Supporting Information

for

Diradical reaction mechanisms in [3 + 2]cycloadditions of hetaryl thioketones with alkyl- or trimethylsilyl-substituted diazomethanes

Grzegorz Mlostoń^{*1}, Paulina Pipiak¹ and Heinz Heimgartner²

Address: ¹Department of Organic and Applied Chemistry, University of Łódź, Tamka 12, PL 91-403 Łódź, Poland and ²Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Email: Grzegorz Mlostoń - gmloston@uni.lodz.pl

*Corresponding author

Experimental data for compounds 8, 9, 10 and the original ¹H and ¹³C NMR spectra

1. Experimental data for compound 8, 9 and 10.

9-Isopropylidenefluorene (**9b**) [S1]: Yield: 85 mg (41%). White crystals; m.p. 114 – 115 °C (chromatographic purification; lit. m.p. 114 °C [S1]). ¹H NMR (600 MHz, CDCl₃): δ = 7.78–7.89 (m, 4 H_{arom}), 7.30–7.35 (m, 4 H_{arom}), 2.58 (s, 2 CH₃) ppm. C₁₆H₁₄(206.28): calcd. C 93.16 H 6.84; found C 93.13 H 6.98.

2',2'-Dimethyldispiro[9H-fluorene-9,4'-(1,3)dithiolane-5'9"-[9H]fluorene] (**10b**): Yield: 27 mg (12%). White crystals; m.p. 258 – 260 °C (MeOH/CHCl₃). IR (KBr): v = 2918 (w), 1445 (m), 1279 (w), 1149 (m), 1108 (w), 1033 (w), 760 (m), 744 (s) cm⁻¹. ¹H NMR (600 MHz, CDCl₃): δ = 7.97 (br. s, 4 H_{arom}), 7.42 (t, *J* = 7.8Hz, 4 H_{arom}), 7.25 (t, *J* = 7.2Hz, 4 H_{arom}), 7.12 (t, *J* = 7.2Hz, 4 H_{arom}), 2.37 (s, 2 CH₃) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 140.1 (for 8 C_{arom}), 128.5, 127.8, 126.3, 119.3 (for 16 CH_{arom}), 59.4 (C-2), 78.4 (C-4, C-5), 35.2 (2 CH₃) ppm. C₂₉H₂₂S₂ (434.61): calcd. C 80.14, 5.10, 14.76; found C 80.0, 5.27, 14.95.

2,2-Dimethyl-3,3-di(thiophen-2-yl)thiirane (**8d**): Yield: 190 mg (75%). Yellow crystals; m.p. 50 – 51 °C (chromatographic purification). IR (KBr): v = 3099 (w), 2955 (w), 2917 (w), 1429 (m), 1367 (m), 1244 (m), 1231 (m), 1085 (m), 1077 (m), 849 (m), 833 (s), 783 (m), 705 (s), 560 (m) cm⁻¹. ¹H NMR (600 MHz, CDCl₃): δ = 7.07 (dd, *J* = 1.2 Hz, *J* = 4.8 Hz, 2 H_{arom}), 7.00 (dd, *J* = 1.2 Hz, *J* = 3.6 Hz, 2 H_{arom}), 6.80–6.81 (m, 2 H_{arom}), 1.64 (s, 2 CH₃) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 146.2 (for 2 C_{arom}), 127.4, 126.5, 125.2 (for 6 CH_{arom}), 56.0, 54.8 (C-2, C-3), 26.7 (2 CH₃) ppm. MS (ESI): m/z (%) = 253 (100, [*M*+H]⁺). C₁₂H₁₂S₃ (252.42): calcd. C 57.10, H 4.79, S 38.11; found C 56.91, H 4.80, S 38.12.

2,2-Dimethyl-4,4,5,5-tetra(thiophen-2-yl)-1,3-dithiolane (**10d**): Yield: 74 mg (32%). White crystals; m.p. 150 – 151 °C (MeOH/CHCl₃). IR (KBr): v = 3101 (w), 3085 (w), 2916 (w), 1423 (m), 1234 (m), 1226 (m), 1156 (m), 1106 (m), 1048 (m), 856 (m), 758 (m), 707 (s) cm⁻¹. ¹H NMR (600 MHz, CDCl₃): δ = 7.24 (dd, *J* = 1.2 Hz, *J* = 5.4 Hz, 4 H_{arom}), 7.05 (dd, *J* = 1.2 Hz, *J* = 3.6 Hz, 4 H_{arom}), 6.86–6.87 (m, 4 H_{arom}), 1.76 (s, 2 CH₃) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 147.7 (for 4 C_{arom}), 130.3, 126.3, 125.3 (for 12 CH_{arom}), 76.1 (C-4, C-5), 57.5 (C-2), 33.1 (2 CH₃) ppm. MS (ESI): m/z (%) = 485 (100, [*M*+Na]⁺). C₂₁H₁₈S₆ (462.76): calcd. C 54.50, H 3.92, S 41.57; found C 54.44, H 3.76, S 41.82.

