Supporting Information

for

Application of 7-azaisatins in enantioselective
Morita–Baylis–Hillman reaction

Qing He, Gu Zhan, Wei Du and Ying-Chun Chen*

Address: Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China

Email: Ying-Chun Chen* - ycchen@scu.edu.cn

* Corresponding author

Full experimental details and analytical data

1. General methods .. S2
2. Preparation of N-protected 7-azaisatins 1a–d S2
3. Preparation of N-protected 7-azaisatin 1e S4
4. Preparation of N-protected 7-azaisatins 1f and 1g S4
5. Preparation of N-protected 7-azaisatin 1h S5
6. Preparation of N-substituted maleimides 2a–i S5
7. General procedure for MBH reaction S5
8. References .. S13
9. NMR spectra and HPLC chromatograms S15
1. General methods

NMR data were obtained for 1H at 400 MHz and for 13C at 100 MHz or 150 MHz. Chemical shifts were given in parts per million (δ) from tetramethylsilane with the residual solvent resonance as the internal standard in CDCl$_3$ solution. In all cases, the enantiomeric ratio was determined by HPLC analysis on a chiral column, using a Daicel Chiralpak IC Column (250 x 4.6 mm), Chiralpak ID Column (250 x 4.6 mm), Chiralpak IE Column (250 x 4.6 mm), Chiralpak AD Column (250 x 4.6 mm) or Chiralpak AS Column (250 x 4.6 mm). UV detection was monitored at 254 nm. Optical rotation data were examined in CHCl$_3$ solution at 20 °C. Column chromatography was performed on silica gel (200–300 mesh) eluting with ethyl acetate and petroleum ether. TLC was performed on glass-backed silica plates. UV light and I$_2$ were used to visualize the products. All commercially available chemicals were used without purification unless otherwise noted. THF, ethyl acetate, petroleum ether, methylene chloride (CH$_2$Cl$_2$), and toluene were distilled before use. Cinchona alkaloids catalysts β-ICD and α-IC were prepared according to the literature procedures [1,2].

2. Preparation of N-protected 7-azaisatins 1a–d

The preparation of the known compound 1a: A dried round-bottomed flask equipped with a magnetic stirring bar was charged with 7-azaindole (2 g, 16.95 mmol) and DMF (10 mL) under a nitrogen atmosphere. The mixture was cooled to 0 °C, NaH (1.2 equiv) was added and stirring continued for 1 h. Then, methyl iodide (1.1 equiv) was added and the mixture was stirred for another 1 h. Afterwards the reaction was quenched with ice cold water (100 mL) and extracted with ethyl acetate (3 x 100 mL). The combined organic layers were dried over Na$_2$SO$_4$ and the solvent was removed under reduced pressure to give N-methyl-7-azaindoles in a quantitative yield [3].
PCC (5.37 g, 25 mmol) was ground with silica gel (5.37 g, 70–230 mesh) and transferred to a 250 mL round-bottomed flask containing DCE (40 mL). To the orange suspension was added a solution of \(N \)-methyl-7-azaindole (1.32 g, 10 mmol) in DCE (5 mL) while stirring at room temperature. Then, \(\text{AlCl}_3 \) (15 wt %, 1.3 mol % with respect to \(N \)-methyl-7-azaindole) was added and the mixture was stirred at 80 °C. The progress of the reaction was monitored by TLC. After completion, the solvent was removed under reduced pressure and the black solid was treated with 50 mL of \(n \)-hexane/ethyl acetate (4:1) and filtered under suction through a sintered funnel layered with silica gel (5 cm, 70–230 mesh). The filtrate was evaporated to furnish 1a as a yellow solid (1.29 g, 80%). In addition, 1c was prepared according to the literature procedure [4]. A similar procedure was utilized for the preparation of 1b and 1d.

1b: Yellow solid, \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 8.54 (d, \(J = 4.4 \) Hz, 1H), 7.91 (d, \(J = 7.2 \) Hz, 1H), 7.17 (dd, \(J = 7.2 \) Hz, \(J = 5.2 \) Hz, 1H), 5.29 (s, 2H), 3.48 (s, 3H) ppm; \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 181.3, 163.2, 158.4, 156.3, 133.4, 120.2, 111.8, 70.0, 57.7 ppm.

