture, Aug 2016).
Figure 5.18: HPLC/ESI-MS of a blank sample.
6 Chiral HPLC

Figure 6.1: Chiral HPLC of \((R/S)\)-3.

Figure 6.2: Chiral HPLC of pure \((S)\)-3 from test purchase 1 (internet shop, Dec 2015).
Figure 6.3: Chiral HPLC of “pure” (S)-3 from test purchase 2 (internet shop, May 2016).

Figure 6.4: Chiral HPLC of extracted (S)-3 from test purchase 3 (hashish-like resin, Jan 2016).
Figure 6.5: Chiral HPLC of extracted (S)-3 from test purchase 4 (herbal mixture, Mar 2016).

Figure 6.6: Chiral HPLC of extracted (S)-3 from test purchase 5 (herbal mixture, Mar 2016).
Figure 6.7: Chiral HPLC of extracted (S)-3 from police seizure 1 (herbal mixture, Feb 2015).

Figure 6.8: Chiral HPLC of extracted (S)-3 from police seizure 2 (herbal mixture, Mar 2015).
Figure 6.9: Chiral HPLC of extracted (S)-3 from police seizure 3 (herbal mixture, Aug 2016).

Figure 6.10: Chiral HPLC of a blank sample.
7 Computational Chemistry

7.1 Keyword Lines

- conformational analysis using MMFF or PM6 (Spartan):
  ```
  SEARCHMETHOD=SPARSE FINDBOATS KEEPALL CONF_SELECTION_RULE=5
  ```

- semiempirical geometry optimization (Gaussian):
  ```
  #p opt=tight pm6
  ```

- DFT geometry optimization at double-\(\zeta\) level (Gaussian):
  ```
  #p opt=tight b3pw91 6-31g(d) scrf=(iefcpcm,solvent=chloroform) int=grid=ultrafine
  ```

- DFT geometry optimization and frequency analysis at triple-\(\zeta\) level in chloroform (Gaussian):
  ```
  #p opt=tight freq=vcd b3pw91 6-31g(d,p) scrf=(iefcpcm,solvent=chloroform)
  int=grid=ultrafine
  ```

- DFT geometry optimization and frequency analysis at triple-\(\zeta\) level in acetonitrile (Gaussian):
  ```
  #p opt=tight freq=vcd b3pw91 6-311g(d,p) scrf=(iefcpcm,solvent=acetonitrile)
  int=grid=ultrafine
  ```

- TD-DFT/TDA calculations (Gaussian):
  ```
  #p td(nstates=75,singlets) b3lyp 6-311++g(d,p) scrf=(iefcpcm,solvent=acetonitrile)
  int=grid=ultrafine
  ```

- TDA calculations (Orca):
  ```
  ! B3LYP def2-TZVPP def2-TZVPP/J RIJCOSX TightSCF Grid5 FinalGrid6 GridX4
  ! COSMO(acetonitrile)
  %tddft maxdim 600 nroots 100 end
  ! B3LYP def2-TZVPP def2-TZVPP/J RIJCOSX TightSCF Grid5 FinalGrid6 GridX4
  ! COSMO
  %cosmo smd true solvent "ACETONITRILE" end
  %tddft maxdim 600 nroots 100 end
  ! B3LYP ma-def2-TZVPP AutoAux RIJCOSX TightSCF Grid5 FinalGrid6 GridX4
  ! COSMO(acetonitrile)
  %tddft maxdim 600 nroots 100 end
  ! CAM-B3LYP def2-TZVPP def2-TZVPP/J RIJCOSX TightSCF Grid5 FinalGrid6 GridX4
  ! COSMO(acetonitrile)
  %tddft maxdim 600 nroots 100 end
  ```
7.2 Boltzmann Weightings

Table 7.1: Boltzmann Analysis for (S)-3 in chloroform.