1,1-Di(selenophen-2-yl)-2-methylpropene (**9e**): Yield: 192 mg (61%) − After desulfurization of tiirane **8d**. Colorles oil that crystallized in the refrigerator. IR (film): v = 3054 (m), 2926 (m), 2905 (m), 2850 (w), 1448 (m), 1368 (w), 1267 (w), 1225 (m), 1168 (w), 1078 (w), 1000 (w), 829 (w), 783 (w), 681 (s) cm⁻¹. ¹H NMR (600 MHz, CDCl₃): δ = 7.98 (d, *J* = 6.0 Hz, 2 H_{arom}), 7.22–7.23 (m, 2 H_{arom}), 7.05 (d, *J* = 3.6 Hz, 2 H_{arom}), 1.98 (s, 2 CH₃) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 151.8, 135.6 (C_{arom}, C_{arom}-*C*=),), 130.7, 129.0, 128.6 (for 6 CH_{arom}), 127.3 (C=*C*(CH₃)₂) 23.5 (2 CH₃) ppm. MS (ESI): m/z (%) = 315 (100, [*M*+H]⁺). C₁₂H₁₂Se₂ (314.14): calcd. C 45.88, H 3.85; found C 46.14, H 3.70.

2,2-Dimethyl-4,4,5,5-tetra(selenophen-2-yl)-1,3-dithiolane (**10e**): Yield: 56 mg (17%). White crystals; m.p. 123 – 124 °C (MeOH/CHCl₃). IR (KBr): v = 2952 (w), 2917 (w), 1434 (m), 1362 (w), 1230 (s), 1154 (m), 1103 (m), 1025 (m), 797 (m), 688 (s) cm⁻¹. ¹H NMR (600 MHz, CDCl₃): $\delta = 7.96$ (dd, J = 1.2 Hz, J = 6.0 Hz, 4 H_{arom}), 7.39 (dd, J = 1.2 Hz, J = 4.2 Hz, 4 H_{arom}), 7.11–7.13 (m, 4 H_{arom}), 1.77 (s, 2 CH₃) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 154.8$ (for 4 C_{arom}), 133.3, 133.2, 127.9 (for 12 CH_{arom}), 79.8 (C-4, C-5), 58.1 (C-2), 33.2 (2 CH₃) ppm. $C_{21}H_{18}S_2Se_4$ (650.34): calcd. C 38.78, H 2.79, S 9.86; found C 38.56, H 2.93, S 9.78.

2,2-Dimethyl-3-phenyl-3-(thiophen-2-yl)thiirane (**8f**): Yield: 42 mg (17%). White crystals; m.p. 44 – 45 °C (chromatographic purification). IR (KBr): v = 2997 (w), 2919 (w), 1491 (w), 1443 (m), 1369 (w), 1228 (m), 1075 (m), 753 (m), 702 (s) cm⁻¹. ¹H NMR (600 MHz, CDCl₃): δ = 7.55–7.56 (m, 2 H_{arom}), 7.32–7.35 (m, 2 H_{arom}), 7.27–7.28 (m, 1 H_{arom}), 7.14 (*dd*, *J* = 1.2 Hz, *J* = 5.4 Hz, 1 H_{arom}), 7.02 (*dd*, *J* = 1.2 Hz, *J* = 3.6 Hz, 1 H_{arom}), 6.87 (*dd*, *J* = 3.6 Hz, *J* = 4.8 Hz, 1 H_{arom}), 1.68 (s, CH₃), 1.53 (s, CH₃) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 147.3, 141.7 (2 C_{arom}), 129.5, 127.9, 127.3, 127.2, 126.5, 125.3 (for 8 CH_{arom}), 61.5, 54.4, (C-2, C-3), 26.3 (CH₃), 28.3 (CH₃) ppm. MS (ESI): m/z (%) = 247 (100, [*M*+H]⁺). C₁₄H₁₄S₂ (246.39): calcd. C 68.25, H 5.73, S 26.03; found C 68.37, H 5.56, S 26.23.

1-Phenyl-1-(thiophen-2-yl)-2-methylpropene (**9f**) [S2]: Yield 15 mg (7%). Pale yellow oil (lit. [S2]: colorless liquid). ¹H NMR (600 MHz, CDCl₃): δ = 7.21–7.36 (m, 6 H_{arom}), 6.97–6.98 (m, 1 H_{arom}), 6.79–6.80 (m, 1 H_{arom}), 2.06 (s, CH₃), 1.79 (s, CH₃) ppm.