1d: Yellow solid, \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 8.47 (d, \(J = 4.8 \) Hz, 1H), 7.97 (d, \(J = 7.6 \) Hz, 1H), 7.52 (s, 4H), 7.20 (dd, \(J = 7.2 \) Hz, \(J = 5.6 \) Hz, 1H), ppm; \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 180.9, 163.4, 157.0, 155.9, 134.3, 133.6, 130.0, 129.6, 127.2, 120.6, 112.1 ppm.
3. Preparation of N-protected 7-azaisatin 1e

42% step (5)

1e: Yellow solid, 1H NMR (400 MHz, CDCl$_3$) δ 8.67 (d, $J = 2.0$ Hz, 1H), 8.02 (d, $J = 2.0$ Hz, 1H), 7.51-7.44 (m, 5H), 3.39 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 182.0, 162.9, 158.5, 154.0, 136.1, 133.5, 131.2, 129.3, 128.5, 126.6, 111.9, 25.2 ppm.

4. Preparation of N-protected 7-azaisatins 1f and 1g

To a solution of 1a (0.10 g, 0.6 mmol) in DMF (5 mL) was added NCS or NBS (0.16 g, 0.9 mmol) at room temperature. The solution was stirred for 4 h and then at 50 °C for 41 h. The progress of the reaction was monitored by TLC. After the disappearance of 1a, the mixture was poured into water (30 mL), followed by extraction with CH$_2$Cl$_2$ (10 mL x 3). The combined organic layers were washed three times with distilled water and dried (Na$_2$SO$_4$). After removal of the solvent, the residue was purified by flash chromatography on silica gel with dichloromethane as an eluent to give the pure product 1f and 1g [7].
5. Preparation of N-protected 7-azaisatin 1h

Compound 1h was synthesized by literature procedure [8].

6. Preparation of N-substituted maleimides 2a–i

Maleimides 2a–i were synthesized by known literature procedures [9-13].

7. General procedure for MBH reaction

A solution of N-protected 7-azaisatin 1 (0.1 mmol), N-substituted maleimide 2 (0.6 mmol) and catalyst β-ICD (20 mol %) in dry solvent (1.0 mL) was stirred at 50 °C. Purification by flash chromatography on silica gel (EtOAc/petroleum ether) gave the corresponding MBH product 3a–o.

Typical procedure for the synthesis of 3p and 3q: A solution of N-methyl-7-azaisatin (1, 0.1 mmol), acrylate (0.6 mmol) and catalyst β-ICD (20 mol %) in dry DCM (1.0 mL) was stirred at 30 °C. Purification by flash chromatography on silica gel (EtOAc/petroleum ether) gave the corresponding MBH product 3p and 3q.

Typical procedure for the synthesis of 3r: Acrolein (0.15 mmol) was added dropwise to a solution of 7-azaisatin (0.1 mmol) and β-ICD (10 mol %) in dry DCM (1.0 mL) at −20 °C. The progress of the reaction was monitored by TLC. After completion, the MBH reaction product 3r was purified by flash chromatography on silica gel with petroleum ether/EtOAc as the eluent.
3a: 98% yield, 33.0 mg, light yellow solid, $[\alpha]_D^{20} = -80.4$ (c = 4.4 in CHCl$_3$), 94% ee, determined by HPLC analysis [Daicel Chiralpak AD, (n-hexane/i-PrOH = 80/20, 1 mL/min, UV 254 nm, $t_{\text{major}} = 9.91$ min, $t_{\text{minor}} = 12.26$ min]; 1H NMR (400 MHz, CDCl$_3$) δ 8.29 (d, $J = 4.8$ Hz, 1H), 7.66 (d, $J = 6.8$ Hz, 1H), 7.42 (t, $J = 7.6$ Hz, 2H), 7.33 (t, $J = 7.2$ Hz, 1H), 7.27-7.25 (m, 2H), 7.03 (dd, $J = 6.8$ Hz, $J = 5.2$ Hz, 1H), 6.94 (s, 1H), 4.24 (brs, 1H), 3.35 (s, 3H) ppm; 13C NMR (150 MHz, CDCl$_3$) δ 174.1, 167.8, 167.5, 157.1, 149.7, 146.1, 132.6, 130.7, 129.4, 129.1, 128.1, 125.8, 122.2, 119.2, 74.0, 25.9 ppm; ESI HRMS: calcd. for C$_{18}$H$_{13}$N$_3$O$_4$Na$^+$ 358.0798, found 358.0796.

