Supporting Information
for
Cationic Pd(II)-catalyzed C–H activation/cross-coupling reactions
at room temperature: synthetic and mechanistic studies

Takashi Nishikata, Alexander R. Abela, Shenlin Huang and Bruce H. Lipshutz*

Address: Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA 93106, USA
Email: lipshutz@chem.ucsb.edu
* Corresponding author

Experimental procedures and characterization of all new compounds

I. Synthesis of arylurea S2–S7
II. C–H arylations with aryl iodides S7–S8
III. C–H Suzuki–Miyaura S8–S15
IV. Fujiwara–Moritani S15–S22
V. Synthesis of boscalid S23
VI. Mechanistic studies S24–S26
VII. References S26
VIII. Spectral data S27–S105
For TLC analyses precoated Kieselgel 60 F₂₅₄ plates (Merck, 0.25 mm thick) were used; for column chromatography Silica Flash[®] P60 (SiliCycle, 40–63 μm) was used. Reactions were monitored using an Hewlett-Packard HP6890 gas chromatograph. ¹H and ¹³C NMR spectra were obtained using a Varian UNITY INOVA 400 MHz NMR spectrometer. High resolution mass spectral analyses were obtained using a VG70 double-focusing magnetic sector instrument (VG Analytical) for EI and a PE Sciex QStar Pulsar quadrupole/TOF instrument (API) for ESI.

*Compounds 1a,1b, 1d, 1f, 1j, 1l, 1n, 3a–3hh, 5a–5c were previously reported¹⁻⁵.

I. The synthesis of arylureas

Table 1. Starting materials.

<table>
<thead>
<tr>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArNHNMe₂</td>
<td>OMe</td>
</tr>
<tr>
<td>1a</td>
<td>84%</td>
</tr>
<tr>
<td>1b</td>
<td>94%</td>
</tr>
<tr>
<td>1c</td>
<td>99%</td>
</tr>
<tr>
<td>1d</td>
<td>97%</td>
</tr>
<tr>
<td>1e</td>
<td>91%</td>
</tr>
<tr>
<td>1f</td>
<td>96%</td>
</tr>
<tr>
<td>1g</td>
<td>93%</td>
</tr>
<tr>
<td>1h</td>
<td>90%</td>
</tr>
<tr>
<td>1i</td>
<td>87% (48h)</td>
</tr>
<tr>
<td>1j</td>
<td>84%</td>
</tr>
<tr>
<td>1k</td>
<td>96%</td>
</tr>
<tr>
<td>1l</td>
<td>77% (48h)</td>
</tr>
<tr>
<td>1m</td>
<td>98%</td>
</tr>
<tr>
<td>1n</td>
<td>99%</td>
</tr>
<tr>
<td>1o</td>
<td>81%</td>
</tr>
</tbody>
</table>

General procedure A [similar as described in ref. 3].

Anilines (1 mmol), N,N-dimethylcarbamoyl chloride (2 mmol), DMAP (1 mmol), and pyridine (4 mmol) were sequentially added under air to a reaction tube equipped with a stir bar and a septum. CH₂Cl₂ (2 mL) was added by syringe and the resulting mixture vigorously stirred for 36–48 h at ambient temperature. After this time, the contents of the flask were extracted with
EtOAc. The solution obtained was filtered through the plug of silica gel and anhydrous MgSO₄, and then concentrated by rotary evaporation. The residue was purified by flash chromatography, eluting with hexane/EtOAc to afford the product.

Following the general procedure A, using aniline (0.11 mL, 1 mmol), DMAP (122 mg, 1 mmol), pyridine (0.32 mL, 4 mmol), N,N-dimethylcarbamoyl chloride (0.18 mL, 2 mmol), and CH₂Cl₂ (2 mL), yielded the product 1a (164 mg, 84%): ¹H NMR (CDCl₃) δ: 3.02 (s, 6H), 3.79 (s, 3H), 6.36 (brs, 1H), 6.57 (d, J = 8.0 Hz, 1H), 6.83 (d, J = 7.5 Hz, 1H), 7.14-7.19 (m, 2H); ¹³C NMR (CDCl₃), δ: 36.66, 55.46, 105.39, 109.22, 111.94, 129.63, 140.72, 155.80, 160.40; HRESIMS calcd. for C₁₀H₁₄N₂O₂Na (M+Na⁺): 217.0953; found 217.0948.

Following the general procedure A, using m-toluidine (1.07 mL, 10 mmol), DMAP (1.22 g, 10 mmol), pyridine (3.24 mL, 40 mmol), N,N-dimethylcarbamoyl chloride (1.84 mL, 20 mmol), and CH₂Cl₂ (20 mL), yielded the product 1b (1.68 g, 94%): ¹H NMR (CDCl₃) δ: 2.32 (s, 3H), 3.02 (s, 6H), 6.26 (brs, 1H), 6.83-6.85 (m, 1H), 7.14-7.26 (m, 3H); ¹³C NMR (CDCl₃), δ: 21.57, 36.50, 117.12, 120.80, 123.76, 128.65, 138.67, 139.33, 156.01; HRESIMS calcd. for C₁₀H₁₄N₂O₂Na (M+Na⁺): 201.1004; found 201.0999.

Following the general procedure A, using aniline (0.14 mL, 1 mmol), DMAP (122 mg, 1 mmol), pyridine (0.32 mL, 4 mmol), N,N-dimethylcarbamoyl chloride (0.18 mL, 2 mmol), and CH₂Cl₂ (2 mL), yielded the product 1c (204 mg, 99%): ¹H NMR (CDCl₃) δ: 1.24 (d, J = 7.2 Hz, 6H), 2.87 (sept, J = 7.2 Hz, 1H), 3.04 (s, 6H), 6.26 (brs, 1H), 6.89-6.92 (m, 1H), 7.16-7.26 (m, 2H), 7.29 (s, 1H); ¹³C NMR (CDCl₃), δ: 24.12, 34.34, 36.64, 117.53, 118.20, 121.28, 128.89, 139.32, 149.93, 155.99; HRESIMS calcd. for C₁₂H₁₈N₂O₂Na (M+Na⁺): 229.1317; found 229.1314.
Following the general procedure A, using aniline (121 mg, 1 mmol), DMAP (122 mg, 1 mmol), pyridine (0.32 mL, 4 mmol), N,N-dimethylcarbamoyl chloride (0.18 mL, 2 mmol), and CH$_2$Cl$_2$ (2 mL), yielded the product 1d (187 mg, 97%); 1H NMR (CDCl$_3$) δ: 2.20 (s, 3H), 2.23 (s, 3H), 3.02 (s, 6H), 6.18 (brs, 1H), 7.03 (d, J = 8.4 Hz, 1H), 7.07 (dd, J = 2.0 and 8.4 Hz, 1H), 7.20 (d, J = 1.6 Hz, 1H); 13C NMR (CDCl$_3$), δ: 19.24, 20.08, 36.64, 117.65, 121.70, 130.02, 131.40, 137.04, 137.19, 156.12; HRESIMS calcd. for C$_{11}$H$_{16}$N$_2$ONa (M+Na$^+$): 215.1160; found 215.1157.

Following the general procedure A, using aniline (199 mg, 1 mmol), DMAP (122 mg, 1 mmol), pyridine (0.32 mL, 4 mmol), N,N-dimethylcarbamoyl chloride (0.18 mL, 2 mmol), and CH$_2$Cl$_2$ (2 mL), yielded the product 1e (244 mg, 91%); 1H NMR (CDCl$_3$) δ: 3.04 (s, 6H), 5.06 (s, 2H), 6.29 (brs, 1H), 6.66 (dd, J = 2.4 and 8.4 Hz, 1H), 6.84 (d, J = 7.2 Hz, 1H), 7.17 (t, J = 8.0 Hz, 1H), 7.28-7.44 (m, 6H); 13C NMR (CDCl$_3$), δ: 36.63, 70.10, 106.38, 109.97, 112.27, 127.67, 128.02, 128.68, 129.64, 137.28, 140.73, 155.79, 159.58; HRESIMS calcd. for C$_{16}$H$_{18}$N$_2$O$_2$Na (M+Na$^+$): 293.1266; found 293.1269.

Following the general procedure A, using aniline (153 mg, 1 mmol), DMAP (122 mg, 1 mmol), pyridine (0.32 mL, 4 mmol), N,N-dimethylcarbamoyl chloride (0.18 mL, 2 mmol), and CH$_2$Cl$_2$ (2 mL), yielded the product 1f (216 mg, 96%); 1H NMR (CDCl$_3$) δ: 3.03 (s, 6H), 3.85 (s, 3H), 3.88 (s, 3H), 6.20 (brs, 1H), 6.69 (dd, J = 2.8 and 8.8 Hz, 1H), 6.78 (d, J = 8.8 Hz, 1H), 7.26 (d, J = 2.8 Hz, 1H); 13C NMR (CDCl$_3$), δ: 36.54, 55.33, 95.51, 97.95, 141.39, 155.81, 160.97; HRESIMS calcd. for C$_{11}$H$_{16}$N$_2$O$_3$Na (M+Na$^+$): 247.1059; found 247.1057.

Following the general procedure A, using aniline (153 mg, 1 mmol), DMAP (122 mg, 1 mmol), pyridine (0.32 mL, 4 mmol), N,N-dimethylcarbamoyl chloride (0.18 mL, 2 mmol), and CH$_2$Cl$_2$ (2 mL), yielded the product 1g (209 mg, 93%); 1H NMR (CDCl$_3$) δ: 3.02 (s, 6H), 3.76 (s, 6H), 6.16 (s, 1H), 6.31 (brs, 1H), 6.65 (s, 2H); 13C NMR (CDCl$_3$), δ: 36.48, 55.33, 95.51, 97.95, 141.39, 155.81, 160.97; HRESIMS calcd. for C$_{11}$H$_{16}$N$_2$O$_3$Na (M+Na$^+$): 247.1059; found 247.1058.
Following the general procedure A, using aniline (250 mg, 1.8 mmol), DMAP (1.8 mmol, 223 mg), pyridine (7.3 mmol, 0.6 mL), N,N-dimethylcarbamoyl chloride (3.6 mmol, 0.34 mL), and CH₂Cl₂ (3.6 mL), yielded the product 1h (344 mg, 90%): ¹H NMR (CDCl₃) δ: 2.15 (s, 3H), 3.03 (s, 6H), 3.83 (s, 3H), 6.26 (brs, 1H), 6.60 (dd, J = 2 and 8 Hz, 1H), 6.99 (d, J = 8 Hz, 1H), 7.28 (s, 1H); ¹³C NMR (CDCl₃), δ: 15.68, 36.43, 55.25, 103.17, 111.44, 120.84, 130.15, 138.46, 156.10, 157.84; HRESIMS calcd. for C₁₁H₁₆N₂O₂Na (M+Na⁺): 231.1109; found 231.1107.