1-Phenyl-1-(selenophen-2-yl)-2-methylpropene (**9c**): Yield 148 mg (57%) – After desulfurization of tiirane **8f**. Yellow oil. IR (film): v = 3055 (m), 2907 (m), 2853 (m), 1598 (w), 1491 (m), 1442 (s), 1369 (m), 1218 (m), 1019 (m), 757 (m), 700 (s), 685 (s) cm⁻¹. ¹H NMR (600 MHz, CDCl₃): $\delta = 7.91$ (dd, J = 1.2 Hz, J = 6.0 Hz, 1 H_{arom}), 7.21–7.36 (m, 6 H_{arom}), 6.97 (dd, J = 1.2 Hz, J = 3.6 Hz, 1 H_{arom}), 2.06 (s, CH₃), 1.77 (s, CH₃) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 151.9$, 143.7, 132.7, 132.5 (2 C_{arom},

 C_{arom} - $C=C(CH_3)_2)$, 130.3, 129.4, 129.0, 128.6, 128.0, 126.5 (for 8 CH_{arom}), 23.5 (CH₃), 22.8 (CH₃) ppm. MS (ESI): m/z (%) = 263 (100, [*M*+2H]⁺), 261 (40, [*M*]⁺). C₁₄H₁₄Se (261.22): calcd. C 64.37, H 5.40; found C 64.41, H 5.61.

2,2-Dimethyl-4,5-diphenyl-4,5-di(selenophen-2-yl)-1,3-dithiolane (**10c**): Isolated as a mixture of *cis,trans*-isomers (crude product ratio 72 : 28). Yield: 30 mg (11%). White crystals; m.p. 137 – 138 °C (MeOH/CHCl₃). IR (KBr): v = 3057 (w), 2922 (w), 2853 (w), 1596 (w), 1490 (m), 1444 (s), 1364 (m), 1232 (m), 1181 (m), 1155 (m), 1033 (m), 931 (m), 692 (s) cm⁻¹.¹H NMR (600 MHz, CDCl₃): $\delta = 7.93$ –7.24 (m, 32 H_{arom}), 1.87 (s, CH₃ *cis*), 1.74 (s, 2 CH₃ *trans*), 1.36 (s, CH₃ *cis*) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 144.6$ br., 143.2 br. (for 8 C_{arom}), 133.1, 132.9, 132.8, 131.6, 131.2, 130.8, 128.0, 127.9, 127.6, 127.1, 127.0, 126.7 (for 32 CH_{arom}), 80.5, 80.0 (C-4 + C-5, for *cis* and *trans*), 55.6, 55.3 (C-2, *cis* and *trans*), 33.2 (2 CH₃ *trans*), 33.0 (CH₃ *cis*), 32.7 (CH₃ *cis*) ppm. C₂₅H₂₂S₂Se₂ (544.49): calcd. C 55.15, H 4.07, S 11.78; found C 55.32, H 4.26, S 11.63.

1-Phenyl-1-(furan-2-yl)-2-methylpropene (**9g**) [S2b]: Yield 79 mg (40%) – After desulfurization of tiirane **8g**. Pale yellow oil (lit. [S2b]: a liquid isolated by distillation under reduced pressure). ¹H NMR (600 MHz, CDCl₃): $\delta = 7.29-7.39$ (m, 4 H_{arom}), 7.20–7.21 (m, 2 H_{arom}), 6.37–6.38 (m, 1 H_{arom}), 5.96 (d, *J* = 3.0 Hz, 1 H_{arom}), 2.17 (s, CH₃), 1.75 (s, CH₃) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 155.5$, 141.2, 133.3, 127.3 (2 C_{arom}, C_{arom}C=C(CH₃)₂), 140.9, 129.9, 128.0, 126.6, 110.4, 109.4 (for 8 CH_{arom}), 23.3 (*C*H₃), 22.4 (CH₃) ppm.

2,2-Dimethyl-4,5-diphenyl-4,5-di(furan-2-yl)-1,3-dithiolane (**10g**): Isolated as a mixture of *cis,trans*-isomers (crude product ratio 58:42). Yield: 59 mg (28%). White crystals; m.p. 144 – 145 °C (MeOH/CHCl₃). IR (KBr): v = 3110 (w), 3058 (w), 2921 (m), 2855 (w), 1598 (w), 1490 (s), 1445 (s), 1149 (s), 1037 (m), 1017 (s), 932 (m), 795 (m), 750 (s), 718 (s), 696 (s), 595 (m) cm⁻¹. ¹H NMR (600 MHz, CDCl₃): $\delta = 7.37-5.94$ (*m*, 32 CH_{arom}) 1.99 (s, CH₃ *cis*), 1.72 (s, 2 CH₃ *trans*), 1.53 (s, CH₃ *cis*) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 155.0$, 154.9, 140.0, 139.9 (for 8 C_{arom}), 141.0, 140.6, 130.5, 129.8, 127.6, 127.3, 127.2, 126.5, 112.9, 110.9, 110.3, 110.1 (for 32 CH_{arom}), 76.1, 76.0 (C-4 + C-5, for *cis* and *trans*), 55.8, 54.9 (C-2, *cis* and *trans*), 34.8 (CH₃ *cis*), 33.7 (2 CH₃ *trans*), 32.3 (CH₃ *cis*) ppm. C₂₅H₂₂O₂S₂ (418.57): calcd. C 71.74, H 5.30, S 15.32; found C 71.87, H 5.28, S 15.54.