3b: 87% yield, 30.0 mg, light yellow solid, $[\alpha]_D^{20} = -69.6$ (c = 6.5 in CHCl$_3$), 90% ee, determined by HPLC analysis [Daicel Chiralpak AD, (n-hexane/i-PrOH = 60/40, 1 mL/min, UV 254 nm, $t_{\text{major}} = 5.40$ min, $t_{\text{minor}} = 6.62$ min]; 1H NMR (400 MHz, CDCl$_3$) δ 8.28 (d, $J = 5.2$ Hz, 1H), 7.65 (d, $J = 7.2$ Hz, 1H), 7.20 (d, $J = 8.0$ Hz, 2H), 7.12(d, $J = 8.4$ Hz, 2H), 7.04-7.01 (m, 1H), 6.93 (s, 1H), 4.50 (brs, 1H), 3.34 (s, 3H), 2.34 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 174.1, 167.9, 167.6, 157.2, 149.7, 146.0, 138.2, 132.6, 129.7, 129.3, 128.0, 125.7, 122.2, 119.2, 74.0, 25.9, 21.1 ppm; ESI HRMS: calcd. for C$_{19}$H$_{15}$N$_3$O$_4$Na$^+$ 372.0955, found 372.0952.

3c: 88% yield, 32.0 mg, yellow solid, $[\alpha]_D^{20} = -86.2$ (c = 10 in CHCl$_3$), 92% ee, determined by HPLC analysis [Daicel Chiralpak AD, (n-hexane/i-PrOH = 60/40, 1 mL/min, UV 254 nm, $t_{\text{major}} = 6.80$ min, $t_{\text{minor}} = 8.34$ min]; 1H NMR (400 MHz, CDCl$_3$) δ 8.27 (d, $J = 5.2$ Hz, 1H), 7.64 (d, $J = 7.2$ Hz, 1H), 7.14 (d, $J = 8.8$ Hz, 2H), 7.04-7.01 (m, 1H), 6.93-6.90 (m, 3H), 4.60-4.54 (brs, 1H), 3.79 (s, 3H), 3.33 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 174.1, 167.9, 167.6, 157.2, 149.7, 146.0, 138.2, 132.6, 129.7, 129.3, 128.0, 125.7, 122.2, 119.2, 74.0, 25.9, 21.1 ppm; ESI HRMS: calcd. for C$_{19}$H$_{15}$N$_3$O$_4$Na$^+$ 372.0955, found 372.0952.
ppm; 13C NMR (100 MHz, CDCl$_3$) δ 174.2, 168.1, 167.7, 159.1, 157.1, 149.6, 146.0, 132.6, 129.3, 127.3, 123.2, 122.3, 119.2, 114.4, 74.0, 55.4, 25.9 ppm; ESI HRMS: calcd. for C$_{19}$H$_{15}$N$_3$O$_5$+Na$^+$ 388.0904, found 388.0909.

3d: 87% yield, 32.1 mg, white solid, $[\alpha]_D^{20} = -94.3$ (c = 5.5 in CHCl$_3$), 92% ee, determined by HPLC analysis [Daicel Chiralpak AS, (n-hexane/i-PrOH = 60/40, 1 mL/min, UV 254 nm, $t_{\text{minor}} = 5.97$ min, $t_{\text{major}} = 8.88$ min]; 1H NMR (400 MHz, CDCl$_3$) δ 8.30 (d, J = 5.2 Hz, 1H), 7.65 (d, J = 7.2 Hz, 1H), 7.26-7.23 (m, 2H), 7.12-7.08 (m, 2H), 7.04 (dd, J = 7.2 Hz, J = 1.6 Hz, 1H), 6.95 (s, 1H), 4.29 (brs, 1H), 3.35 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 174.0, 167.6, 167.4, 157.1, 149.8, 146.2, 132.6, 129.4, 127.7, 127.6, 122.0, 119.2, 116.2, 116.0, 74.0, 25.9 ppm; ESI HRMS: calcd. for C$_{19}$H$_{12}$CIN$_3$O$_4$+Na$^+$ 392.0409, found 392.0403.