Following the general procedure A, using aniline (0.14 mL, 1 mmol), DMAP (122 mg, 1 mmol), pyridine (0.32 mL, 4 mmol), N,N-dimethylcarbamoyl chloride (0.18 mL, 2 mmol), and CH₂Cl₂ (2 mL), yielded the product 1i (150 mg, 67%): ¹H NMR (CDCl₃) δ: 3.05 (s, 6H), 3.855 (s, 3H), 3.859 (s, 3H), 6.57 (dd, J = 1.2 and 8.4 Hz, 1H), 7.00 (t, J = 8.4 Hz, 1H), 7.19 (brs, 1H), 7.81 (dd, J = 1.2 and 8.4 Hz, 1H); ¹³C NMR (CDCl₃), δ: 36.21, 55.67, 60.29, 105.74, 111.59, 124.02, 133.52, 136.89, 151.77, 155.25; HRESIMS calcd. for C₁₁H₁₆N₂O₃Na (M+Na⁺): 247.1059; found 247.1057.

Following the general procedure A, using aniline (123 mg, 1 mmol), DMAP (122 mg, 1 mmol), pyridine (0.32 mL, 4 mmol), N,N-dimethylcarbamoyl chloride (0.18 mL, 2 mmol), and CH₂Cl₂ (2 mL), yielded the product 1j (163 mg, 84%): ¹H NMR (CDCl₃) δ: 3.01 (s, 6H), 6.19 (brs, 1H), 6.83 (d, J = 9.2 Hz, 2H), 7.26 (d, J = 9.2 Hz, 2H); ¹³C NMR (CDCl₃), δ: 36.21, 55.67, 60.29, 105.74, 111.59, 124.02, 133.52, 136.89, 151.77, 155.25; HRESIMS calcd. for C₁₀H₁₄N₂O₂Na (M+Na⁺): 217.0953; found 217.0947.

Following the general procedure A, using m-toluidine (0.91 mL, 10 mmol), DMAP (1.22 g, 10 mmol), pyridine (3.24 mL, 40 mmol), N,N-dimethylcarbamoyl chloride (1.84 mL, 20 mmol), and CH₂Cl₂ (20 mL), yielded the product 1k (1.46 g, 89%): ¹H NMR (CDCl₃) δ: 3.03 (s, 6H), 6.32 (brs, 1H), 7.02 (t, J = 7.2 Hz, 1H), 7.26-7.31 (m, 2H), 7.35-7.38 (m, 2H); ¹³C NMR (CDCl₃), δ: 36.56, 120.10, 122.99, 128.89, 139.44, 155.97; HRESIMS calcd. for C₁₀H₁₄N₂O₂Na (M+Na⁺): 187.0847; found 187.0839.
Following the general procedure A, using aniline (0.11 mL, 1 mmol), DMAP (122 mg, 1 mmol), pyridine (0.32 mL, 4 mmol), N,N-dimethylcarbamoyl chloride (0.18 mL, 2 mmol), and CH$_2$Cl$_2$ (2 mL), yielded the product 1l (138 mg, 77%): 1H NMR (CDCl$_3$) δ: 2.25 (s, 3H), 3.04 (s, 6H), 6.12 (brs, 1H), 6.98-7.02 (m, 1H), 7.14-7.21 (m, 2H), 7.71 (d, $J = 8$ Hz, 1H); 13C NMR (CDCl$_3$), δ: 17.94, 36.64, 122.70, 123.93, 126.91, 128.50, 130.41, 137.39, 156.10; HRESIMS calcd. for C$_{10}$H$_{14}$N$_2$ONa (M+Na$^+$): 201.1004; found 201.1000.

Following the general procedure A, using aniline (135 mg, 1 mmol), DMAP (122 mg, 1 mmol), pyridine (0.32 mL, 4 mmol), N,N-dimethylcarbamoyl chloride (0.18 mL, 2 mmol), and CH$_2$Cl$_2$ (2 mL), yielded the product 1m (201 mg, 98%): 1H NMR (CDCl$_3$) δ: 2.60 (s, 3H), 3.06 (s, 6H), 6.46 (brs, 1H), 7.39 (t, $J = 8$ Hz, 1H), 7.61 (d, $J = 8$ Hz, 1H), 7.76 (d, $J = 8$ Hz, 1H), 7.89 (s, 1H); 13C NMR (CDCl$_3$), δ: 26.83, 36.62, 119.43, 122.91, 124.77, 129.18, 137.73, 140.10, 155.89, 198.47; HRESIMS calcd. for C$_{11}$H$_{14}$N$_2$O$_2$Na (M+Na$^+$): 229.0953; found 229.0948.

Following the general procedure A, using aniline (0.11 mL, 1 mmol), DMAP (122 mg, 1 mmol), pyridine (0.32 mL, 4 mmol), N,N-dimethylcarbamoyl chloride (0.18 mL, 2 mmol), and CH$_2$Cl$_2$ (2 mL), yielded the product 1n (189 mg, 99%): 1H NMR (CDCl$_3$) δ: 2.93 (s, 6H), 3.02 (t, $J = 8$ Hz, 2H), 3.90 (t, $J = 8$ Hz, 2H), 6.87-6.94 (m, 2H), 7.11-7.18 (m, 2H); 13C NMR (CDCl$_3$), δ: 28.15, 38.17, 50.37, 113.36, 121.34, 124.84, 127.01, 131.40, 144.37, 160.30; HRESIMS calcd. for C$_{11}$H$_{14}$N$_2$ONa (M+Na$^+$): 213.1004; found 213.0997.

Following the general procedure A, using aniline (1 mmol), DMAP (122 mg, 1 mmol), pyridine (0.32 mL, 4 mmol), N,N-dimethylcarbamoyl chloride (0.18 mL, 2 mmol), and CH$_2$Cl$_2$ (2 mL), yielded the product 1q (81%): 1H NMR (acetone-d_6) δ: 2.99 (s, 6H), 3.81 (s, 3H), 3.84 (s, 3H), 7.09 (dd, $J = 2.4$ and 8.7 Hz, 1H), 7.18 (d, $J = 8.7$ Hz, 1H), 7.51 (d, $J = 2.4$ Hz, 1H), 7.89 (brs, 1H); 13C NMR (acetone-d_6) δ: 35.57, 56.25, 105.02, 112.78, 115.07, 130.15, 142.08, 155.78, 156.44; HRESIMS calcd. for C$_{10}$H$_{13}$N$_2$O$_2$Na (M+Na$^+$): 251.0563; found 251.0569.
Following the general procedure A, using aniline (1 mmol), DMAP (122 mg, 1 mmol), pyridine (0.32 mL, 4 mmol), \(N,N\)-dimethylcarbamoyl chloride (0.18 mL, 2 mmol), and \(\text{CH}_2\text{Cl}_2\) (2 mL), yielded the product 1q (79%);
\[\text{1H NMR (acetone-}\text{d}_6\text{): } \delta: 2.99 (s, 6H), 7.08-7.18 (m, 2H), 7.48 (d, \text{ } J = 8.0 \text{ Hz}, 1H), 7.90-7.91 (m, 2H).\]
\[\text{13C NMR (acetone-}\text{d}_6\text{): } \delta: 36.52, 118.77, 122.47, 122.84, 125.16, 130.88, 143.53, 156.22; \text{HRESIMS calcd. for } \text{C}_9\text{H}_{11}\text{N}_2\text{ONa (M+Na}^+\text{): 264.9952; found 264.9953.}\]

Following the general procedure A, using aniline (1 mmol), DMAP (122 mg, 1 mmol), pyridine (0.32 mL, 4 mmol), \(N,N\)-dimethylcarbamoyl chloride (0.18 mL, 2 mmol), and \(\text{CH}_2\text{Cl}_2\) (2 mL), yielded the product 1q (90%);
\[\text{1H NMR (CDCl}_3\text{): } \delta: 0.80 (t, \text{ } J = 7.6 \text{ Hz}, 3H), 1.29 (d, \text{ } J = 6.8 \text{ Hz}, 3H), 1.56 (m, 2H), 2.53 (m, 1H), 3.03 (s, 6H), 6.22 (brs, 1H), 7.09 (d, \text{ } J = 8.4 \text{ Hz}, 1H), 7.28 (d, \text{ } J = 8.4 \text{ Hz}, 1H); \text{13C NMR (CDCl}_3\text{): } \delta: 12.13, 21.86, 31.11, 36.25, 40.93, 120.52, 126.98, 137.13, 141.96, 156.28; \text{HRESIMS calcd. for } \text{C}_{13}\text{H}_{20}\text{N}_2\text{ONa (M+Na}^+\text{): 243.1473; found 243.1471.}\]

II. C–H arylations with aryl iodide

General procedure B [analogous as described in ref 3].
Aryl urea 1 (0.25 mmol), aryl iodide 2 (0.5 mmol), AgOAc (0.5 mmol, 83 mg), and Pd(OAc)\(_2\) (0.025 mmol, 5.6 mg) were sequentially added under air to a reaction tube equipped with a stir bar and a septum. An aqueous solution containing the surfactant (1.0 mL, 2 wt %), and 48 wt % HBF\(_4\) (1.25 mmol, 0.16 mL) was added by syringe and the resulting mixture vigorously stirred for 20 h at ambient temperature. After this time, the contents of the flask were quenched with aqueous NaHCO\(_3\) and extracted with EtOAc. The solution obtained was filtered through the plug of silica gel and anhydrous MgSO\(_4\), and then concentrated by rotary evaporation. The residue was purified by flash chromatography, eluting with hexane/EtOAc to afford the product. All products are reported previously (See also section III).\(^1\)^\(^2\)