1-(4-Chlorophenyl)-1-(selenophen-2-yl)-2-methylpropene (**9h**): Yield: 168 mg (65%) – After desulfurization of tiirane **8h**. Yellow oil. IR (film): v = 3056 (w), 2908 (m), 2852 (m), 1901 (w), 1590 (w), 1488 (s), 1448 (m), 1229 (m), 1218 (m), 1091 (s), 1014 (s), 855 (m), 833 (m), 817 (s), 776 (s), 685 (s) cm⁻¹. ¹H NMR (600 MHz, CDCl₃): δ = 7.95–7.96 (m, 1 H_{arom}), 7.16–7.33 (m, 5 H_{arom}), 6.96–6.97 (m, 1 H_{arom}), 2.05 (s, CH₃), 1.77 (s, CH₃) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 151.3, 142.0, 133.5, 132.4, 131.1 (3 C_{arom}, C_{arom}C=C(CH₃)₂), 130.9, 130.6, 129.1, 128.9, 128.3 (for 7 CH_{arom}), 22.8 (CH₃), 22.3 (CH₃) ppm. C₁₄H₁₃CISe (259.67): calcd. C 56.87, H 4.43; found C 56.96, H 4.55.

2,2-Dimethyl-4,5-di(4-chlorophenyl)-4,5-di(selenophen-2-yl)-1,3-dithiolane (10h): Isolated as a mixture of *cis*,*trans*-isomers (crude product ratio 70:30). Yield: 53 mg (17%). White crystals; m.p. 86 – 87 °C (MeOH/CHCl₃). IR (KBr): v = 2919 (w), 2851 (w), 1587 (w), 1489 (s), 1230 (m), 1095 (s), 1012 (s), 785 (m), 688 (s) cm⁻¹. ¹H NMR (600 MHz, CDCl₃): $\delta = 7.94$ –6.98 (m, 28 H_{arom}), 1.85 (s, CH₃ *cis*), 1.72 (s, 2 CH₃ *trans*), 1.44 (s, CH₃ *cis*) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 157.3$, 156.6, 142.6, 141.9 (for 8 C_{arom}), 133.6, 133.2, 133.1, 132.9, 132.8, 132.5, 132.3, 132.1, 128.0, 127.1, 126.9 (for 32 CH_{arom}), 79.7, 79.4 (C-4 + C-5, for *cis* and *trans*), 56.0, 55.9 (C-2, *cis* and *trans*), 33.1 (CH₃ *cis*), 33.0 (2 CH₃ *trans*), 32.7 (CH₃ *cis*) ppm. C₂₅H₂₀Cl₂S₂Se₂ (613.38): calcd. C 48.95, H 3.29, S 10.45; found C 48.73, H 3.50, S 10.48.

9-Ethylidenefluorene (**9j**) [S3]: Yield: 6 mg (6%). Pale yellow crystals; m.p. 97 – 98 °C (isolated by PLC). (Lit. [S3a], m.p. 76.5 – 78.0); lit. [S3b], m. p. 103 – 104 °C). ¹H NMR (600 MHz, CDCl₃): δ = 7.92 (d, *J* = 7.2 Hz, 1 H_{arom}), 7.79 (d, *J* = 7.2 Hz, 1 H_{arom}), 7.73 (d, *J* = 7.2 Hz, 1 H_{arom}), 7.68 (d, *J* = 7.2 Hz, 1 H_{arom}), 7.30–7.40 (m, 4 H_{arom}), 6.89 (q, *J* = 7.2 Hz, =CH), 2.43 (d, *J* = 7.2 Hz, CH₃) ppm.