<table>
<thead>
<tr>
<th>Conformer</th>
<th>H/E_h</th>
<th>ΔH</th>
<th>ΔH</th>
<th>Fraction</th>
<th>Boltzmann Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>mmff-M5</td>
<td>-1383.842090</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.092</td>
<td>1.000</td>
</tr>
<tr>
<td>mmff-M6</td>
<td>-1383.841955</td>
<td>0.3544</td>
<td>0.0847</td>
<td>0.079</td>
<td>0.867</td>
</tr>
<tr>
<td>mmff-M7</td>
<td>-1383.841945</td>
<td>0.3807</td>
<td>0.0910</td>
<td>0.079</td>
<td>0.858</td>
</tr>
<tr>
<td>mmff-M1</td>
<td>-1383.841233</td>
<td>0.4385</td>
<td>0.1048</td>
<td>0.077</td>
<td>0.838</td>
</tr>
<tr>
<td>mmff-M3</td>
<td>-1383.841914</td>
<td>0.4621</td>
<td>0.1104</td>
<td>0.076</td>
<td>0.830</td>
</tr>
<tr>
<td>mmff-M8</td>
<td>-1383.841910</td>
<td>0.4726</td>
<td>0.1130</td>
<td>0.076</td>
<td>0.826</td>
</tr>
<tr>
<td>mmff-M4</td>
<td>-1383.841877</td>
<td>0.5592</td>
<td>0.1337</td>
<td>0.073</td>
<td>0.798</td>
</tr>
<tr>
<td>mmff-M2</td>
<td>-1383.841804</td>
<td>0.7509</td>
<td>0.1795</td>
<td>0.068</td>
<td>0.739</td>
</tr>
<tr>
<td>pm6-M5</td>
<td>-1383.841521</td>
<td>1.4939</td>
<td>0.3571</td>
<td>0.050</td>
<td>0.547</td>
</tr>
<tr>
<td>pm6-M3</td>
<td>-1383.841495</td>
<td>1.5622</td>
<td>0.3734</td>
<td>0.049</td>
<td>0.532</td>
</tr>
<tr>
<td>pm6-M1</td>
<td>-1383.841430</td>
<td>1.7328</td>
<td>0.4142</td>
<td>0.046</td>
<td>0.497</td>
</tr>
<tr>
<td>pm6-M2</td>
<td>-1383.841406</td>
<td>1.7958</td>
<td>0.4292</td>
<td>0.045</td>
<td>0.484</td>
</tr>
<tr>
<td>pm6-M4</td>
<td>-1383.841403</td>
<td>1.8037</td>
<td>0.4311</td>
<td>0.044</td>
<td>0.483</td>
</tr>
<tr>
<td>mmff-M13</td>
<td>-1383.840261</td>
<td>4.8020</td>
<td>1.1477</td>
<td>0.013</td>
<td>0.144</td>
</tr>
<tr>
<td>mmff-M9</td>
<td>-1383.840223</td>
<td>4.9018</td>
<td>1.1716</td>
<td>0.013</td>
<td>0.138</td>
</tr>
<tr>
<td>mmff-M11</td>
<td>-1383.840205</td>
<td>4.9491</td>
<td>1.1829</td>
<td>0.013</td>
<td>0.136</td>
</tr>
<tr>
<td>mmff-M14</td>
<td>-1383.840183</td>
<td>5.0068</td>
<td>1.1967</td>
<td>0.012</td>
<td>0.133</td>
</tr>
<tr>
<td>mmff-M15</td>
<td>-1383.840164</td>
<td>5.0567</td>
<td>1.2086</td>
<td>0.012</td>
<td>0.130</td>
</tr>
<tr>
<td>mmff-M10</td>
<td>-1383.840139</td>
<td>5.1224</td>
<td>1.2243</td>
<td>0.012</td>
<td>0.127</td>
</tr>
<tr>
<td>mmff-M12</td>
<td>-1383.840123</td>
<td>5.1644</td>
<td>1.2343</td>
<td>0.012</td>
<td>0.124</td>
</tr>
<tr>
<td>mmff-M16</td>
<td>-1383.840121</td>
<td>5.1696</td>
<td>1.2356</td>
<td>0.012</td>
<td>0.124</td>
</tr>
<tr>
<td>pm6-M21</td>
<td>-1383.839841</td>
<td>5.9047</td>
<td>1.4113</td>
<td>0.009</td>
<td>0.092</td>
</tr>
<tr>
<td>pm6-M19</td>
<td>-1383.839769</td>
<td>6.0938</td>
<td>1.4564</td>
<td>0.008</td>
<td>0.086</td>
</tr>
<tr>
<td>pm6-M25</td>
<td>-1383.839704</td>