Following the general procedure above, using 1d (48 mg, 0.25 mmol), \textit{m}-tolyl-I (109 mg, 0.50 mmol), AgOAc (0.5 mmol, 83 mg), and Pd(OAc)\(_2\) (0.025 mmol, 5.6 mg), 2 wt % Brij 35 solution (1.0 mL) 48 wt % aqueous HBF\(_4\) (1.25 mmol, 0.16 mL), the product 3r was obtained (56 mg, 79%);
\[\text{1H NMR (CDCl}_3\text{): } \delta: 2.23 (s, 3H), 2.29 (s, 3H), 2.39 (s, 3H), 2.81 (s, 6H), 6.44 (brs, 1H), 6.96 (s, 1H), 7.15-7.17 (m, 3H), 7.33 (dd, \text{ } J = 7.2 \text{ and 8.2 Hz}, 1H), 7.94 (s, 1H).\]
Following the general procedure above, using 1q (55 mg, 0.25 mmol), p-An-I (117 mg, 0.50 mmol), AgOAc (0.5 mmol, 83 mg), and Pd(OAc)$_2$ (0.025 mmol, 5.6 mg), 2 wt % Brij 35 solution (1.0 mL) 48 wt % aqueous HBF$_4$ (1.25 mmol, 0.16 mL), the product 3cc was obtained (58 mg, 71%): 1H NMR (CDCl$_3$) δ: 0.83 (t, $J = 7.4$ Hz, 3H), 1.22 (t, $J = 6.9$ Hz, 3H), 1.54-1.61 (m, 2H), 2.55 (sext, $J = 6.9$ Hz, 1H), 2.81 (s, 6H), 3.85 (s, 3H), 6.43 (brs, 1H), 6.98 (brs, 1H), 7.00 (d, $J = 8.4$ Hz, 2H), 7.13 (dd, $J = 2.1$ and 8.4 Hz, 1H), 7.32 (d, $J = 8.4$ Hz, 2H), 8.01 (d, $J = 8.4$ Hz, 1H).

III. C–H Suzuki–Miyaura

General procedure C [analogous as described in ref 4].

Arylurea 1 (0.25 mmol), arylboronic acid 2 (1.5–3 equiv), 1,4-benzoquinone (2–5 equiv), and [Pd(MeCN)$_4$](BF$_4$)$_2$ (0.025 mmol, 11 mg) were sequentially added in air to a reaction tube equipped with a stir bar and a septum. EtOAc was added by syringe and the resulting mixture vigorously stirred for 20 h at ambient temperature. After this time, the contents of the flask were quenched with aqueous NaOH (to remove 1,4-hydroxybenzene) and extracted with EtOAc. The solution obtained was filtered through the plug of silica gel and anhydrous MgSO$_4$, and then concentrated by rotary evaporation. The residue was purified by flash chromatography, eluting with hexane/EtOAc to afford the product. All products are reported previously except 3ii.

Following the general procedure above, using arylurea (53 mg, 0.25 mmol), p-tolylB(OH)$_2$ (102 mg, 0.75 mmol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)$_4$](BF$_4$)$_2$ (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3ii (73 mg, 97%): 1H NMR (CDCl$_3$) δ: 2.41 (s, 3H), 2.91 (s, 6H), 6.02 (brs, 1H), 7.25 (d, $J = 8.1$ Hz, 2H), 7.33 (d, $J = 8.8$ Hz, 2H), 7.43 (d, $J = 8.1$ Hz, 1H), 7.46-7.56 (m, 2H), 7.78 (d, $J = 8.4$ Hz, 1H), 7.83 (d, $J = 8.8$ Hz, 1H), 7.99 (d, $J = 8.8$ Hz, 1H). 13C NMR (CDCl$_3$) δ: 20.85, 36.18, 123.96, 125.45, 126.05, 126.38, 127.29, 127.50, 128.69, 128.81, 130.80, 133.25, 134.71, 136.38, 136.73, 157.26; HRESIMS calcd. for C$_{20}$H$_{20}$N$_2$ONa (M+Na$^+$): 327.1473; found 327.1479.

Following the general procedure above, using 1b (44 mg, 0.25 mmol), PhB(OH)$_2$ (96 mg, 0.75 mmol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)$_4$](BF$_4$)$_2$ (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3a (61 mg, 96%): 1H NMR (CDCl$_3$) δ: 2.38 (s, 3H), 2.79 (s, 6H), 6.48 (brs,
1H), 6.90 (dd, J = 1.0 and 7.7 Hz, 1H), 7.08 (d, J = 7.7 Hz, 1H), 7.35-7.38 (m, 3H), 7.43-7.47 (m, 2H), 8.02 (brs, 1H).

Following the general procedure above, using 1b (44 mg, 0.25 mmol), p-AnB(OH)₂ (114 mg, 0.75 mmol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)₄](BF₄)₂ (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3b (53 mg, 75%); ¹H NMR (CDCl₃): δ: 2.37 (s, 3H), 2.81 (s, 6H), 3.84 (s, 3H), 6.50 (brs, 1H), 6.87 (dd, J = 1.0 and 7.7 Hz, 1H), 6.98 (d, J = 8.7 Hz, 2H), 7.05 (d, J = 7.7 Hz, 1H), 7.28 (d, J = 8.7 Hz, 2H), 8.01 (brs, 1H).

Following the general procedure above, using 1b (44 mg, 0.25 mmol), p-tolylB(OH)₂ (102 mg, 0.75 mmol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)₄](BF₄)₂ (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3c (60 mg, 90%); ¹H NMR (CDCl₃): δ: 2.38 (s, 3H), 2.40 (s, 3H), 2.81 (s, 6H), 6.52 (brs, 1H), 6.88 (dd, J = 1.0 and 7.7 Hz, 1H), 7.07 (d, J = 7.7 Hz, 1H), 7.26 (brs, 4H), 8.02 (s, 1H).

Following the general procedure above, using 1b (44 mg, 0.25 mmol), p-MeCO₂C₆H₄B(OH)₂ (135 mg, 0.75 mmol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)₄](BF₄)₂ (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3d (73 mg, 94%); ¹H NMR (CDCl₃): δ: 2.38 (s, 3H), 2.82 (s, 6H), 3.94 (s, 3H), 6.37 (brs, 1H), 6.92 (dd, J = 1.2 and 8.4 Hz, 1H), 7.09 (d, J = 7.8 Hz, 1H), 7.46 (d, J = 7.8 Hz, 2H), 7.95 (brs, 1H), 8.12 (d, J = 8.4 Hz, 2H).

Following the general procedure above, using 1b (44 mg, 0.25 mmol), p-AcC₆H₄B(OH)₂ (123 mg, 0.75 mmol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)₄](BF₄)₂ (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3e (63 mg, 86%); ¹H NMR (CDCl₃): δ: 2.38 (s, 3H), 2.64 (s, 3H), 2.83 (s,
Following the general procedure above, using 1b (44 mg, 0.25 mmol), p-ClC₆H₄B(OH)₂ (117 mg, 0.75 mmol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)₄](BF₄)₂ (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3f (67 mg, 94%); ¹H NMR (CDCl₃) δ: 2.37 (s, 3H), 2.83 (s, 6H), 6.33 (brs, 1H), 6.91 (d, J = 7.7 Hz, 1H), 7.05 (d, J = 7.7 Hz, 1H), 7.30 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 7.93 (brs, 1H).

Following the general procedure above, using 1b (44 mg, 0.25 mmol), 2,5-(MeO)₂C₆H₃B(OH)₂ (136 mg, 0.75 mmol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)₄](BF₄)₂ (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3g (77 mg, 98%); ¹H NMR (CDCl₃) δ: 2.38 (s, 3H), 2.83 (s, 6H), 3.74 (s, 3H), 3.77 (s, 3H), 6.79 (d, J = 3.0 Hz, 1H), 6.89 (dd, J = 3.0 and 8.9 Hz, 1H), 6.89-6.90 (m, 2H), 7.03 (brs, 1H), 7.10 (d, J = 7.8 Hz, 1H), 7.78 (brs, 1H).

Following the general procedure above, using 1a (48 mg, 0.25 mmol), p-AnB(OH)₂ (114 mg, 0.75 mmol), BQ (0.5 mmol, 54 mg), and [Pd(MeCN)₄](BF₄)₂ (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3h (60 mg, 81%); ¹H NMR (CDCl₃) δ: 2.81 (s, 6H), 3.84 (s, 6H), 6.60 (brs, 1H), 6.61 (dd, J = 2.6 and 8.3 Hz, 1H), 6.98 (d, J = 8.6 Hz, 2H), 7.05 (d, J = 8.3 Hz, 1H), 7.27 (d, J = 8.6 Hz, 2H), 7.92 (d, J = 2.6 Hz, 1H).

Following the general procedure above, using 1a (48 mg, 0.25 mmol), p-tolylB(OH)₂ (102 mg, 0.75 mmol), BQ (0.5 mmol, 54 mg), and [Pd(MeCN)₄](BF₄)₂ (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3i (61 mg, 87%); ¹H NMR (CDCl₃) δ: 2.40 (s, 3H), 2.81 (s, 6H), 3.85 (s, 3H), 6.63 (dd, J = 2.7 and 8.5 Hz, 1H), 6.64 (brs, 1H), 7.02 (d, J = 8.5 Hz, 1H), 7.25 (brs, 4H), 7.94 (d, J = 2.7 Hz, 1H).
Following the general procedure above, using 1a (48 mg, 0.25 mmol), PhB(OH)$_2$ (96 mg, 0.75 mmol), BQ (0.5 mmol, 54 mg), and [Pd(MeCN)$_4$](BF$_4$)$_2$ (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3j (62 mg, 70%); 1H NMR (CDCl$_3$) δ: 2.96 (s, 6H), 3.85 (s, 3H), 6.60 (brs, 1H), 6.63 (dd, $J=2.6$ and 8.4 Hz, 1H), 7.08 (d, $J=8.6$ Hz, 1H), 7.34-7.38 (m, 3H), 7.43-7.47 (m, 2H), 7.94 (d, $J=2.6$ Hz, 1H).