2'-Methyldispiro[9H-fluorene-9,4'-(1,3)dithiolane-5'9"-[9H]fluorene] (**10j**): Yield: 65 mg (61%). White crystals; m.p. 251 – 252 °C (MeOH/CHCl₃). IR (KBr): v = 3052 (w), 3028 (w), 1474 (w), 1445 (m), 1279 (w), 1157 (w), 1033 (w), 739 (s) cm⁻¹. ¹H NMR (600 MHz, CDCl₃): $\delta = 7.55-7.28$ (m, 8 H_{arom}), 7.16–7.11 (m, 4 H_{arom}), 7.00 (s br., 4 H_{arom}), 5.51 (q, J = 6.0 Hz, =CH) 2.00 (d, J = 6.0 Hz, CH₃) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 140.2$, 140.0 (for 8 C_{arom}), 128.5, 128.4, 127.2, 126.6, 126.5, 126.4, 119.4, 119.1 (for 16 CH_{arom}), 76.1 (C-4, C-5), 46.8 (C-2), 22.2 (CH₃) ppm. C₂₈H₂₀S₂ (420.59): calcd. C 79.96, 4.79, 15.25; found C 79.73, H 4.77, S 15.15.

2-*Methyl-4,4,5,5-tetra*(*thiophen-2-yl*)-1,3-*dithiolane* (**10k**): Yield: 160 mg (72%). Yellow crystals; m.p. 155 – 156 °C (MeOH/CHCl₃). IR (KBr): v = 3097 (w), 3070 (w), 2918 (w), 1424 (m), 1227 (s), 1187 (w), 1045 (m), 856 (m), 753 (m), 703 (s) cm⁻¹. ¹H NMR (600 MHz, CDCl₃): δ = 7.23–7.25 (m, 4 H_{arom}), 7.09–7.10 (m, 2 H_{arom}), 6.89– 6.90 (m, 2 H_{arom}), 6.85–6.87 (m, 4 H_{arom}), 4.77 (q, *J* = 6.6 Hz, C*H*(CH₃)), 1.79 (d, *J* = 6.6 Hz, CH₃) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 146.2, 147.4 (for 4 C_{arom}), 130.3, 129.4, 126.9, 126.1, 125.8, 125.6 (for 12 CH_{arom}), 74.8 (C-4, C-5), 45.0 (C-2), 18.9 (CH₃) ppm. C₂₀H₁₆S₆ (448.73): calcd. C 53.53, H 3.59, S 42.87; found C 53.62, H 3.83, S 42.88.

1,1-Di(selenophen-2-yl)propene (**9I**): Yield: 10 mg (3 %). Pale yellow oil. IR (film): v = 3055 (w), 2926 (w), 1724 (w), 1444 (m), 1246 (m), 1221 (m), 1022 (w), 841 (w), 816 (m), 793 (w), 742 (w), 684 (s) cm⁻¹. ¹H NMR (600 MHz, CDCl₃): δ = 8.07–8.08 (m, 1 H_{arom}), 7.79–7.80 (m, 1 H_{arom}), 7.30–7.31 (m, 1 H_{arom}), 7.14–7.17 (m, 2 H_{arom}), 7.02–7.03 (m, 1 H_{arom}), 6.24 (q, *J* = 7.2 Hz, =C*H*), 1.82 (d, *J* = 7.2 Hz, CH₃) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 153.3, 145.9, 133.7 (2 C_{arom}, C_{arom}-C=), 131.3, 129.9, 129.8, 129.1, 128.7, 127.0, 126.6 (6 CH_{arom}, =CH), 15.9 (CH₃) ppm. C₁₁H₁₀Se₂(300.12): calcd. C 44.02, H 3.36; found C 44.00, H 3.66.

2-Methyl-4,4,5,5-tetra(selenophen-2-yl)-1,3-dithiolane (**10I**): Yield: 252 mg (79%). White crystals; m.p. 152 – 153 °C (MeOH/CHCl₃). IR (KBr): v = 3088 (w), 3048 (w), 2914 (w), 1439 (m), 1375 (w), 1230 (s), 1022 (m), 829 (w), 787 (w), 682 (s) cm⁻¹. ¹H NMR (600 MHz, CDCl₃): δ = 7.99–8.01 (m, 4 H_{arom}), 7.47–7.48 (m, 2 H_{arom}), 7.17–7.19 (m, 2 H_{arom}), 7.10–7.13 (m, 4 H_{arom}), 4.8 (q, *J* = 6.6 Hz, CH(CH₃)), 1.76 (d, *J* = 6.6 Hz, CH₃) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 154.5, 152.7 (for 4 C_{arom}), 134.1, 133.2 br., 132.3, 128.2, 128.0 (for 12 CH_{arom}), 78.4 (C-4, C-5), 45.6 (C-2), 19.1 (CH₃) ppm. C₂₀H₁₆S₂Se₄ (636.31): calcd. C 37.75, H 2.53, S 10.08; found C 37.67, H 2.65, S 10.23.