3e: 90% yield, 34.0 mg, white solid, $[\alpha]_D^{20} = -71.9$ (c = 4.4 in CHCl$_3$), 79% ee, determined by HPLC analysis [Daicel Chiralpak IE, (n-hexane/i-PrOH = 80/20, 1 mL/min, UV 254 nm, $t_{\text{major}} = 8.80$ min, $t_{\text{minor}} = 9.92$ min]; 1H NMR (400 MHz, CDCl$_3$) δ 8.29-8.28 (m, 1H), 7.67 (d, J = 7.2 Hz, 1H), 7.03 (dd, J = 7.2 Hz, J = 1.6 Hz, 1H), 6.92-6.90 (m, 3H), 4.55 (brs, 1H), 3.33 (s, 3H), 2.27 (s, 3H), 2.01 (s, 3H), 1.94 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 174.0, 168.0, 167.8, 157.2, 149.7, 146.0, 139.5, 136.4, 136.2, 132.4, 129.3, 129.2, 129.0, 125.9, 122.3, 119.2, 74.0, 25.8, 21.0, 17.8, 17.7 ppm; ESI HRMS: calcd. for C$_{21}$H$_{19}$N$_3$O$_4$+Na$^+$ 400.1268, found 400.1275.
3f: 84% yield, 23.0 mg, white solid, $[\alpha]_D^{20} = -114.4$ ($c = 4.0$ in CHCl$_3$), 89% ee, determined by HPLC analysis [Daicel Chiralpak ID, (n-hexane/i-PrOH = 60/40, 1 mL/min, UV 254 nm, $t_{\text{major}} = 6.17$ min, $t_{\text{minor}} = 7.48$ min]; 1H NMR (400 MHz, CDCl$_3$) δ 8.27 (d, $J = 5.2$ Hz, 1H), 7.58 (d, $J = 7.2$ Hz, 1H), 7.03-7.00 (m, 1H), 6.80 (s, 1H), 4.89-4.86 (brs, 1H), 3.33 (s, 3H), 2.92 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 174.3, 169.1, 168.7, 157.1, 149.6, 146.3, 132.5, 129.2, 122.3, 119.1, 73.9, 25.8, 23.8 ppm; ESI HRMS: calcd. for C$_{13}$H$_{11}$N$_3$O$_4$+Na$^+$ 296.0642, found 296.0656.

3g: 86% yield, 30.0 mg, white solid, $[\alpha]_D^{20} = -79.7$ ($c = 5.0$ in CHCl$_3$), 89% ee, determined by HPLC analysis [Daicel Chiralpak AS, (n-hexane/i-PrOH = 60/40, 1 mL/min, UV 254 nm, $t_{\text{minor}} = 6.54$ min, $t_{\text{major}} = 15.29$ min]; 1H NMR (400 MHz, CDCl$_3$) δ 8.27 (d, $J = 5.2$ Hz, 1H), 7.59 (d, $J = 7.2$ Hz, 1H), 7.26 (m, 5H), 7.02-6.99 (m, 1H), 6.73 (s, 1H), 4.58 (s, 2H), 4.34 (brs, 1H), 3.33 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 174.0, 168.6, 168.4, 157.1, 149.7, 145.8, 135.6, 132.7, 129.2, 128.7, 128.5, 128.0, 122.0, 119.2, 73.9, 41.7, 25.8 ppm; ESI HRMS: calcd. for C$_{19}$H$_{15}$N$_3$O$_4$+Na$^+$ 372.0955, found 372.0958.

