Supporting Information

for

Photocatalyzed synthesis of isochromanones and isobenzofuranones under batch and flow conditions

Manuel Anselmo, Lisa Moni, Hossny Ismail, Davide Comoretto, Renata Riva and Andrea Basso*

Address: Università degli Studi di Genova, Dipartimento di Chimica e Chimica Industriale, Via Dodecaneso 31, Genova, Italy

Email: Prof. Andrea Basso - andrea.basso@unige.it
*Corresponding author

Experimental details and detailed spectroscopic data

Table of contents

General experimental methods S2
General procedures S3
Emission spectrum of blue LEDs S4
Analytical data S5
Copies of NMR spectra S15

General experimental methods.

NMR spectra were recorded at $300 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $75 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ and the chemical shifts (δ) are expressed in parts per million relative to tetramethylsylane (TMS) as internal standard (0.00 ppm). Coupling constants are reported in hertz. NMR acquisitions were performed at 295 K and CDCl_{3} was used as solvent.

GC-MS analyses were carried out on a Hewlett Packard 5890 Series II, using a HP-1 column, coupled with a HP-5971A spectrometer (electron impact). Analysis conditions are as follows: flow (He) $0.9 \mathrm{~mL} / \mathrm{min}$; initial temperature $100^{\circ} \mathrm{C}$; initial time 2 min ; gradient temperature $20^{\circ} \mathrm{C} / \mathrm{min}$; final temperature $280^{\circ} \mathrm{C}$; final time 5 min.

HPLC-MS analyses were carried out on a Hewlett Packard 1100, using a Gemini C6-Phenyl (150x3mm) column, coupled with a Microsaic 4000 MiD Mass Spectrometer (electrospray). Analysis conditions are as follows: flow $0.34 \mathrm{~mL} / \mathrm{min}$; temperature $26^{\circ} \mathrm{C}$; solvent A : water $+0.1 \%$ formic acid; solvent B : acetonitrile + 0.1% formic acid; gradient: from 10\% B to 100% B in 20 min ; VWD 220 nm ; MASS: FullScan 100-800 m/z ES ${ }^{+}$, Tic voltage 750 V .

Photoinduced reactions were performed with blue LEDs (LED stripe GBC SMD 3528 INDOOR BLU 12Vcc) or LASER (CNI diode laser MDL-442, 40 mW power driven by power supply unit model PSU-III-LED. The output of laser is coupled to an optical fiber).

Reactions were monitored by TLC. TLC analyses were carried out on silica gel plates (thickness $=0.25 \mathrm{~mm}$), viewed at UV $(\lambda=254 \mathrm{~nm})$ and developed with Hanessian stain (dipping into a solution of $\left(\mathrm{NH}_{4}\right)_{4} \mathrm{MoO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ $(21 \mathrm{~g})$ and $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{SO}_{4}(31 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(469 \mathrm{~mL})$ and warming).

Column chromatography was performed with the "flash" methodology using 220-400 mesh silica. Solvents employed as eluents and for all other routinary operations, as well as anhydrous solvents and all reagents used were purchased from commercial suppliers and employed without any further purification.

Benzenediazonium salts were prepared from the corresponding anilines according to literature procedures (i.e., Schuster G. B. et al. J. Am. Chem. Soc., 1995, 117, 5206-5211).

General procedures

Synthesis of isochromanones 4 under batch conditions

A solution of benzendiazonium tetrafluoroborate 2 ($1 \mathrm{mmol}, 1$ equiv) and $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}$ (0.005 equiv) in $\mathrm{CH}_{3} \mathrm{CN}$ ($4 \mathrm{~mL}, 0.25 \mathrm{M}$ with respect to the diazonium salt) was added with alkene $\mathbf{3}$ ($2 \mathrm{mmol}, 2$ equiv) in a glass vial ($\varnothing=1.2 \mathrm{~cm}$). The vial was exposed to the light generated by 440 nm LED bulbs for $6-8$ hours. The solution was transferred into a round-bottomed flask, evaporated, and the crude was subsequently purified by column chromatography (PE/EA mixtures) to afford the final products as white solids/foams.

Synthesis of isochromanones 4 under flow conditions

Reactions in flow conditions were performed by means of a handmade mesoflow reactor consisting of a FEP tubing (internal $\varnothing=0.8 \mathrm{~mm}$) wrapped up a glass cylinder ($\varnothing=2.5 \mathrm{~cm}$) for a length corresponding exactly of 1 mL . The tube was equipped at one end with a connection for a gastight syringe (10 mL), fitting in a syringe pump. The wrapped cylinder was fitted inside a plastic cylinder ($\varnothing=4.5 \mathrm{~cm}$) covered inside with LED bulbs (440 nm, model of the stripe).