1-Phenyl-1-(thiophen-2-yl)propene (**9m**): Isolated as a mixture of (*E/Z*)-isomers (53:47). Yield: 96 mg (48%) – After desulfurization of tiirane **8m**. Yellow oil. IR (film): v = 3062 (w), 2931 (w), 1716 (m), 1682 (m), 1635 (s), 1599 (m), 1578 (m), 1515 (m), 1447 (m), 1413 (s), 1354 (m), 1288 (s), 1232 (m), 1053 (m), 843 (m), 717 (s), 700 (s), 649 (m) cm⁻¹. ¹H NMR (600 MHz, CDCl₃): $\delta = 6.48-7.32$ (m, 16 H_{arom}), 6.17 (q, *J* = 7.2 Hz, =CH), 6.02 (q, *J* = 7.2 Hz, =CH), 1.86 (d, *J* = 7.2 Hz, CH₃), 1.60 (d, *J* = 7.2

Hz, CH₃) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 147.4, 143.2, 141.6, 139.1, 136.7, 135.8 (4 C_{arom}, 2 C_{arom}-*C*=), 129.7, 128.2, 128.0, 127.8, 127.5, 127.3, 127.1, 126.8, 126.6, 125.4, 124.6, 123.4, 123.1 (for 16 CH_{arom}, 2 (=*C*H)), 16.0 (CH₃), 15.2 (CH₃). C₁₃H₁₂S (200.30): calcd. C 77.95, H 6.04, S 16.01; found C 78.0, H 5.79, S 16.29.

2-Methyl-4,5-diphenyl-4,5-di(thiophen-2-yl)-1,3-dithiolane (**10m**): Isolated as a mixture of two *cis,trans*-isomers in a ratio of 56:44 (from three isomers possible). Yield: 58 mg (27%). Yellow crystals; m.p. 137 – 139 °C (MeOH/CHCl₃). IR (KBr): v = 3055 (w), 2922 (w), 1597 (w), 1488 (s), 1443 (s), 1371 (w), 1233 (w), 1187 (m), 1052 (m), 1034 (m), 850 (w), 695 (s) cm⁻¹. ¹H NMR (600 MHz, CDCl₃): δ = 6.48–7.54 (m, 32 H_{arom}), 4.38 (q, *J* = 6.6 Hz, C*H*(CH₃)), 4.09 (q, *J* = 6.6 Hz, C*H*(CH₃)), 1.68 (d, *J* = 6.6 Hz, CH₃), 1.61 (d, *J* = 6.6 Hz, CH₃) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 151.1, 149.8, 148.7, 143.4, 143.3, 141.3 (for 8 C_{arom}), 131.2, 130.8, 130.6, 130.4, 130.3, 130.2, 127.7, 127.3, 127.2, 126.8, 126.7, 126.4, 126.2, 126.1, 125.5, 125.4, 125.3, 124.9 (for 32 CH_{arom}), 77.7, 77.6, 76.4, 76.9 (2 C-4, 2 C-5), 43.3, 43.1 (2 C-2), 17.8 (CH₃), 18.7 (CH₃) ppm. C₂₄H₂₀S₄ (436.68): calcd. C 66.01, H 4.62, S 29.37; found C 66.00, H 4.71, S 29.27.

1-Phenyl-1-(selenophen-2-yl)propene (**9n**): Isolated as a mixture of (*E*/*Z*)-isomers (73:27). Yield: 176 mg (71%) – After desulfurization of tiirane **8n**. Red oil. IR (film): v = 3055 (w), 3020 (w), 2928 (w), 2909 (w), 2852 (w), 1491 (m), 1441 (m), 1220 (m), 819 (m), 787 (m), 702 (s), 685 (s). ¹H NMR (600 MHz, CDCl₃): δ = 6.70–8.04 (m, 16 H_{arom}), 6.17 (q, *J* = 7.2 Hz, =CH), 6.09 (q, *J* = 7.2 Hz, =CH), 1.93 (d, *J* = 7.2 Hz, CH₃), 1.65 (d, *J* = 7.2 Hz, CH₃) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 153.7, 147.8, 143.4,

139.2, 138.8, 137.9 (4 C_{arom} , 2 $C_{arom}C=$), 131.1, 130.0, 129.9, 129.6, 129.1, 128.2, 128.1, 128.0, 127.6, 127.2, 127.1, 126.0, 124.2 (for 16 CH_{arom} , 2 =*C*H), 16.0 (CH₃), 15.4 (CH₃). $C_{13}H_{12}Se$ (247.19): calcd. C 63.16, H 4.89; fund C 62.98, 4.84.