3h: 86% yield, 26.7 mg, white solid, $[\alpha]_D^{20} = -62.8$ ($c = 8.0$ in CHCl$_3$), 66% ee, determined by HPLC analysis [Daicel Chiralpak IC, (n-hexane/i-PrOH = 60/40, 1 mL/min, UV 254 nm, $t_{\text{minor}} = 4.97$ min, $t_{\text{major}} = 6.11$ min]; 1H NMR (400 MHz, CDCl$_3$) δ 8.28 (d, $J = 4.4$ Hz, 1H), 7.60 (d, $J = 7.2$ Hz, 1H), 7.02 (dd, $J = 7.6$ Hz, $J = 1.6$ Hz, 1H), 6.73 (s, 1H), 4.52 (brs, 1H), 3.41 (t, $J = 3.2$ Hz, 2H), 3.34 (s, 3H), 1.51-1.46 (m, 2H), 1.27-1.20 (m, 2H), 0.90-0.86 (m, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 174.2,
169.1, 168.8, 157.1, 149.6, 145.7, 132.6, 129.1, 122.2, 119.1, 73.9, 38.0, 30.4, 25.8, 19.9, 13.5 ppm; ESI HRMS: calcd. for C_{16}H_{17}N_{3}O_{4}+Na^+ 338.1111, found 338.1107.

3i: 84% yield, 28.6 mg, white solid, [α]_{D}^{20} = –80.1 (c = 9.5 in CHCl_{3}), 61% ee, determined by HPLC analysis [Daicel Chiralpak ID, (n-hexane/i-PrOH = 80/20, 1 mL/min, UV 254 nm, t_{major} = 7.10 min, t_{minor} = 8.07 min]; ^{1}H NMR (400 MHz, CDCl_{3}) δ 8.27 (d, J = 5.2 Hz, 1H), 7.61 (d, J = 7.2 Hz, 1H), 7.02 (dd, J = 7.2 Hz, J = 1.6 Hz, 1H), 6.66 (s, 1H), 4.45-4.36 (brs, 1H), 3.82-3.77 (m, 1H), 3.34 (s, 3H), 2.01-1.88 (m, 2H), 1.80-1.77 (m, 2H), 1.62-1.60 (m, 3H), 1.30-1.14 (m, 3H) ppm; ^{13}C NMR (100 MHz, CDCl_{3}) δ 174.1, 169.1, 168.9, 157.1, 149.6, 145.3, 132.6, 129.0, 122.4, 119.1, 73.9, 51.2, 29.8, 25.8, 24.9 ppm; ESI HRMS: calcd. for C_{18}H_{19}N_{3}O_{4}+Na^+ 364.1268, found 364.1275.

3j: 92% yield, 33.6 mg, light yellow solid, [α]_{D}^{20} = –86.3 (c = 4.0 in CHCl_{3}), 91% ee, determined by HPLC analysis [Daicel Chiralpak AD, (n-hexane/i-PrOH = 60/40, 1 mL/min, UV 254 nm, t_{major} = 6.45 min, t_{minor} = 7.32 min]; ^{1}H NMR (400 MHz, CDCl_{3}) δ 8.33 (d, J = 4.8 Hz, 1H), 7.68 (d, J = 7.2 Hz, 1H), 7.44-7.40 (m, 2H), 7.35-7.32 (m, 1H), 7.27-7.25 (m, 2H), 7.08 (dd, J = 5.2 Hz, J = 1.6 Hz, 1H), 7.00 (s, 1H), 5.27 (s, 2H), 4.48 (brs, 1H), 3.47 (s, 3H) ppm; ^{13}C NMR (100 MHz, CDCl_{3}) δ 174.5, 167.8, 167.5, 156.3, 150.1, 146.0, 133.1, 130.6, 129.6, 129.1, 128.1, 125.8, 121.6, 119.7, 73.9, 70.7, 57.5 ppm; ESI HRMS: calcd. for C_{19}H_{15}N_{3}O_{5}+Na^+ 388.0904, found 388.0898.
3k: 93% yield, 38.0 mg, light yellow solid, $[\alpha]_{D}^{20} = -99.5$ (c = 5.6 in CHCl$_3$), 87% ee, determined by HPLC analysis [Daicel Chiralpak ID, (n-hexane/i-PrOH = 70/30, 1 mL/min, UV 254 nm, $t_{\text{major}} = 9.66$ min, $t_{\text{minor}} = 10.71$ min]; 1H NMR (400 MHz, CDCl$_3$) δ 8.26 (d, $J = 4.8$ Hz, 1H), 7.65 (d, $J = 7.2$ Hz, 1H), 7.46 (d, $J = 7.2$ Hz, 2H), 7.42-7.39 (m, 2H), 7.34-7.28 (m, 3H), 7.26-7.24 (m, 3H), 7.01-6.98 (m, 1H), 6.88 (s, 1H), 5.02 (s, 2H), 4.57-4.56 (brs, 1H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 173.7, 167.8, 167.5, 156.7, 149.8, 145.7, 135.5, 132.9, 130.7, 129.4, 129.1, 128.6, 128.3, 128.1, 127.8, 125.8, 122.9, 119.3, 74.0, 43.3 ppm; ESI HRMS: calcd. for C$_{24}$H$_{17}$N$_3$O$_4$+K$^+$ 450.0851, found 450.0862.