<td>6.2644</td>
<td>1.4972</td>
<td>0.007</td>
<td>0.080</td>
</tr>
<tr>
<td>pm6-M28</td>
<td>-1383.839684</td>
<td>6.3170</td>
<td>1.5098</td>
<td>0.007</td>
<td>0.078</td>
</tr>
<tr>
<td>mmff-M17</td>
<td>-1383.838766</td>
<td>8.7272</td>
<td>2.0858</td>
<td>0.003</td>
<td>0.030</td>
</tr>
<tr>
<td>mmff-M18</td>
<td>-1383.838670</td>
<td>8.9792</td>
<td>2.1461</td>
<td>0.003</td>
<td>0.027</td>
</tr>
<tr>
<td>mmff-M19</td>
<td>-1383.838668</td>
<td>8.9845</td>
<td>2.1473</td>
<td>0.002</td>
<td>0.027</td>
</tr>
<tr>
<td>mmff-M20</td>
<td>-1383.838653</td>
<td>9.0238</td>
<td>2.1568</td>
<td>0.002</td>
<td>0.026</td>
</tr>
<tr>
<td>pm6-M14</td>
<td>-1383.838295</td>
<td>9.9638</td>
<td>2.3814</td>
<td>0.002</td>
<td>0.018</td>
</tr>
<tr>
<td>pm6-M13</td>
<td>-1383.838153</td>
<td>10.3366</td>
<td>2.4705</td>
<td>0.001</td>
<td>0.015</td>
</tr>
<tr>
<td>pm6-M17</td>
<td>-1383.838111</td>
<td>10.4409</td>
<td>2.4969</td>
<td>0.001</td>
<td>0.015</td>
</tr>
<tr>
<td>mmff-M21</td>
<td>-1383.836942</td>
<td>13.5161</td>
<td>3.2304</td>
<td>0.000</td>
<td>0.004</td>
</tr>
<tr>
<td>mmff-M22</td>
<td>-1383.836897</td>
<td>13.6342</td>
<td>3.2587</td>
<td>0.000</td>
<td>0.004</td>
</tr>
<tr>
<td>mmff-M23</td>
<td>-1383.836859</td>
<td>13.7340</td>
<td>3.2825</td>
<td>0.000</td>
<td>0.004</td>
</tr>
<tr>
<td>mmff-M24</td>
<td>-1383.836804</td>
<td>13.8784</td>
<td>3.3170</td>
<td>0.000</td>
<td>0.004</td>
</tr>
<tr>
<td>pm6-M44</td>
<td>-1383.835666</td>
<td>14.5033</td>
<td>3.4664</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>pm6-M41</td>
<td>-1383.835414</td>
<td>14.5689</td>
<td>3.4821</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>pm6-M47</td>
<td>-1383.836521</td>
<td>14.6214</td>
<td>3.4946</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>pm6-M265</td>
<td>-1383.834580</td>
<td>19.7175</td>
<td>4.7126</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>mmff-M76</td>
<td>-1383.834210</td>
<td>20.6889</td>
<td>4.9448</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>mmff-M74</td>
<td>-1383.834193</td>
<td>20.7336</td>
<td>4.9554</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>mmff-M95</td>
<td>-1383.834139</td>
<td>20.8754</td>
<td>4.9893</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Conformer</td>
<td>(H_{E_h})</td>
<td>(\Delta H_{kJ/mol})</td>
<td>(\Delta H_{kcal/mol})</td>
<td>Fraction</td>
<td>Boltzmann Factor</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td>mmff-M5</td>
<td>-1383.846910</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.085</td>
<td>1.000</td>
</tr>
<tr>
<td>mmff-M7</td>
<td>-1383.846813</td>
<td>0.2547</td>
<td>0.0609</td>
<td>0.076</td>
<td>0.902</td>
</tr>
<tr>
<td>mmff-M1</td>
<td>-1383.846807</td>
<td>0.2704</td>
<td>0.0646</td>
<td>0.076</td>
<td>0.976</td>