Following the general procedure above, using 1a (48 mg, 0.25 mmol), 2d (135 mg, 0.75 mmol), BQ (0.5 mmol, 54 mg), and [Pd(MeCN)$_4$](BF$_4$)$_2$ (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3k (60 mg, 70%); 1H NMR (CDCl$_3$) δ: 1.41 (t, $J=7.1$ Hz, 3H), 2.82 (s, 6H), 3.84 (s, 3H), 4.39 (q, $J=7.1$ Hz, 2H), 6.49 (brs, 1H), 6.65 (dd, $J=2.6$ and 8.4 Hz, 1H), 7.08 (d, $J=8.4$ Hz, 1H), 7.44 (d, $J=8.4$ Hz, 2H), 7.88 (d, $J=2.6$ Hz, 1H), 8.11 (d, $J=8.4$ Hz, 2H).

Following the general procedure above, using 1o (57 mg, 0.25 mmol), p-tolylB(OH)$_2$ (102 mg, 0.75 mmol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)$_4$](BF$_4$)$_2$ (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3l (77 mg, 97%); 1H NMR (CDCl$_3$) δ: 2.40 (s, 3H), 2.81 (s, 6H), 5.11 (s, 2H), 6.65 (brs, 1H), 6.70 (dd, $J=2.6$ and 8.4 Hz, 1H), 7.08 (d, $J=8.4$ Hz, 1H), 7.26 (brs, 4H), 7.32 (d, $J=7.2$ Hz, 1H), 7.39 (t, $J=7.2$ Hz, 2H), 7.47 (d, $J=7.2$ Hz, 2H), 8.05 (d, $J=2.6$ Hz, 1H).
Following the general procedure above, using arylurea (63 mg, 0.25 mmol), \(p\)-tolylB(OH)\(_2\) (102 mg, 0.75 mmol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)\(_4\)](BF\(_4\))\(_2\) (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3n (69 mg, 80%); \(^1\)H NMR (CDCl\(_3\)) \(\delta \) : 2.38 (s, 3H), 2.79 (s, 6H), 3.98 (s, 2H), 6.54 (brs, 1H), 6.85 (dd, \(J = 1.7 \) and 7.8 Hz, 1H), 7.07 (d, \(J = 7.8 \) Hz, 1H), 7.14-7.19 (m, 1H), 7.24-7.27 (m, 8H), 8.11 (d, \(J = 1.7 \) Hz, 1H).

Following the general procedure above, using 1c (51 mg, 0.25 mmol), \(p\)-tolylB(OH)\(_2\) (102 mg, 0.75 mmol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)\(_4\)](BF\(_4\))\(_2\) (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3o (66 mg, 89%); \(^1\)H NMR (CDCl\(_3\)) \(\delta \) : 1.29 (t, \(J = 7.0 \) Hz, 6H), 2.40 (s, 3H), 2.82 (s, 6H), 2.95 (sept, \(J = 7.0 \) Hz, 1H), 6.57 (brs, 1H), 6.93 (dd, \(J = 1.7 \) and 8.7 Hz, 1H), 7.11 (d, \(J = 8.7 \) Hz, 1H), 7.26 (brs, 4H), 8.10 (d, \(J = 1.7 \) Hz, 1H).

Following the general procedure above, using 1d (48 mg, 0.25 mmol), \(p\)-AnB(OH)\(_2\) (114 mg, 0.75 mmol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)\(_4\)](BF\(_4\))\(_2\) (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3p (64 mg, 86%); \(^1\)H NMR (CDCl\(_3\)) \(\delta \) : 2.22 (s, 3H), 2.28 (s, 3H), 2.39 (s, 3H), 2.81 (s, 6H), 3.85 (s, 3H), 6.38 (brs, 1H), 6.95 (brs, 1H), 6.98 (dd, \(J = 8.8 \) Hz, 2H), 7.28 (d, \(J = 8.8 \) Hz, 2H), 7.91 (s, 1H).

Following the general procedure above, using 1d (48 mg, 0.25 mmol), \(p\)-tolylB(OH)\(_2\) (102 mg, 0.75 mmol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)\(_4\)](BF\(_4\))\(_2\) (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3q (67 mg, 96%); \(^1\)H NMR (CDCl\(_3\)) \(\delta \) : 2.22 (s, 3H), 2.29 (s, 3H), 2.39 (s, 3H), 2.81 (s, 6H), 6.42 (brs, 1H), 6.96 (s, 1H), 7.25 (brs, 4H), 7.92 (s, 1H).

Following the general procedure above, using 1d (48 mg, 0.25 mmol), PhB(OH)\(_2\) (96 mg, 0.75 mol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)\(_4\)](BF\(_4\))\(_2\) (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3r (67 mg, 96%); \(^1\)H NMR (CDCl\(_3\)) \(\delta \) : 2.22 (s, 3H), 2.29 (s, 3H), 2.39 (s, 3H), 2.81 (s, 6H), 6.42 (brs, 1H), 6.96 (s, 1H), 7.25 (brs, 4H), 7.92 (s, 1H).
mmol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)_4](BF_4)_2 (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3s (64 mg, 95%); 1H NMR (CDCl_3) δ: 2.23 (s, 3H), 2.30 (s, 3H), 2.80 (s, 6H), 6.37 (brs, 1H), 6.98 (s, 1H), 7.34-7.38 (m, 3H), 7.43-7.47 (m, 2H), 7.93 (s, 1H).

Following the general procedure above, using 1l (44 mg, 0.25 mmol), p-tolylB(OH)_2 (102 mg, 0.75 mmol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)_4](BF_4)_2 (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3t (43 mg, 65%); 1H NMR (CDCl_3) δ: 2.32 (s, 3H), 2.39 (s, 3H), 2.85 (s, 6H), 5.71 (brs, 1H), 7.12 (dd, J = 1.8 and 7.5 Hz, 1H), 7.17 (t, J = 7.5 Hz, 1H), 7.20-7.26 (m, 5H).

Following the general procedure above, using 1h (52 mg, 0.25 mmol), p-tolylB(OH)_2 (102 mg, 0.75 mmol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)_4](BF_4)_2 (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3u (60 mg, 80%); 1H NMR (CDCl_3) δ: 2.18 (s, 3H), 2.39 (s, 3H), 2.82 (s, 6H), 3.89 (s, 3H), 6.59 (brs, 1H), 6.94 (s, 1H), 7.24 (brs, 4H), 7.87 (s, 1H).

Following the general procedure above, using 1n (47 mg, 0.25 mmol), PhB(OH)_2 (96 mg, 0.75 mmol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)_4](BF_4)_2 (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3v (60 mg, 90%); 1H NMR (CDCl_3) δ: 2.51 (s, 6H), 3.07 (t, J = 8.0 Hz, 2H), 3.94 (t, J = 8.0 Hz, 2H), 6.99 (t, J = 7.8 Hz, 1H), 7.12 (t, J = 8.1 Hz, 2H), 7.20-7.24 (m, 2H), 7.32 (d, J = 7.8 Hz, 2H), 7.39 (d, J = 8.1 Hz, 2H).

Following the general procedure above, using 1n (47 mg, 0.25 mmol), p-tolylB(OH)_2 (102 mg, 0.75 mmol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)_4](BF_4)_2 (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3w (62 mg, 89%); 1H NMR (CDCl_3) δ: 2.34 (s, 3H), 2.57 (s, 6H), 3.09 (t, J = 7.9 Hz, 2H), 3.96 (t, J = 7.9 Hz, 2H), 6.99 (t, J = 7.8 Hz, 1H), 6.98-7.02 (m, 4H), 7.26 (brs, 1H), 7.32 (d, J = 8.0 Hz, 2H).
Following the general procedure above, using 1j (48 mg, 0.25 mmol), p-tolylB(OH)$_2$ (51 mg, 0.375 mmol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)$_4$](BF$_4$)$_2$ (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3aa (58 mg, 82%). 1H NMR (CDCl$_3$) δ: 2.39 (s, 3H), 2.80 (s, 6H), 3.78 (s, 3H), 6.29 (brs, 1H), 6.75 (d, $J = 3.0$ Hz, 1H), 6.87 (dd, $J = 3.0$ and 9.0 Hz, 1H), 7.28 (brs, 4H), 7.93 (d, $J = 9.0$ Hz, 1H).

Following the general procedure above, using 1j (48 mg, 0.25 mmol), PhB(OH)$_2$ (46 mg, 0.375 mmol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)$_4$](BF$_4$)$_2$ (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3bb (60 mg, 89%). 1H NMR (CDCl$_3$) δ: 2.79 (s, 6H), 3.79 (s, 3H), 6.24 (brs, 1H), 6.77 (d, $J = 3.0$ Hz, 1H), 6.89 (dd, $J = 3.0$ and 9.0 Hz, 1H), 7.26-7.40 (m, 3H), 7.44-7.48 (m, 2H), 7.93 (d, $J = 9.0$ Hz, 1H).

Following the general procedure above, using 1q (55 mg, 0.25 mmol), p-tolylB(OH)$_2$ (51 mg, 0.375 mmol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)$_4$](BF$_4$)$_2$ (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3dd (68 mg, 88%). 1H NMR (CDCl$_3$) δ: 0.83 (t, $J = 7.3$ Hz, 3H), 1.22 (t, $J = 7.0$ Hz, 3H), 1.52-1.61 (m, 2H), 2.40 (s, 3H), 2.56 (sext, $J = 7.0$ Hz, 1H), 2.81 (s, 6H), 6.47 (brs, 1H), 6.99 (d, $J = 2.2$ Hz, 1H), 7.13 (dd, $J = 2.2$ and 8.4 Hz, 1H), 7.25-7.30 (m, 4H), 8.01 (d, $J = 8.4$ Hz, 1H).