2-Methyl-4,5-diphenyl-4,5-di(selenophen-2-yl)-1,3-dithiolane (**10n**): Isolated as a mixture of two *cis/trans*-isomers in a ratio of 52:48 (from three isomers possible). Yield: 74 mg (28%). Yellow crystals: m.p. 144 – 146 °C (MeOH/CHCl₃). IR (KBr): v = 3053 (w), 2922 (w), 1596 (w), 1486 (s), 1441 (s), 1371 (m), 1232 (s), 1185 (m), 1032 (m), 685 (s) cm⁻¹. ¹H NMR (600 MHz, CDCl₃): δ 6.63–7.92 (m, 32 H_{arom}), 4.54 (q, J = 6.6 Hz, CH(CH₃)), 4.12 (q, J = 6.6 Hz, CH(CH₃)), 1.78 (d, J = 6.6 Hz, CH₃), 1.68 (d, J = 6.6 Hz, CH₃) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 160.2$, 157.9, 156.2, 143.7, 143.4, 140.9 (for 8 C_{arom}), 133.2, 132.7, 132.6, 132.5, 132.4, 131.6, 131.0, 130.6, 130.3, 128.2, 128.0, 127.8, 127.6, 127.5, 127.3, 126.9, 126.8, 126.7 (for 32 CH_{arom}), 79.3, 79.2, 78.7, 78.1 (2 C-4, 2 C-5), 43.4, 43.3 (2 C-2), 18.6 (CH₃), 17.7 (CH₃) ppm. C₂₄H₂₀S₂Se₂ (530.47): calcd. C 54.34, H 3.80, S 12.09; found C 54.39, H 3.77, 12.19.

4,4,5,5-Tetraphenyl-2-trimethylsilyl-1,3-dithiolane (**10o**): Yield: 79 mg (33%). Colorless crystals: m.p. 87 – 88 °C (CH₃OH/CH₂Cl₂). IR (KBr): v = 3054 (w), 2952 (w), 2842 (w), 1603 (w), 1494 (m), 1437 (m), 1246 (m), 864 (s), 835 (s), 722 (s), 694 (s) cm⁻¹. ¹H NMR (600 MHz, CDCl₃): 6.94–7.64 (m, 20 H_{arom}), 3.36 (s, ((CH₃)₃Si)*H*C), 0.34 (s, (CH₃)₃Si) ppm. ¹³C NMR (150 MHz, CDCl₃): 142.5 (for 4 C_{arom}), 131.7 br., 131.3 br., 129.2, 128.1, 127.8, 126.4 br., 126.1 br. (for 20 CH_{arom}), 79.5 (C-4,C-5), 33.4 (C-2), -1.55 ((*C*H₃)₃Si) ppm. HR-EI-MS: 482.155825 (calcd. 482.154830 for $C_{30}H_{30}S_2Si~[M]^+$).

2,2,3,3-Tetraphenyl-5,6-bis(trimethylsilyl)-1,4-dithiane (**4c**) (in analogy to **4d** tentatively described as a *trans*-isomer): Yield: 65 mg (22%). Colorless crystals: m.p. 185 – 186 °C (CH₃OH/CH₂Cl₂). IR (KBr): v = 3058 (w), 2941 (w), 2860 (w), 1487 (m), 1434 (m), 1250 (s), 1108 (w), 857 (s), 718 (s), 694 (s) cm⁻¹. ¹H NMR (600 MHz, CDCl₃): 7.56–7.57 (m, 4 H_{arom}), 7.32–7.33 (m, 4 H_{arom}), 7.03–7.17 (m, 12 H_{arom}), 2.97 (s, (2 (CH₃)₃Si)*H*C), 0.14 (s, 2 (CH₃)₃Si) ppm. ¹³C NMR (150 MHz, CDCl₃): 146.7, 145.2 (for 4 C_{arom}), 135.0, 132.0, 126.5, 126.2, 125.8, 124.9 (for 20 CH_{arom}), 63.9 (C-5, C-6), 36.3 (2 CHSi), 0.17 (2 (CH₃)₃Si) ppm. C₃₄H₄₀S₂Se₂ (568.98): calcd. C 71.77, H 7.09, S 11.27; found C 71.77, H 7.13, S 11.38.ESI-MS (MeOH): 591(100, [*M*+Na].

4,4,5,5-Tetra(selenophen-2-yl)-2-trimethylsilyl-1,3-dithiolane (**10s**): Yield: 265 mg (76%). Yellow crystals: m.p. 140 – 142 °C (hexane/CH₂Cl₂). IR (KBr): v = 2949 (w), 1439 (m), 1251 (s), 1225 (s), 1156 (w), 1120 (m), 1104 (w), 844 (s), 805 (m), 694 (s) cm⁻¹. ¹H NMR (600 MHz, CDCl₃): 7.09–7.10 (m, 2 H_{arom}), 7.14–7.16 (m, 2 H_{arom}), 7.19–7.20 (m, 2 H_{arom}), 7.51–7.52 (m, 2 H_{arom}), 7.93–7.93 (m, 4 H_{arom}), 4.02 (s, ((CH₃)₃Si)*H*C), 0.31 (s, (CH₃)₃Si) ppm. ¹³C NMR (150 MHz, CDCl₃): 156.0, 153.3 (for 4 arom. C), 133.8, 132.8, 132.2, 131.9, 128.3, 128.1 (for 12 CH_{arom}), 78.2 (C-4, C-5), 37.4 (C-2), –1.46 ((CH₃)₃Si) ppm. C₂₂H₂₂S₂Se₄Si (694.47): calcd. C 38.05, H 3.19, S 9.23; found C 38.08, H 3.21, 9.55.