3l: 37% yield, 16.0 mg, light yellow solid, $[\alpha]_{D}^{20} = -58.1$ (c = 5.0 in CHCl$_3$), 71% ee, determined by HPLC analysis [Daicel Chiralpak AD, (n-hexane/i-PrOH = 60/40, 1 mL/min, UV 254 nm, $t_{\text{major}} = 9.10$ min, $t_{\text{minor}} = 15.10$ min]; 1H NMR (400 MHz, CDCl$_3$) δ 8.29 (d, $J = 4.8$Hz, 1H), 7.71 (d, $J = 7.6$ Hz, 1H), 7.55-7.49 (m, 4H), 7.45-7.41 (m, 2H), 7.36-7.33 (m, 1H), 7.27-7.26 (m, 2H), 7.13-7.10 (m, 1H), 7.05 (s, 1H), 4.10 (brs, 1H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 173.2, 167.7, 167.5, 156.9, 145.0, 146.6, 134.5, 133.2, 130.8, 130.6, 129.6, 129.4, 129.1, 128.2, 127.9, 125.8, 121.5, 120.0, 74.0 ppm; ESI HRMS: calcd. for C$_{23}$H$_{14}$ClN$_3$O$_4$+Na$^+$ 454.0565, found 454.0571.

3m: 87.8% yield, 36.0 mg, yellowish solid, $[\alpha]_{D}^{20} = +53.9$ (c = 7.5 in CHCl$_3$), 92% ee, determined by HPLC analysis [Daicel Chiralpak AS, (n-hexane/i-PrOH = 60/40, 1 mL/min, UV 254 nm, $t_{\text{minor}} = 6.00$ min, $t_{\text{major}} = 8.88$ min]; 1H NMR (400 MHz, CDCl$_3$) δ 8.49 (d, $J = 2.0$ Hz, 1H).
Hz, 1H), 7.86 (d, J = 2.0 Hz, 1H), 7.52 (d, J = 7.6 Hz, 2H), 7.47-7.42 (m, 3H), 7.41-7.37 (m, 3H), 7.32 (t, J = 7.2 Hz, 1H), 7.27-7.25 (m, 2H), 7.00 (s, 1H), 4.42 (brs, 1H), 3.39 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 174.1, 167.6, 167.5, 156.2, 148.0, 146.1, 137.0, 133.1, 131.6, 130.6, 129.4, 129.2, 129.1, 128.1, 128.1, 126.8, 125.8, 122.2, 74.1, 26.0 ppm; ESI HRMS: calcd. for C$_{24}$H$_{17}$N$_3$O$_4$+Na$^+$ 434.1111, found 434.1108.

3n: 81% yield, 30.0 mg, white solid, [α]$_D^{20} = -18.9$ (c = 10.0 in CHCl$_3$), 85% ee, determined by HPLC analysis [Daicel Chiralpak IE, (n-hexane/i-PrOH = 60/40, 1 mL/min, UV 254 nm, t$_{major}$ = 6.61 min, t$_{minor}$ = 7.91 min]; 1H NMR (400 MHz, CDCl$_3$) δ 8.24 (d, J = 2.4 Hz, 1H), 7.63 (d, J = 1.6 Hz, 1H), 7.44-7.40 (m, 2H), 7.36-7.32 (m, 1H), 7.27-7.25 (m, 2H), 7.00 (s, 1H), 4.74 (brs, 1H), 3.32 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 173.9, 167.6, 167.4, 155.4, 148.2, 145.6, 133.0, 130.5, 129.7, 129.1, 128.2, 127.1, 125.8, 123.1, 73.9, 26.0 ppm; ESI HRMS: calcd. for C$_{18}$H$_{12}$ClN$_3$O$_4$+Na$^+$ 392.0409, found 392.0412.