</tr>
<tr>
<td>mmff-M8</td>
<td>-1383.846796</td>
<td>0.2933</td>
<td>0.0715</td>
<td>0.075</td>
<td>0.886</td>
</tr>
<tr>
<td>mmff-M6</td>
<td>-1383.846751</td>
<td>0.4175</td>
<td>0.0998</td>
<td>0.071</td>
<td>0.845</td>
</tr>
<tr>
<td>mmff-M4</td>
<td>-1383.846730</td>
<td>0.4726</td>
<td>0.1130</td>
<td>0.070</td>
<td>0.826</td>
</tr>
<tr>
<td>mmff-M3</td>
<td>-1383.846730</td>
<td>0.4726</td>
<td>0.1130</td>
<td>0.070</td>
<td>0.826</td>
</tr>
<tr>
<td>mmff-M2</td>
<td>-1383.846671</td>
<td>0.6275</td>
<td>0.1500</td>
<td>0.066</td>
<td>0.776</td>
</tr>
<tr>
<td>pm6-M5</td>
<td>-1383.846307</td>
<td>1.5832</td>
<td>0.3784</td>
<td>0.045</td>
<td>0.528</td>
</tr>
<tr>
<td>pm6-M3</td>
<td>-1383.846272</td>
<td>1.6751</td>
<td>0.4004</td>
<td>0.043</td>
<td>0.509</td>
</tr>
<tr>
<td>pm6-M1</td>
<td>-1383.846234</td>
<td>1.7748</td>
<td>0.4242</td>
<td>0.041</td>
<td>0.489</td>
</tr>
<tr>
<td>pm6-M4</td>
<td>-1383.846227</td>
<td>1.7932</td>
<td>0.4286</td>
<td>0.041</td>
<td>0.485</td>
</tr>
<tr>
<td>pm6-M2</td>
<td>-1383.846163</td>
<td>1.9612</td>
<td>0.4687</td>
<td>0.038</td>
<td>0.453</td>
</tr>
<tr>
<td>mmff-M13</td>
<td>-1383.845480</td>
<td>3.7545</td>
<td>0.8973</td>
<td>0.019</td>
<td>0.220</td>
</tr>
<tr>
<td>mmff-M9</td>
<td>-1383.845462</td>
<td>3.8017</td>
<td>0.9086</td>
<td>0.018</td>
<td>0.216</td>
</tr>
<tr>
<td>mmff-M11</td>
<td>-1383.845445</td>
<td>3.8464</td>
<td>0.9193</td>
<td>0.018</td>
<td>0.212</td>
</tr>
<tr>
<td>mmff-M14</td>
<td>-1383.845413</td>
<td>3.9304</td>
<td>0.9394</td>
<td>0.017</td>
<td>0.205</td>
</tr>
<tr>
<td>mmff-M16</td>
<td>-1383.845399</td>
<td>3.9671</td>
<td>0.9482</td>
<td>0.017</td>
<td>0.202</td>
</tr>
<tr>
<td>mmff-M15</td>
<td>-1383.845397</td>
<td>3.9724</td>
<td>0.9494</td>
<td>0.017</td>
<td>0.201</td>
</tr>
<tr>
<td>mmff-M10</td>
<td>-1383.845378</td>
<td>4.0223</td>
<td>0.9613</td>
<td>0.017</td>
<td>0.197</td>
</tr>
<tr>
<td>mmff-M12</td>
<td>-1383.845280</td>
<td>4.2796</td>
<td>1.0228</td>
<td>0.015</td>
<td>0.178</td>
</tr>
<tr>
<td>pm6-M21</td>
<td>-1383.845113</td>
<td>4.7180</td>
<td>1.1276</td>
<td>0.013</td>
<td>0.149</td>
</tr>
<tr>
<td>pm6-M25</td>
<td>-1383.845071</td>
<td>4.8283</td>
<td>1.1540</td>
<td>0.012</td>
<td>0.142</td>
</tr>
<tr>
<td>pm6-M28</td>
<td>-1383.845037</td>
<td>4.9176</td>
<td>1.1753</td>
<td>0.012</td>
<td>0.137</td>
</tr>
<tr>
<td>pm6-M19</td>
<td>-1383.845030</td>
<td>4.9359</td>
<td>1.1797</td>
<td>0.012</td>
<td>0.136</td>
</tr>
<tr>
<td>mmff-M17</td>
<td>-1383.843576</td>
<td>8.7534</td>
<td>2.0921</td>
<td>0.003</td>
<td>0.029</td>
</tr>
<tr>
<td>pm6-M20</td>
<td>-1383.843532</td>
<td>8.8689</td>
<td>2.1197</td>
<td>0.002</td>
<td>0.028</td>
</tr>
<tr>
<td>pm6-M18</td>
<td>-1383.843478</td>
<td>9.0107</td>
<td>2.1536</td>
<td>0.002</td>