References

[S1] Rabinovitz, M.; Agranat, I.; Bergrnann, E. D., *J. Chem. Soc.*, **1967**, 1281–1284. doi: 10.1039/J29670001281.

[S2] a) Ganapathy, D.; Sekar G.; Org. Lett. 2014, 16, 3856–3859, doi: 10.1021/ol5017367 b) Cantrell, T. S.; J. Org. Chem., 1974, 3, 2242–2246. doi: 10.1021/jo00929a024.

[S3] a) Bell, T. W.; Catalano, V. J.; Drew, M. G. B.; Phillips, D. J.; *Chem. Eur. J.*, **2002**, 8, 5001–5006, doi: 10.1002/1521-3765. b) Boyce, R.; Hayes, B. A.; Murphy,
W. S., *J. Chem. Soc. Perkin Trans.* 1, **1975**, 531–534. doi: 10.1039/P19750000531.

Figure S1: The ¹H NMR spectrum of compound 8a.

Figure S2: The ¹³C NMR spectrum of compound 8a.

Figure S3: The ¹H NMR spectrum of compound 10b.

Figure S4: The ¹³C NMR spectrum of compound 10b.

Figure S5: The ¹H NMR spectrum of compound **8d**.

Figure S6: The ¹³C NMR spectrum of compound 8d.

Figure S7: The ¹H NMR spectrum of compound 9d.

Figure S8: The ¹³C NMR spectrum of compound 9d.

Figure S9: The ¹H NMR spectrum of compound 10d.

Figure S11: The ¹H NMR spectrum of compound 9e.

Figure S13: The ¹H NMR spectrum of compound 10e.

Figure S14: The ¹³C NMR spectrum of compound 10e.

Figure S15: The ¹H NMR spectrum of compound 8f.

Figure S17: The ¹H NMR spectrum of compound 10f.

Figure S18: The ¹³C NMR spectrum of compound 10f.

Figure S19: The ¹H NMR spectrum of compound 9c.

Figure S20: The ¹³C NMR spectrum of compound 9c.

Figure S21: The ¹H NMR spectrum of compound 10c.

Figure S22: The ¹³C NMR spectrum of compound 10c.

Figure S23: The ¹H NMR spectrum of compound 10g.

Figure S24: The ¹³C NMR spectrum of compound 10g.

Figure S25: The ¹H NMR spectrum of compound **9h**.

Figure S26: The ¹³C NMR spectrum of compound 9h.

Figure S27: The ¹H NMR spectrum of compound 10h.

Figure S28: The ¹³C NMR spectrum of compound 10h.

Figure S29: The ¹H NMR spectrum of compound 10j.

Figure S30: The ¹³C NMR spectrum of compound 10j.

Figure S31: The ¹H NMR spectrum of compound **9k**.

Figure S32: The ¹³C NMR spectrum of compound 9k.

Figure S33: The ¹H NMR spectrum of compound 10k.

Figure S34: The ¹³C NMR spectrum of compound 10k.

Figure S35: The ¹H NMR spectrum of compound 91.

Figure S36: The ¹³C NMR spectrum of compound 91.

Figure S37: The ¹H NMR spectrum of compound 10l.

Figure S38: The ¹³C NMR spectrum of compound 10l.

Figure S39: The ¹H NMR spectrum of compound 9m.

Figure S40: The ¹³C NMR spectrum of compound 9m.

Figure S41: The ¹H NMR spectrum of compound 10m.

Figure S42: The ¹³C NMR spectrum of compound 10m.

Figure S43: The ¹H NMR spectrum of compound 9n.

Figure S44: The ¹³C NMR spectrum of compound 9n.

Figure S45: The ¹H NMR spectrum of compound 10n.

Figure S46: The ¹³C NMR spectrum of compound 10n.

Figure S47: The ¹H NMR spectrum of compound 10o.

Figure S48: The ¹³C NMR spectrum of compound 100.

Figure S49: The ¹H NMR spectrum of compound 4c.

Figure S50: The ¹³C NMR spectrum of compound 4c.

Figure S51: The ¹H NMR spectrum of compound 10r.

Figure S52: The ¹³C NMR spectrum of compound 10r.

Figure S53: The ¹H NMR spectrum of compound 10s.

Figure S54: The ¹³C NMR spectrum of compound 10s.