Following the general procedure above, using 1q (55 mg, 0.25 mmol), PhB(OH)$_2$ (46 mg, 0.375 mmol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)$_4$](BF$_4$)$_2$ (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3ee (59 mg, 80%). 1H NMR (CDCl$_3$) δ: 0.83 (t, $J = 7.5$ Hz, 3H), 1.22 (t, $J = 6.9$ Hz, 3H), 1.56 (sept, $J = 7.5$ Hz, 2H), 2.54-2.62 (m, 1H), 2.79 (s, 6H), 6.42 (brs, 1H), 7.00 (d, $J = 1.9$ Hz, 1H), 7.15 (dd, $J = 1.9$ and 8.5 Hz, 1H), 7.35-7.40 (m, 3H), 7.44-7.48 (m, 2H), 8.02 (t, $J = 8.5$ Hz, 1H).
Following the general procedure above, using 1k (41 mg, 0.25 mmol), p-tolylB(OH)$_2$ (51 mg, 0.375 mmol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)$_4$](BF$_4$)$_2$ (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3gg (50 mg, 78%): 1H NMR (CDCl$_3$) δ: 2.40 (s, 3H), 2.80 (s, 6H), 6.55 (brs, 1H), 7.05 (t, $J=7.4$ Hz, 1H), 7.17 (d, $J=7.4$ Hz, 1H), 7.27 (brs, 4H), 7.31 (t, $J=8.3$ Hz, 1H), 8.17 (d, $J=8.3$ Hz, 1H).

Following the general procedure above, using 1k (41 mg, 0.25 mmol), PhB(OH)$_2$ (46 mg, 0.375 mmol), BQ (1.25 mmol, 135 mg), and [Pd(MeCN)$_4$](BF$_4$)$_2$ (0.025 mmol, 11 mg), EtOAc (1.0 mL), yielded the product 3hh (50 mg, 83%): 1H NMR (CDCl$_3$) δ: 2.78 (s, 6H), 6.51 (brs, 1H), 7.06 (dt, $J=1.2$ and 7.5 Hz, 1H), 7.19 (dd, $J=1.6$ and 7.5 Hz, 1H), 7.31-7.40 (m, 4H), 7.45-7.49 (m, 2H), 8.16 (dd, $J=1.2$ and 7.4 Hz, 1H).

IV. Fujiwara–Moritani reactions

General procedure D in water [analogous as described in ref 5].

 Arylurea 1 (0.25 mmol), acrylate ester (0.5 mmol), 1,4-benzoquinone (0.25 mmol, 27 mg), AgOAc (0.5 mmol, 85 mg), and Pd(OAc)$_2$ (0.025 mmol, 5.6 mg) were sequentially added under air to a reaction tube equipped with a stir bar and a septum. An aqueous solution containing the surfactant (1.0 mL, 2 wt %), and 48 wt % HBF$_4$ (1.25 mmol, 0.16 mL) was added by syringe and the resulting mixture vigorously stirred for 20 h at ambient temperature. After this time, the contents of the flask were quenched with aqueous NaHCO$_3$ and extracted with EtOAc. The solution obtained was filtered through the plug of silica gel and anhydrous MgSO$_4$, and then concentrated by rotary evaporation. The residue was purified by flash chromatography, eluting with hexane/EtOAc to afford the product. All products are reported except 5d–5h.3

Following the general procedure above, using 1a (48 mg, 0.25 mmol), acrylate ester (92 mg, 0.50 mmol), 1,4-benzoquinone (0.25 mmol, 27 mg), AgNO$_3$ (0.5 mmol, 85 mg), and [Pd(MeCN)$_4$](BF$_4$)$_2$ (0.025 mmol, 11 mg), 2 wt % PTS solution (1.0 mL), yielded the product 5a (69 mg, 74%), 1H NMR (CDCl$_3$) δ: 0.90 (t, $J=6.8$ Hz, 3H), 0.91 (t, $J=7.5$ Hz, 3H), 1.25-1.45 (m, 8H), 1.60-1.67 (m,
1H), 3.06 (s, 6H), 3.82 (s, 3H), 4.08 (dd, J = 6.0 and 11 Hz, 1H), 4.11 (dd, J = 5.7 and 11 Hz, 1H),
6.28 (d, J = 15.7 Hz, 1H), 6.45 (brs, 1H), 6.67 (dd, J = 2.6 and 8.7 Hz, 1H), 7.40 (d, J = 2.5 Hz, 1H),
7.46 (d, J = 8.7 Hz, 1H), 7.75 (d, J = 15.7 Hz, 1H).

Following the general procedure above, using 1a (48 mg, 0.25 mmol), acrylate ester (120 mg,
0.50 mmol), 1,4-benzoquinone (0.25 mmol, 27 mg), AgNO₃ (0.5 mmol, 85 mg), and
[Pd(MeCN)₄](BF₄)₂ (0.025 mmol, 11 mg), 2 wt % PTS solution (1.0 mL), yielded the product 5b
(71 mg, 76%), ¹H NMR (CDCl₃) δ: 0.88 (t, J = 7.2 Hz, 3H), 1.26-1.49 (m, 12H), 1.55-1.61 (m, 1H),
3.07 (s, 6H), 3.82 (s, 3H), 5.00 (sext, J = 6.2 Hz, 1H), 6.28 (d, J = 15.7 Hz, 1H), 6.43 (brs, 1H), 6.67
(dd, J = 2.6 and 8.7 Hz, 1H), 7.41 (d, J = 2.6 Hz, 1H), 7.45 (d, J = 8.7 Hz, 1H), 7.75 (d, J = 15.7 Hz, 1H).

Following the general procedure above, using 1g (56 mg, 0.25 mmol), acrylate ester (106 mg,
0.50 mmol), 1,4-benzoquinone (0.25 mmol, 27 mg), AgNO₃ (0.5 mmol, 85 mg), and
[Pd(MeCN)₄](BF₄)₂ (0.025 mmol, 11 mg), 2 wt % PTS solution (1.0 mL), yielded the product 5c
(86 mg, 80%), ¹H NMR (CDCl₃) δ: 0.86 (d, J = 6.5 Hz, 6H), 0.92 (d, J = 6.5 Hz, 3H), 1.11-1.17 (m, 3H),
1.31 (d, J = 6.8 Hz, 6H), 1.23-1.33 (m, 3H), 1.45-1.54 (m, 3H), 1.69-1.77 (m, 1H), 2.57 (sept, J =
6.8 Hz, 1H), 3.83 (s, 3H), 3.84 (s, 3H), 4.19-4.25 (m, 2H), 6.25 (s, 1H), 6.48 (d, J = 16.2 Hz, 1H),
7.35 (s, 1H), 7.38 (brs, 1H), 7.75 (d, J = 16.2 Hz, 1H).

Following the general procedure above, using using 1b (44 mg, 0.25 mmol), acrylate ester (92 mg,
0.50 mmol), 1,4-benzoquinone (0.25 mmol, 27 mg), AgOAc (0.5 mmol, 83 mg), and
[Pd(MeCN)₄](BF₄)₂ (0.025 mmol, 11 mg), 2 wt % Brij 35 solution (1.0 mL), yielded the product 5d
(77 mg, 86%), ¹H NMR (CDCl₃) δ: 0.89-0.92 (m, 6H), 1.25-1.43 (m, 8H), 1.54-1.64 (m, 1H), 2.33 (s, 3H),
3.03 (s, 6H), 4.03 (dd, J = 6.0 and 11.0 Hz, 1H), 4.07 (dd, J = 5.7 and 11.0 Hz, 1H), 6.34 (d, J =
15.8 Hz, 1H), 6.46 (brs, 1H), 6.94 (d, J = 8.1 Hz, 1H), 7.42-7.44 (m, 2H), 7.75 (d, J = 15.8 Hz, 1H).
¹³C NMR (CDCl₃) δ: 11.16, 14.19, 21.63, 23.11, 29.07, 30.58, 36.64, 38.95, 67.04, 118.89, 124.94,
125.75, 125.87, 126.94, 137.60, 139.83, 141.42, 156.12, 167.41; HRESIMS calcd. for
C₂₁H₂₅N₂O₃Na (M+Na⁺): 383.2310; found 383.2311.
Following the general procedure above, using using 1a (48 mg, 0.25 mmol), acrylate ester (81 mg, 0.50 mmol), 1,4-benzoquinone (0.25 mmol, 27 mg), AgOAc (0.5 mmol, 83 mg), and [Pd(MeCN)₄](BF₄)₂ (0.025 mmol, 11 mg), 2 wt % Brij 35 solution (1.0 mL), yielded the product 5e (88 mg, 99%), ¹H NMR (CDCl₃) δ: 2.99 (s, 6H), 3.78 (s, 3H), 5.18 (s, 2H), 6.29 (d, J = 15.7 Hz, 1H), 6.60 (brs, 1H), 6.65 (dd, J = 2.6 and 8.8 Hz, 1H), 7.26 (d, J = 2.6 Hz, 1H), 7.31-7.37 (m, 5H), 7.42 (d, J = 8.8 Hz, 1H), 7.77 (d, J = 15.9 Hz, 1H). ¹³C NMR (CDCl₃) δ: 36.63, 55.55, 66.37, 109.11, 111.96, 116.48, 119.71, 128.25, 128.31, 128.53, 128.69, 136.24, 139.63, 140.19, 155.96, 161.91, 167.19; HRESIMS calcd. for C₂₀H₂₂N₂O₄Na (M+Na⁺): 377.1477; found 377.1478.

Following the general procedure above, using using 1h (52 mg, 0.25 mmol), acrylate ester (43 mg, 0.50 mmol), 1,4-benzoquinone (0.25 mmol, 27 mg), AgOAc (0.5 mmol, 83 mg), and [Pd(MeCN)₄](BF₄)₂ (0.025 mmol, 11 mg), 2 wt % Brij 35 solution (1.0 mL), yielded the product 5f (65 mg, 89%), ¹H NMR (CDCl₃) δ: 2.15 (s, 3H), 3.04 (s, 6H), 3.74 (s, 3H), 3.81 (s, 3H), 6.24 (d, J = 15.8 Hz, 1H), 6.58 (brs, 1H), 7.18 (s, 1H), 7.26 (s, 1H), 7.74 (d, J = 15.8 Hz, 1H). ¹³C NMR (CDCl₃) δ: 15.94, 36.66, 51.69, 55.59, 106.68, 116.05, 119.04, 123.50, 128.53, 137.43, 139.89, 156.15, 159.96, 167.96; HRESIMS calcd. for C₁₅H₂₀N₂O₄Na (M+Na⁺): 315.1321; found 315.1322.