<td>0.026</td>
</tr>
<tr>
<td>pm6-M14</td>
<td>-1383.843050</td>
<td>10.1344</td>
<td>2.4222</td>
<td>0.001</td>
<td>0.017</td>
</tr>
<tr>
<td>pm6-M17</td>
<td>-1383.842942</td>
<td>10.4180</td>
<td>2.4900</td>
<td>0.001</td>
<td>0.015</td>
</tr>
<tr>
<td>pm6-M13</td>
<td>-1383.842919</td>
<td>10.4784</td>
<td>2.5044</td>
<td>0.001</td>
<td>0.015</td>
</tr>
<tr>
<td>mmff-M24</td>
<td>-1383.842184</td>
<td>12.4081</td>
<td>2.9566</td>
<td>0.001</td>
<td>0.007</td>
</tr>
<tr>
<td>mmff-M21</td>
<td>-1383.842162</td>
<td>12.4659</td>
<td>2.9794</td>
<td>0.001</td>
<td>0.007</td>
</tr>
<tr>
<td>mmff-M22</td>
<td>-1383.842137</td>
<td>12.5315</td>
<td>2.9951</td>
<td>0.001</td>
<td>0.006</td>
</tr>
<tr>
<td>pm6-M47</td>
<td>-1383.841886</td>
<td>13.1905</td>
<td>3.1526</td>
<td>0.000</td>
<td>0.005</td>
</tr>
<tr>
<td>pm6-M44</td>
<td>-1383.841828</td>
<td>13.3428</td>
<td>3.1890</td>
<td>0.000</td>
<td>0.005</td>
</tr>
<tr>
<td>pm6-M41</td>
<td>-1383.841789</td>
<td>13.4452</td>
<td>3.2135</td>
<td>0.000</td>
<td>0.004</td>
</tr>
<tr>
<td>pm6-M265</td>
<td>-1383.840406</td>
<td>17.0763</td>
<td>4.0813</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>mmff-M96</td>
<td>-1383.840086</td>
<td>17.9164</td>
<td>4.2821</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>mmff-M97</td>
<td>-1383.840020</td>
<td>18.0897</td>
<td>4.3235</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>mmff-M76</td>
<td>-1383.839985</td>
<td>18.1816</td>
<td>4.3455</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>mmff-M95</td>
<td>-1383.839980</td>
<td>18.1947</td>
<td>4.3486</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>mmff-M74</td>
<td>-1383.839966</td>
<td>18.2315</td>
<td>4.3574</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>mmff-M98</td>
<td>-1383.839923</td>
<td>18.3444</td>
<td>4.3844</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>mmff-M77</td>
<td>-1383.839910</td>
<td>18.3785</td>
<td>4.3926</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>mmff-M75</td>
<td>-1383.839901</td>
<td>18.4021</td>
<td>4.3982</td>
<td>0.000</td>
<td>0.001</td>
</tr>
</tbody>
</table>
In the following, the atomic coordinates for the optimized conformers of (-3)-3 in chloroform are given in xyz format:

```plaintext
H -4.83914 -2.37302 2.14340
H -7.66921 -1.62952 1.25005
H -5.74419 -3.66003 0.01360
H -7.37723 -3.31422 -0.53580
H -6.73187 -1.00809 -1.15059
H -4.03888 -0.37162 -2.26534
H 4.31911 -2.18378 3.58533
H 3.82464 -0.54914 4.12230
H 5.35791 -0.06881 -2.76156
H 5.96503 1.56662 -2.45786
H 4.26530 -1.50432 -1.95207
H 7.20028 -1.00255 -1.25770
H 7.43410 -0.35806 0.37067
H 5.81908 1.42831 1.28109
H 6.19427 2.43992 0.81654
H 4.79573 -1.50432 -1.95207
H 7.75974 -0.91700 0.66292
H 6.76222 -3.39817 0.8107
H 6.67473 -2.93421 1.44076
```