3o: 82% yield, 34.0 mg, yellow solid, [α]$_D^{20} = +4.86$ (c = 7.0 in CHCl$_3$), 88% ee, determined by HPLC analysis [Daicel Chiralpak ID, (n-hexane/i-PrOH = 60/40, 1 mL/min, UV 254 nm, t$_{major}$ = 5.36 min, t$_{minor}$ = 6.45 min]; 1H NMR (400 MHz, CDCl$_3$) δ 8.34 (d, J = 2.0 Hz, 1H), 7.74 (d, J = 2.4 Hz, 1H), 7.43-7.40 (m, 2H), 7.35-7.32 (m, 1H), 7.27-7.25 (m, 2H), 7.00 (s, 1H), 4.70 (brs, 1H), 3.31 (s, 3H) ppm; 13C NMR (150 MHz, CDCl$_3$) δ 173.8, 167.6, 167.4, 155.7, 150.4, 145.6, 135.4, 130.6, 129.8, 129.1, 128.1, 125.8, 123.6, 114.6, 73.9, 26.0 ppm; ESI HRMS: calcd. for C$_{18}$H$_{12}$BrN$_3$O$_4$+Na$^+$ 435.9903, found 435.9910.
3p: 93% yield, 23.0 mg, white solid, \([\alpha]_D^{20} = -76.8\) \((c = 7.5\) in CHCl₃), 92% ee, determined by HPLC analysis [Daicel Chiralpak AS, \((n\text{-hexane/}i\text{-PrOH = 60/40, 1 mL/min, UV 254 nm, tminor = 4.65 min, tmajor = 6.67 min}\); \(^1\)H NMR (400 MHz, CDCl₃) \(\delta\) 8.20 (d, \(J = 5.2\) Hz, 1H), 7.42 (dd, \(J = 7.2\) Hz, \(J = 6.0\) Hz, 1H), 6.94 (dd, \(J = 7.2\) Hz, \(J = 2.0\) Hz, 1H), 6.60 (s, 1H), 6.47 (s, 1H), 4.38 (brs, 1H), 3.63 (s, 3H), 3.31(s, 3H) ppm; \(^{13}\)C NMR (100 MHz, CDCl₃) \(\delta\) 176.2, 164.8, 157.8, 148.6, 138.4, 131.2, 128.4, 124.3, 118.5, 75.7, 52.2, 25.5 ppm; ESI HRMS: calcd. for C₁₂H₁₂N₂O₄+Na⁺ 271.0689, found 271.0697.

3q: 98% yield, 26.0 mg, white solid, \([\alpha]_D^{20} = -95.4\) \((c = 5.0\) in CHCl₃), 91% ee, determined by HPLC analysis [Daicel Chiralpak AS, \((n\text{-hexane/}i\text{-PrOH = 60/40, 1 mL/min, UV 254 nm, tminor = 4.49 min, tmajor = 6.13 min}\); \(^1\)H NMR (400 MHz, CDCl₃) \(\delta\) 8.19 (d, \(J = 5.2\) Hz, 1H), 7.41 (d, \(J = 7.2\) Hz, 1H), 6.93 (dd, \(J = 6.8\) Hz, \(J = 1.2\) Hz, 1H), 6.61 (s, 1H), 6.44 (s, 1H), 4.46-4.40 (brs, 1H), 4.06-4.02 (m, 2H), 3.29 (s, 3H), 1.14-1.10 (m, 3H) ppm; \(^{13}\)C NMR (100 MHz, CDCl₃) \(\delta\) 176.3, 164.3, 157.8, 148.5, 138.6, 131.2, 128.5, 124.5, 118.5, 75.6, 61.1, 25.5, 13.8 ppm; ESI HRMS: calcd. for C₁₃H₁₄N₂O₄+Na⁺ 285.0846, found 285.0852.