Following the general procedure above, using 1a (48 mg, 0.25 mmol), acrylamide (80 mg, 0.50 mmol), 1,4-benzoquinone (0.25 mmol, 27 mg), AgOAc (0.5 mmol, 83 mg), and [Pd(MeCN)₄](BF₄)₂ (0.025 mmol, 11 mg), 2 wt % Brij 35 solution (1.0 mL), yielded the product 5g (73 mg, 83%), ¹H NMR (CDCl₃) δ: 3.05 (s, 6H), 3.28 (s, 3H), 3.76 (s, 3H), 6.17 (d, J = 15.3 Hz, 1H), 6.52 (dd, J = 2.6 and 8.8 Hz, 1H), 6.87 (brs, 1H), 7.07 (d, J = 8.8 Hz, 1H), 7.15 (d, J = 7.2 Hz, 1H), 7.33-7.43 (m, 4H), 7.77 (d, J = 15.3 Hz, 1H). ¹³C NMR (CDCl₃) δ: 36.69, 37.56, 55.50, 108.19, 111.59, 117.75, 119.58, 127.40, 127.77, 127.95, 129.76, 136.56, 139.40, 143.57, 155.87, 161.30, 166.42; HRESIMS calcd. for C₂₀H₂₃N₃O₄Na (M+Na⁺): 376.1637; found 376.1639.
Following the general procedure above, using 1a (48 mg, 0.25 mmol), acrylamide (123 mg, 0.50 mmol), 1,4-benzoquinone (0.25 mmol, 27 mg), AgOAc (0.5 mmol, 83 mg), and [Pd(MeCN)₄](BF₄)₂ (0.025 mmol, 11 mg), 2 wt % Brij 35 solution (1.0 mL), yielded the product 5h (75 mg, 69%), ¹H NMR (CDCl₃) δ: 1.21 (t, J = 7.2 Hz, 3H), 3.02 (s, 6H), 3.11 (d, J = 6.0 Hz, 2H), 3.78 (s, 3H), 4.15 (q, J = 7.1 Hz, 2H), 4.84-4.89 (m, 1H), 6.20 (d, J = 16.2 Hz, 1H), 6.30-6.34 (m, 1H), 6.60 (dd, J = 2.5 and 8.7 Hz, 1H), 6.77 (brs, 1H), 7.10 (dd, J = 1.6 and 7.9 Hz, 1H), 7.20-7.28 (m, 2H), 7.33 (s, 1H), 7.36 (d, J = 8.8 Hz, 1H), 7.72 (d, J = 16.2 Hz, 1H). ¹³C NMR (CDCl₃) δ: 14.23, 36.69, 38.07, 53.56, 55.54, 61.67, 108.56, 111.79, 119.17, 119.39, 127.18, 127.87, 129.47, 136.11, 136.43, 139.43, 155.95, 161.49, 165.65, 171.83, HRESIMS calcd. for C₂₄H₂₉N₃O₅Na (M+Na⁺): 462.2005; found 462.2005.

General procedure E in EtOAc [similar as described in ref. 5].

Arylurea 1 (0.25 mmol), acrylate ester (0.5 mmol), 1,4-benzoquinone (0.75 mmol, 81 mg), and Pd(OAc)₂ (0.025 mmol, 5.6 mg) were sequentially added under air to a reaction tube equipped with a stir bar and a septum. EtOAc (1.0 mL) and 48 wt % HBF₄ (0.25 mmol, 32 uL) were added by syringe and the resulting mixture vigorously stirred for 20 h at ambient temperature. After this time, the contents of the flask were quenched with aqueous NaHCO₃ and extracted with EtOAc. The solution obtained was filtered through the plug of silica gel and anhydrous MgSO₄, and then concentrated by rotary evaporation. The residue was purified by flash chromatography, eluting with hexane/EtOAc to afford the product.

Following the general procedure above, using aryl urea 1b (44.6 mg, 0.25 mmol), acrylate ester (43 mg, 0.5 mmol), 1,4-benzoquinone (0.75 mmol, 81 mg), Pd(OAc)₂ (0.025 mmol, 5.6 mg), 48 wt % HBF₄ (0.25 mmol, 32 uL), and EtOAc (1 mL), yielded the product 5i (61.2 mg, 93%); ¹H NMR (CDCl₃) δ: 2.34 (s, 3H), 3.06 (s, 6H), 3.79 (s, 3H), 6.26 (brs, 1H), 6.36 (d, J = 15.5 Hz, 1H), 6.94 (d, J = 8 Hz, 1H), 7.41 (d, J = 8 Hz, 1H), 7.48 (s, 1H), 7.80 (d, J = 15.5 Hz, 1H); ¹³C NMR (CDCl₃), δ: 21.53, 36.57, 51.68, 118.02, 125.21, 125.90, 126.06, 126.84, 137.76, 140.38, 141.33, 156.26, 167.72; HRESIMS calcd. for C₁₄H₁₈N₂O₃Na (M+Na⁺): 285.1215; found 285.1206.
Following the general procedure above, using aryl urea 1d (48.1 mg, 0.25 mmol), acrylate ester (43 mg, 0.5 mmol), 1,4-benzoquinone (0.75 mmol, 81 mg), Pd(OAc)$_2$ (0.025 mmol, 5.6 mg), 48 wt % HBF$_4$ (0.25 mmol, 32 uL), and EtOAc (1 mL), yielded the product 5j (68.3 mg, 99%); 1H NMR (CDCl$_3$) δ: 2.23 (s, 3H), 2.24 (s, 3H), 3.05 (s, 6H), 3.78 (s, 3H), 6.19 (brs, 1H), 6.36 (d, $J = 15.5$ Hz, 1H), 7.30 (s, 1H), 7.35 (s, 1H), 7.80 (d, $J = 15.5$ Hz, 1H); 13C NMR (CDCl$_3$), δ: 19.33, 19.96, 36.62, 51.69, 117.71, 125.85, 127.09, 127.71, 133.57, 135.60, 140.10, 140.49, 156.53, 167.72; HRESIMS calcd. for C$_{15}$H$_{20}$N$_2$O$_3$Na (M+Na$^+$): 299.1372; found 299.1364.

Following the general procedure above, using aryl urea 1c (51.6 mg, 0.25 mmol), acrylate ester (43 mg, 0.5 mmol), 1,4-benzoquinone (0.75 mmol, 81 mg), Pd(OAc)$_2$ (0.025 mmol, 5.6 mg), 48 wt % HBF$_4$ (0.25 mmol, 32 uL), and EtOAc (1 mL), yielded the product 5k (69.4 mg, 96%); 1H NMR (CDCl$_3$) δ: 1.24 (d, $J = 7$ Hz, 6H), 2.89 (sept, $J = 7$ Hz, 1H), 3.06 (s, 6H), 3.79 (s, 3H), 6.28 (brs, 1H), 6.37 (d, $J = 16$ Hz, 1H), 7.01 (d, $J = 8$ Hz, 1H), 7.46 (d, $J = 8$ Hz, 1H), 7.52 (s, 1H), 7.81 (d, $J = 16$ Hz, 1H); 13C NMR (CDCl$_3$), δ: 23.75, 34.19, 36.67, 51.74, 118.33, 123.17, 123.35, 125.39, 127.13, 137.85, 140.40, 152.29, 156.20, 167.64; HRESIMS calcd. for C$_{16}$H$_{22}$N$_2$O$_3$Na (M+Na$^+$): 313.1528; found 313.1517.

Following the general procedure above, using 1a (48 mg, 0.25 mmol), acrylate ester (92 mg, 0.50 mmol), 1,4-benzoquinone (0.75 mmol, 81 mg), Pd(OAc)$_2$ (0.025 mmol, 5.6 mg), 48 wt % HBF$_4$ (0.25 mmol, 32 uL), and EtOAc (1 mL), yielded the product 5l (91 mg, 97%); 1H NMR (CDCl$_3$) δ: 0.90 (t, $J = 6.8$ Hz, 3H), 0.91 (t, $J = 7.5$ Hz, 3H), 1.25-1.41 (m, 8H), 1.58-1.63 (m, 1H), 2.99 (s, 6H), 3.80 (s, 3H), 4.02 (dd, $J = 6.0$ and 11 Hz, 1H), 4.07 (dd, $J = 5.6$ and 11 Hz, 1H), 6.33 (d, $J = 15.7$ Hz, 1H), 6.47 (brs, 1H), 6.88 (dd, $J = 2.6$ and 8.7 Hz, 1H), 7.03 (d, $J = 2.6$ Hz, 1H), 7.29 (d, $J = 8.7$ Hz, 1H), 7.77 (d, $J = 15.7$ Hz, 1H); 13C NMR (CDCl$_3$), δ: 10.95, 14.02, 22.91, 23.77, 28.89, 30.38, 36.42, 38.76, 55.45, 66.88, 110.72, 116.82, 119.42, 128.18, 130.35, 130.91, 140.08, 156.63, 157.01, 167.04; HRESIMS calcd. for C$_{21}$H$_{32}$N$_2$O$_4$Na (M+Na$^+$): 399.2260; found 399.2260.
Following the general procedure above, using aryl urea 1k (41.1 mg, 0.25 mmol), acrylate ester (43 mg, 0.5 mmol), 1,4-benzoquinone (0.75 mmol, 81 mg), Pd(OAc)$_2$ (0.025 mmol, 5.6 mg), 48 wt % HBF$_4$ (0.25 mmol, 32 uL), and EtOAc (1 mL), yielded the product 5m (82 mg, 95%); 1H NMR (CDCl$_3$) δ: 0.91 (t, J = 7.2 Hz, 3H), 0.92 (t, J = 7.6 Hz, 3H), 1.25-1.45 (m, 8H), 1.61-1.66 (m, 1H), 3.07 (s, 6H), 4.08-4.16 (m, 2H), 6.27 (br s, 1H), 6.42 (d, J = 15.6 Hz, 1H), 7.12-7.16 (m, 1H), 7.34-7.39 (m, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.83 (d, J = 15.6 Hz, 1H); 13C NMR (CDCl$_3$), δ: 11.56, 14.18, 23.10, 23.97, 29.07, 30.58, 36.62, 38.96, 67.10, 119.90, 124.86, 125.41, 127.05, 127.98, 130.73, 137.84, 140.03, 156.14, 167.20; HRESIMS calcd. for C$_{20}$H$_{30}$N$_2$O$_3$Na (M+Na$^+$): 369.2154; found 369.2162.