Figure 7.1: Lowest-energy conformer of (-3)-3 in chloroform.
N -3.09859 0.50689 -0.83405
C -1.72710 0.44503 -0.71549
C -1.24784 1.66547 -0.16949
C -0.84493 -0.58242 -1.05820
C 0.50767 -0.38369 -0.83395
C 1.00212 0.81394 -0.27974
C 0.11531 1.84208 0.03756
N 3.24669 -0.03094 0.08422
O 2.89573 2.0926 0.06127
C 4.69011 0.04401 0.16661
C 5.25613 -0.76821 -0.99107
C 5.25050 -0.41342 1.55517
C 4.81346 -1.85726 1.89177
C 6.77868 -0.29632 1.55993
C 4.67706 0.52239 2.62634
O 6.34660 0.20639 -1.51124
O 4.76910 -1.79947 -1.39502
C 6.97146 -0.91812 -2.59657
C -3.97254 -0.53215 -1.35574
C -4.72339 -1.32842 -2.28117
C -3.78098 -2.07818 0.66529
C -4.55536 -2.88820 1.70643
C -5.53772 -3.83844 1.04446
C -6.47965 -3.11921 0.90946
C -5.70549 -2.30094 -0.94453
C -5.96689 3.96847 0.22820
C -6.67777 1.69546 -0.65338
C -1.73895 4.39167 0.87160
C -4.03232 5.17313 0.98126
H -1.19315 -1.51147 -1.49368
H 1.18337 -1.17303 -1.13485
H 0.51063 2.75664 0.44267
H 2.84852 0.94708 -0.04876
H 4.96135 1.09107 0.02260
H 5.23640 -2.34705 2.84727
H 3.73531 -1.96586 1.91081
H 5.22777 -2.56234 1.28747
H 7.16047 -0.51940 2.56995
H 7.25054 -0.99650 0.86412
H 7.10317 0.71398 1.29378
H 3.58555 0.47657 2.65210
H 5.07035 0.22879 3.61203
H 4.97234 1.56808 2.46322
H 6.27722 -1.91771 -2.42079
H 8.29676 -0.31549 -2.88129
H 7.29155 -1.90708 -2.26407
H -4.68884 -0.05942 -0.20348
H -3.36471 -1.20633 -1.96396
H -5.30841 -0.61728 0.31898
H -3.15139 -2.75854 0.07458
H -3.10524 -1.37442 1.16218
H -3.85709 -3.43486 2.34910
H -5.10838 -2.20945 2.36017
H -4.97456 -4.61238 0.48292
H -6.11331 -4.39307 1.80505
H -7.14168 -3.83011 -0.41534
H -7.12688 -2.44662 0.66893
H -5.14662 -2.98231 -1.59994
H -6.40146 -1.75013 -1.58781
8 Bibliography