3r: 96% yield, 20.9 mg, white solid, \([\alpha]_D^{20} = -171.4\) \((c = 7.0\) in CHCl₃), 94% ee, determined by HPLC analysis [Daicel Chiralpak AS, \((n\text{-hexane/}i\text{-PrOH = 60/40, 1 mL/min, UV 254 nm, tminor = 5.62 min, tmajor = 7.13 min}\); \(^1\)H NMR (400 MHz, CDCl₃) \(\delta\) 9.48 (m, 1H), 8.21 (d, \(J = 4.4\) Hz, 1H), 7.39 (d, \(J = 6.8\) Hz, 1H), 7.00 (s, 1H), 6.95-6.92 (m, 1H), 6.44 (s, 1H), 4.19-4.14 (brs, 1H), 3.32 (s, 3H) ppm; \(^{13}\)C NMR (100 MHz, CDCl₃) \(\delta\) 191.7, 175.6, 157.6, 148.8,
148.0, 136.5, 131.3, 123.6, 118.6, 75.0, 25.6 ppm; ESI HRMS: calcd. for C_{11}H_{10}N_{2}O_{3}+Na^+ 241.0584, found 241.0584.

8. References

9 NMR spectra and HPLC chromatograms
<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.644</td>
<td>VV</td>
<td>0.2267</td>
<td>5.26513e4</td>
<td>3646.11646</td>
<td>49.3181</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7.017</td>
<td>VB</td>
<td>0.2497</td>
<td>5.49732e4</td>
<td>3400.50415</td>
<td>50.6819</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.403</td>
<td>VV</td>
<td>0.2128</td>
<td>2.64969e4</td>
<td>1927.74768</td>
<td>85.0458</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6.619</td>
<td>VB</td>
<td>0.2509</td>
<td>1301.13953</td>
<td>83.61952</td>
<td>4.9542</td>
<td></td>
</tr>
</tbody>
</table>
rac 3e

```
<table>
<thead>
<tr>
<th>Peak</th>
<th>Name</th>
<th>RT (min)</th>
<th>Area (sec)</th>
<th>% Area</th>
<th>% Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Peak1</td>
<td>8.887</td>
<td>3160068</td>
<td>49.24</td>
<td>157831</td>
</tr>
<tr>
<td>2</td>
<td>Peak2</td>
<td>9.998</td>
<td>3258195</td>
<td>50.76</td>
<td>140388</td>
</tr>
</tbody>
</table>
```

3e

```
<table>
<thead>
<tr>
<th>RT (min)</th>
<th>Area (sec)</th>
<th>% Area</th>
<th>Height ( )</th>
<th>% Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.800</td>
<td>8860208</td>
<td>89.34</td>
<td>89.65</td>
</tr>
<tr>
<td>2</td>
<td>9.924</td>
<td>7229611</td>
<td>10.66</td>
<td>10.35</td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th>#</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.966</td>
<td>V/V</td>
<td>0.2090</td>
<td>2.83408e4</td>
<td>2112.02271</td>
<td>50.0402</td>
</tr>
<tr>
<td>2</td>
<td>6.126</td>
<td>V/V</td>
<td>0.2370</td>
<td>2.82862e4</td>
<td>1845.89268</td>
<td>49.9518</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.966</td>
<td>V/V</td>
<td>0.2167</td>
<td>1.08344e4</td>
<td>769.50647</td>
<td>18.0121</td>
</tr>
<tr>
<td>2</td>
<td>6.105</td>
<td>V/V</td>
<td>0.2450</td>
<td>4.93160e4</td>
<td>3080.80444</td>
<td>81.9879</td>
</tr>
<tr>
<td>RT (min)</td>
<td>Area (sec)</td>
<td>% Area</td>
<td>Height ()</td>
<td>% Height</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>--------</td>
<td>------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6.008</td>
<td>1123134</td>
<td>8.86</td>
<td>36691</td>
<td>8.80</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8.883</td>
<td>27946419</td>
<td>96.14</td>
<td>502397</td>
<td>93.20</td>
<td></td>
</tr>
</tbody>
</table>