Following the general procedure above, using aryl urea 1q (0.25 mmol), acrylate ester (0.5 mmol), 1,4-benzoquinone (0.75 mmol, 81 mg), and Pd(OAc)$_2$ (0.025 mmol, 5.6 mg), EtOAc (1.0 mL) and 48 wt % HBF$_4$ (0.25 mmol, 32 uL) yielded the product 5n (99 mg, 99%); 1H NMR (CDCl$_3$) δ: 0.81 (t, J = 7.3 Hz, 3H), 0.90 (t, J = 7.0 Hz, 6H), 1.31 (d, J = 7.0 Hz, 3H), 1.41-1.43 (m, 8H), 1.54-1.62 (m, 3H), 2.57 (sext, J = 7.0 Hz, 1H), 3.01 (s, 3H), 4.04 (dd, J = 6.0 and 11.0 Hz, 1H), 4.07 (dd, J = 5.6 and 11.0 Hz, 1H), 6.38 (d, J = 15.9 Hz, 1H), 6.51 (brs, 1H), 7.16 (dd, J = 2.0 and 8.4 Hz, 1H), 7.33 (d, J = 1.9 Hz, 1H), 7.44 (d, J = 8.4 Hz, 1H), 7.83 (d, J = 15.9 Hz, 1H). 13C NMR (CDCl$_3$), δ: 10.99, 12.17, 14.03, 21.74, 22.95, 23.77, 28.91, 30.39, 31.01, 36.45, 38.79, 41.18, 66.85, 119.20, 125.24, 125.60, 127.82, 129.46, 135.45, 140.29, 144.20, 156.17, 167.16; HRESIMS calcd. for C$_{24}$H$_{38}$N$_2$O$_3$Na (M+Na$^+$): 425.2780; found 425.2774.

Following the general procedure above, using aryl urea 1n (47.6 mg, 0.25 mmol), acrylate ester (43 mg, 0.5 mmol), 1,4-benzoquinone (0.75 mmol, 81 mg), Pd(OAc)$_2$ (0.025 mmol, 5.6 mg), 48
wt % HBF$_4$ (0.25 mmol, 32 uL), and EtOAc (1 mL), yielded the product 5o (92.5 mg, 99%): 1H NMR (CDCl$_3$) δ: 0.90-0.93 (m, 6H), 1.30-1.43 (m, 8H), 1.57-1.61 (m, 1H), 3.01 (s, 6H), 3.09 (t, J = 8 Hz, 2H), 3.94 (t, J = 8 Hz, 2H), 4.02-4.12 (m, 2H), 6.33 (d, J = 16 Hz, 1H), 7.00 (t, J = 7.6 Hz, 1H), 7.19 (d, J = 7.2 Hz, 1H), 7.38 (d, J = 7.6 Hz, 1H), 7.51 (d, J = 16 Hz, 1H); 13C NMR (CDCl$_3$), δ: 11.15, 14.13, 23.04, 23.96, 29.05, 30.01, 30.55, 37.56, 38.93, 52.74, 66.59, 117.31, 123.62, 123.72, 125.56, 126.00, 134.30, 141.39, 144.85, 161.68, 167.39; HRESIMS calcd. for C$_{22}$H$_{32}$N$_{2}$O$_{3}$Na (M+Na$^+$): 395.2311; found 395.2305.

Following the general procedure above, using aryl urea 1o (57.2 mg, 0.25 mmol), acrylate ester (43 mg, 0.5 mmol), 1,4-benzoquinone (0.75 mmol, 81 mg), Pd(OAc)$_2$ (0.025 mmol, 5.6 mg), 48 wt % HBF$_4$ (0.25 mmol, 32 uL), and EtOAc (1 mL), yielded the product 5p (91.2 mg, 89%): 1H NMR (acetone-d$_6$) δ: 0.88-0.94 (m, 6H), 1.31-1.42 (m, 8H), 1.61-1.65 (m, 1H), 3.08 (s, 6H), 3.93 (s, 3H), 4.08-4.14 (m, 2H), 6.32 (d, J = 16 Hz, 1H), 6.43 (brs, 1H), 7.52 (s, 1H), 7.59 (s, 1H), 7.68 (d, J = 16 Hz, 1H); 13C NMR (acetone-d$_6$), δ: 11.14, 14.19, 23.11, 23.95, 29.07, 30.57, 36.66, 38.97, 56.41, 67.16, 107.91, 118.45, 118.51, 119.74, 128.01, 137.97, 155.64, 156.65, 167.24; HRESIMS calcd. for C$_{21}$H$_{31}$N$_{2}$O$_{4}$NaCl (M+Na$^+$): 433.1870; found 433.1870.

Following the general procedure above, using aryl urea 1p (61 mg, 0.25 mmol), acrylate ester (43 mg, 0.5 mmol), 1,4-benzoquinone (0.75 mmol, 81 mg), Pd(OAc)$_2$ (0.025 mmol, 5.6 mg), 48 wt % HBF$_4$ (0.25 mmol, 32 uL), and EtOAc (1 mL), yielded the product 5q (88.7 mg, 83%): 1H NMR (acetone-d$_6$) δ: 0.88-0.94 (m, 6H), 1.30-1.42 (m, 8H), 1.61-1.65 (m, 1H), 3.06 (s, 6H), 4.08-4.14 (m, 2H), 6.33 (brs, 1H), 6.39 (d, J = 16 Hz, 1H), 7.24 (dd, J = 1.6 and 8.4 Hz, 1H), 7.36 (d, J = 8.4 Hz, 1H), 7.71 (d, J = 16 Hz, 1H), 7.95 (d, J = 1.6 Hz, 1H); 13C NMR (acetone-d$_6$), δ: 11.17, 14.21, 23.12, 23.97, 29.09, 30.58, 36.65, 38.96, 67.26, 120.38, 124.51, 126.41, 127.80, 127.85, 128.17, 138.83, 138.92, 155.65, 166.99; HRESIMS calcd. for C$_{20}$H$_{29}$N$_{2}$O$_{3}$NaBr (M+Na$^+$): 447.1259; found 427.1255.
Following the general procedure above, using aryl urea 1l (44.6 mg, 0.25 mmol), acrylate ester (43 mg, 0.5 mmol), 1,4-benzoquinone (0.75 mmol, 81 mg), Pd(OAc)$_2$ (0.025 mmol, 5.6 mg), 48 wt % HBF$_4$ (0.25 mmol, 32 uL), and EtOAc (1 mL), yielded the product 5r (78.3 mg, 87%); 1H NMR (CDCl$_3$) δ: 0.89-0.94 (m, 6H), 1.31-1.43 (m, 8H), 1.61-1.64 (m, 1H), 3.07 (s, 6H), 4.06-4.14 (m, 2H), 5.85 (brs, 1H), 6.40 (d, $J=16.5$ Hz, 1H), 7.18 (t, $J=7.5$ Hz, 1H), 7.26 (d, $J=7.5$ Hz, 1H), 7.50 (d, $J=7.5$ Hz, 1H), 7.88 (d, $J=16.5$ Hz, 1H); 13C NMR (CDCl$_3$), δ: 11.15, 14.18, 18.37, 23.09, 23.96, 29.06, 30.55, 36.64, 38.94, 66.89, 119.16, 124.45, 126.76, 132.38, 132.58, 136.41, 136.77, 141.27, 156.60, 167.45; HRESIMS calcd. for C$_{21}$H$_{32}$N$_2$O$_3$Na (M+Na$^+$): 383.2311; found 383.2309.

Following the general procedure above, using aryl urea 1o (57.2 mg, 0.25 mmol), acrylamide (123 mg, 0.5 mmol), 1,4-benzoquinone (0.75 mmol, 81 mg), Pd(OAc)$_2$ (0.025 mmol, 5.6 mg), 48 wt % HBF$_4$ (0.25 mmol, 32 uL), and EtOAc (1 mL), yielded the product 5s (84 mg, 71%); 1H NMR (CDCl$_3$) δ: 1.22 (t, $J=7.1$ Hz, 3H), 3.02 (s, 6H), 3.05-3.08 (m, 2H), 3.86 (s, 3H), 4.14 (q, $J=7.1$ Hz, 2H), 6.11 (dd, $J=8.6$ and 15.3 Hz, 1H), 6.51 (dd, $J=7.8$ and 11.8 Hz, 1H), 7.09-7.14 (m, 3H), 7.20-7.28 (m, 3H), 7.35 (d, $J=6.5$ Hz, 1H), 7.59 (d, $J=15.3$ Hz, 1H); 13C NMR (CDCl$_3$), δ: 14.31, 36.77, 38.18, 53.73, 56.48, 61.84, 108.30, 108.31, 108.32, 118.22, 120.02, 127.35, 127.59, 128.78, 129.52, 135.35, 136.12, 138.14, 155.95, 156.33, 165.43, 171.78, 171.80; HRESIMS calcd. for C$_{24}$H$_{28}$N$_3$O$_5$ClNa (M+Na$^+$): 496.1615; found 496.1620.

Following the general procedure above, using aryl urea 1q (0.25 mmol), acrylamide (81 mg, 0.5 mmol), 1,4-benzoquinone (0.75 mmol, 81 mg), and Pd(OAc)$_2$ (0.025 mmol, 5.6 mg), EtOAc (1.0 mL) and 48 wt % HBF$_4$ (0.25 mmol, 32 uL) yielded the product 5t (49 mg, 52%); 1H NMR (CDCl$_3$) δ: 0.73 (t, $J=7.4$ Hz, 3H), 1.10 (d, $J=7.4$ Hz, 3H), 1.43-1.50 (m, 2H), 2.40-2.49 (m, 1H), 3.03 (s, 6H), 3.31 (s, 3H), 6.26 (d, $J=15.3$ Hz, 1H), 6.59 (brs, 1H), 6.91 (brs, 1H), 7.10 (dd, $J=2.0$ and 8.4 Hz, 1H), 7.17 (dd, $J=1.5$ and 6.9 Hz, 2H), 7.34-7.44 (m, 3H), 7.54 (d, $J=8.4$ Hz, 1H), 7.83 (d, $J=$
15.3 Hz, 1H). 13C NMR (CDCl$_3$) δ: 12.33, 21.88, 31.15, 36.76, 37.63, 41.20, 120.31, 125.36, 125.61, 127.47, 127.82, 127.92, 128.93, 129.78, 135.62, 137.66, 143.63, 143.73, 156.32, 166.28; HRESIMS calcd. for C$_{23}$H$_{29}$N$_3$O$_2$Na (M+Na$^+$): 402.2157; found 402.2159.