A solution of benzendiazonium tetrafluoroborate 2 (1 equiv) and $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}(0.005 \mathrm{eq})$ in $\mathrm{CH}_{3} \mathrm{CN}(0.13 \mathrm{M}$ with respect to the diazonium salt) was added with alkene 3 (2 equiv). The resulting clear solution was collected inside a 10 mL gastight syringe and pumped inside the flow reactor by means of a syringe pump at $0.1 \mathrm{~mL} / \mathrm{h}$. A fixed volume of the reacted solution was collected in a shielded round-bottomed flask, evaporated, and purified by column chromatography (PE/EA mixtures) to afford the final products as white solids/foams.

Synthesis of isobenzofuranones 13 and benzoxazepinones 14 under batch conditions

A solution of benzendiazonium tetrafluoroborate 11 ($1 \mathrm{mmol}, 1$ equiv) and $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}$ (0.005 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL}, 0.25 \mathrm{M}$ with respect to the diazonium salt) was added with alkene 12 ($1.2 \mathrm{mmol}, 1.2$ equiv) in a glass vial ($\varnothing=1.2 \mathrm{~cm}$). The vial was exposed to the light generated by 440 nm LED bulbs for 6-8 hours. The solution was transferred into a round-bottomed flask, evaporated, and the crude was subsequently purified by column chromatography (PE/EA mixtures) to afford the final products as white solids/foams

Synthesis of isobenzofuranones 13 and benzoxazepinones 14 under flow conditions

The same conditions applied for the synthesis of isochromanones 4 were applied.

Analytical data

Methyl 7-chloro-3-methyl-1-oxoisochroman-3-carboxylate (4a)

White solid, m.p. $=82.9-84.2^{\circ} \mathrm{C}$
$R_{f}=0.22(\mathrm{PE}: E t O A c=4: 1)$
${ }^{1} \mathrm{H}$ NMR: $8.01(\mathrm{~d}, J=2.2,1 \mathrm{H} \mathrm{Ar}), 7.46(\mathrm{dd}, J=8.2,2.2,1 \mathrm{H} \mathrm{Ar}), 7.16(\mathrm{~d}, J=8.2,1 \mathrm{HAr}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~d}, J=$ $16.5,1 \mathrm{H}), 3.16(\mathrm{~d}, \mathrm{~J}=16.5,1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR: 171.94, 163.12, 134.59, 134.14, 134.09, 129.87, 129.10, 126.09, 82.12, 53.24, 36.53, 24.96 .
HPLC-MS: 13.0 min, 257 (255) [M+H] ${ }^{+}$.
GC-MS: $7.2 \mathrm{~min}, 256\left(2, \mathrm{M},{ }^{37} \mathrm{Cl}\right), 254\left(6, \mathrm{M},{ }^{35} \mathrm{Cl}\right), 197\left(30,{ }^{37} \mathrm{Cl}\right), 195\left(30,{ }^{35} \mathrm{Cl}\right), 169\left(12,{ }^{37} \mathrm{Cl}\right), 167\left(40,{ }^{35} \mathrm{Cl}\right)$, 124 (11), 89 (25), 63 (13), 43 (73).

7-Chloro-3-phenylisochroman-1-one (4b)

White solid, m.p. $=139.2-141.5$
$R_{f}=0.44(\mathrm{PE}: \mathrm{EtOAc}=4: 1)$
${ }^{1} \mathrm{H}$ NMR: $8.12(\mathrm{~d}, J=2.1,1 \mathrm{H}), 7.53(\mathrm{dd}, J=8.1,2.1,1 \mathrm{H}), 7.49-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=8.3,1 \mathrm{H}), 5.53(\mathrm{dd}, \mathrm{X}$ part of $A B X$ system, $J=12.3,3.1,1 H$), 3.30 (dd, A part of $A B X$ system, $J=16.5,12.3,1 \mathrm{H}$), 3.13 (dd, B part of $A B X$ system, $J=16.5,3.1,1 H$).
${ }^{13}$ C NMR: 164.23, 138.24, 137.28, 134.07, 134.02, 130.31, 128.99, 128.94, 128.88, 126.72, 126.21, 80.12, 35.09 .

HPLC-MS: 13.5 min, 261 (259) [M+H] ${ }^{+}$.
GC-MS: $9.2 \mathrm{~min}, 260\left(2, \mathrm{M},{ }^{37} \mathrm{Cl}\right), 258\left(5, \mathrm{M},{ }^{35} \mathrm{Cl}\right), 154\left(29,{ }^{37} \mathrm{Cl}\right), 152\left(100,{ }^{35} \mathrm{Cl}\right), 126\left(9,{ }^{37} \mathrm{Cl}\right), 124\left(29,{ }^{35} \mathrm{Cl}\right)$, 89 (23).