V. The synthesis of boscalid

![C-H activation conditions](image)

C–H Suzuki–Miyaura (1st step):
Following the general procedure C, using arylurea (82 mg, 0.5 mmol), p-ClPhB(OH)$_2$ (156 mg, 1.0 mmol), BQ (1.5 mmol, 162 mg), and [Pd(MeCN)$_4$](BF$_4$)$_2$ (0.05 mmol, 22 mg), EtOAc (2.0 mL), yielded the product (125 mg, 91%); 1H NMR (CDCl$_3$) δ: 2.83 (s, 6H), 6.35 (brs, 1H), 7.09 (dt, $J = 1.2$ and 7.5 Hz, 1H), 7.16 (dd, $J = 1.5$ and 7.6 Hz, 1H), 7.32-7.37 (m, 3H), 7.45 (d, $J = 8.4$ Hz, 2H), 7.45 (dd, $J = 1.2$ and 8.4 Hz, 1H). 13C NMR (CDCl$_3$) δ: 36.22, 121.21, 122.95, 128.71, 129.19, 129.61, 130.52, 130.62, 133.83, 136.09, 137.13, 155.42; HRESIMS calcd. for C$_{15}$H$_{15}$N$_2$O$_2$Na (M+Na$^+$): 297.0771; found 297.0773.

Deprotection and 2-chloronicotinoylation (2nd step):
The resulting product (119 mg, 0.43 mmol) from 1st step shown in above was mixed with KOH (364 mg, 6.5 mmol) in 1,4-dioxane/water (1.6 mL/0.8 mL). After stirring under reflux conditions for 20 h, the solution obtained was filtered through the plug of silica gel and anhydrous MgSO$_4$. After evaporation to remove solvents, the crude oil, 2-chloronicotinoyl chloride and (122 mg, 0.69 mmol) were sequentially added under air to a reaction tube equipped with a stir bar and a septum. THF (5 mL), and Et$_3$N (1.39 mmol, 0.19 mL) was added by syringe and the resulting mixture vigorously stirred for 2 h at ambient temperature. After this time, the contents of the flask were quenched with aqueous K$_2$CO$_3$ and extracted with EtOAc. The solution obtained was filtered through the plug of silica gel and anhydrous MgSO$_4$, and then concentrated by rotary evaporation. The residue was purified by flash chromatography, eluting with hexane/EtOAc to afford Boscalid (145 mg, 98%); 1H NMR (CDCl$_3$) δ: 7.27 (brs, 1H), 7.33-7.37 (m, 4H), 7.42-7.48 (m, 3H), 8.14 (dd, $J = 1.9$ and 7.8 Hz, 2H), 8.41 (d, $J = 8.2$ Hz, 1H), 8.45 (dd, $J = 1.9$ and 4.7 Hz, 1H). 13C NMR (CDCl$_3$) δ: 122.55, 122.91, 125.56, 128.91, 129.27, 130.33, 130.86, 131.25, 132.61, 134.28, 134.35, 136.39, 139.89, 146.73, 151.21, 162.75; HRESIMS calcd. for C$_{18}$H$_{13}$N$_2$O$_2$Na (M+Na$^+$): 365.0224; found 365.0216.
VI. Mechanistic studies

Arylurea 1 (0.1 or 0.11 mmol), and [Pd(MeCN)₄(BF₄)₂] (0.1 mmol) were sequentially added under Ar to a reaction tube equipped with a stir bar and a septum. EtOAc (6 mL, or EtOAc/CH₂Cl₂) was added by syringe and the resulting mixture stirred for 0.5 h at ambient temperature. To complete the reaction, we heat the reaction mixture at 40 °C for 0.5 h. The resulting crystals were filtered off and washed with EtOAc and Et₂O followed by dried under vacuum to give yellow crystals. Single crystals were obtained by the recrystallization from MeCN/toluene. ¹H NMR (acetone-d₆) δ: 2.61 (s, 3H), 3.12 (brs, 9H), 3.72 (s, 3H), 6.42 (dd, J = 2.8 and 8.7 Hz, 1H), 6.67 (d, J = 2.8 Hz, 1H), 6.97 (d, J = 8.7 Hz, 1H), 8.74 (brs, 1H). ¹³C NMR (acetone-d₆) δ: 2.46, 36.94, 54.87, 102.37, 104.30, 109.16, 122.59, 135.50, 135.59, 136.63, 154.72, 158.97. ¹⁹F NMR (acetone-d₆) δ: -88.768. ¹¹B NMR (acetone-d₆) δ: 4.362; ESI/TOF C₁₄H₁₉BF₄N₄O₂Pd (M⁺-BF₄): 381.06.

Arylurea 1 (0.05 mmol), and Pd(OAc)₂ (0.05 mmol) were sequentially added under Ar to a reaction tube equipped with a stir bar and a septum. Acetone-d₆ (1.0 mL), and 48 wt % HBF₄ (0.1 mmol) was added by syringe and the resulting mixture vigorously stirred for 0.5 h at ambient temperature. After this time, MeCN (0.1 mmol) was added and ¹H NMR was carried out to check the structure. The spectrum of the product was matched with the palladacycle shown in above. On the other hand, the reaction without HBF₄ gave no product.

2% Brij 35 was used instead of AcOEt.
Arylurea 1 (0.05 mmol), and Pd(OAc)$_2$ (0.05 mmol) were sequentially added under Ar to a reaction tube equipped with a stir bar and a septum. EtOAc (1.0 mL), and 48 wt % HBF$_4$ (0.15 mmol) was added by syringe and the resulting mixture vigorously stirred for 0.5 h at ambient temperature. After this time, acrylate ester, phenylboronic acid, or iodobenzene (0.1 mmol) was added. After stirring 4 h, the contents of the flask were quenched with aqueous K_2CO_3 and extracted with EtOAc. The solution obtained was filtered through the plug of silica gel and anhydrous MgSO$_4$, and then concentrated by rotary evaporation and dried under vacuum. 1H NMR was carried out to check the yields.

Arylurea 1 (0.05 mmol), and Pd(OAc)$_2$ (0.05 mmol) were sequentially added under Ar to a reaction tube equipped with a stir bar and a septum. EtOAc (1.0 mL), and 48 wt % HBF$_4$ (0.15 mmol) was added by syringe and the resulting mixture vigorously stirred for 0.5 h at ambient temperature. After this time, acrylate ester, phenylboronic acid, or iodobenzene (0.1 mmol) and BQ (0 or 1 mmol) and 1 (0.5 mmol) were added. After stirring 14 h, the contents of the flask were quenched with aqueous K_2CO_3 and extracted with EtOAc. The solution obtained was filtered through the plug of silica gel and anhydrous MgSO$_4$, and then concentrated by rotary evaporation and dried under vacuum. 1H NMR was carried out to check the yields.

Arylurea 1 (0.05 mmol), and Pd(OAc)$_2$ (0.05 mmol) were sequentially added under Ar to a reaction tube equipped with a stir bar and a septum. EtOAc (1.0 mL), and 48 wt % HBF$_4$ (0.15 mmol) was added by syringe and the resulting mixture vigorously stirred for 0.5 h at ambient temperature. After this time, acrylate ester, phenylboronic acid, or iodobenzene (0.1 mmol) and 1 (0.5 mmol) were added. After stirring 14 h, the contents of the flask were quenched with aqueous K_2CO_3 and extracted with EtOAc. The solution obtained was filtered through the plug of silica gel and anhydrous MgSO$_4$, and then concentrated by rotary evaporation and dried under vacuum. 1H NMR was carried out to check the yields.

Arylurea 1 (0.05 mmol), and Pd(OAc)$_2$ (0.05 mmol) were sequentially added under Ar to a reaction tube equipped with a stir bar and a septum. EtOAc (1.0 mL), and 48 wt % HBF$_4$ (0.15 mmol) was added by syringe and the resulting mixture vigorously stirred for 0.5 h at ambient temperature. After this time, acrylate ester, phenylboronic acid, or iodobenzene (0.1 mmol) and 1 (0.5 mmol) were added. After stirring 14 h, the contents of the flask were quenched with aqueous K_2CO_3 and extracted with EtOAc. The solution obtained was filtered through the plug of silica gel and anhydrous MgSO$_4$, and then concentrated by rotary evaporation and dried under vacuum. 1H NMR was carried out to check the yields.

Arylurea 1 (0.05 mmol), and Pd(OAc)$_2$ (0.05 mmol) were sequentially added under Ar to a reaction tube equipped with a stir bar and a septum. EtOAc (1.0 mL), and 48 wt % HBF$_4$ (0.15 mmol) was added by syringe and the resulting mixture vigorously stirred for 0.5 h at ambient temperature. After this time, acrylate ester, phenylboronic acid, or iodobenzene (0.1 mmol) and 1 (0.5 mmol), HBF$_4$ (0 or 2.5 mmol) and

<table>
<thead>
<tr>
<th>AgOAc (equiv)</th>
<th>HBF$_4$ (equiv)</th>
<th>Yield</th>
<th>TON</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>41%</td>
<td>0.4</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>84%</td>
<td>8.5</td>
</tr>
<tr>
<td>0</td>
<td>2.5</td>
<td>47%</td>
<td>4.7</td>
</tr>
<tr>
<td>15</td>
<td>2.5</td>
<td>45%</td>
<td>4.5</td>
</tr>
</tbody>
</table>

aYields were based on Pd.
AgOAc (0 or 0.75 mmol) were added. After stirring 14 h, the contents of the flask were quenched with aqueous K$_2$CO$_3$ and extracted with EtOAc. The solution obtained was filtered through the plug of silica gel and anhydrous MgSO$_4$, and then concentrated by rotary evaporation and dried under vacuum. 1H NMR was carried out to check the yields.

Reference