Methyl 3-methyl-1-oxoisochroman-3-carboxylate (4c)

White solid, m.p.= 99.5-101.3
$R_{f}=0.29(\mathrm{PE}: E t O A c=4: 1)$
${ }^{1} \mathrm{H}$ NMR: $8.04(\mathrm{~d}, J=7.6,1 \mathrm{H} \mathrm{Ar}), 7.50(\mathrm{td}, J=7.6,1.2,1 \mathrm{H} \mathrm{Ar}), 7.35(\mathrm{t}, J=7.6,1 \mathrm{H} \mathrm{Ar}), 7.19(\mathrm{~d}, J=7.6,1 \mathrm{H}$ Ar), $3.58(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=16.4,1 \mathrm{H}), 3.20(\mathrm{~d}, \mathrm{~J}=16.4,1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR: $172.28,164.31,136.33,134.13,130.16,128.20,127.57,124.57,82.02,53.12,37.07,25.09$.

HPLC-MS: 11.7 min, $221[\mathrm{M}+\mathrm{H}]^{+}$.
GC-MS: $6.5 \mathrm{~min}, 220(2, \mathrm{M}), 162(11), 161(100), 133(64), 105(14), 91(11), 90(24), 89(22), 63(11), 43(45)$.
Analytical data are in accordance with those reported in the literature (ref. 5 of the manuscript)

3-Phenylisochroman-1-one (4d)

White solid, m.p. $=83.8-85-7$
$R_{f}=0.55(\mathrm{PE}: E t O A c=4: 1)$
${ }^{1} \mathrm{H}$ NMR: 8.16 ($\mathrm{d}, \mathrm{J}=7.8,1 \mathrm{H} \mathrm{Ar}$), 7.57 ($\mathrm{td}, J=7.5,1.0,1 \mathrm{HAr}$), 7.49-7.35 ($\mathrm{m}, 6 \mathrm{H} \mathrm{Ar}$), $7.29(\mathrm{~d}, J=7.6,1 \mathrm{H} \mathrm{Ar}$), 5.56 (dd, X part of $A B X$ system, $J=11.9,4.6,1 H$), 3.35 (dd, A part of $A B X$ system, $J=15.8,11.9,1 \mathrm{H}$), 3.13 (dd, B part of $A B X$ system, $J=15.8,4.6,1 H$).
${ }^{13}$ C NMR: $165.46,139.05,138.66,134.05,130.55,128.81,128.78,128.01,127.48,126.24,125.24,80.09$, 35.74.

HPLC-MS: 12.8 min, $225[\mathrm{M}+\mathrm{H}]^{+}$.
GC-MS: 8.4 min, 224 (9, M), 178 (6), 119 (18), 118 (100), 90 (68), 89 (26), 77 (13), 63 (10), 51 (12).
Analytical data are in accordance with those reported in the literature (ref. 5 of the manuscript)

Methyl 3,5-dimethyl-1-oxoisochroman-3-carboxylate (4e)

White solid, m.p. $=69.8-72.4$
$R_{f}=0.30(\mathrm{PE}: \mathrm{EtOAc}=4: 1)$
${ }^{1} \mathrm{H}$ NMR: $7.95(\mathrm{~d}, \mathrm{~J}=7.7,1 \mathrm{HAr}), 7.38(\mathrm{~d}, J=7.7,1 \mathrm{H} \mathrm{Ar}), 7.27(\mathrm{t}, J=7.7,1 \mathrm{HAr}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~d}, \mathrm{~J}=16.6$, $1 \mathrm{H}), 2.99(\mathrm{~d}, \mathrm{~J}=16.6,1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR: $172.63,164.75,135.50,135.49,135.11,128.08,127.60,124.62,81.56,53.20,34.23,25.37,19.00$. HPLC-MS (ESI+): $13.6 \mathrm{~min}, 235[\mathrm{M}+\mathrm{H}]^{+}$.

GC-MS: $6.8 \mathrm{~min}, 234(4, \mathrm{M}), 175(100), 147(39), 105(10), 104(11), 103(12) 78(11), 77(13), 43(28)$.

5-Methyl-3-phenylisochroman-1-one (4f)

White solid, m.p. $=137.1-139.4$
$R_{f}=0.60(\mathrm{PE}: \mathrm{EtOAc}=4: 1)$
${ }^{1} \mathrm{H}$ NMR: 8.03 (dd, $\left.J=7.7,0.6,1 \mathrm{H} \mathrm{Ar}\right), 7.52-7.26(\mathrm{~m}, 7 \mathrm{H} \mathrm{Ar}), 5.52(\mathrm{dd}, J=9.8,5.6,1 \mathrm{H}), 3.14(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13}$ C NMR: $165.87,138.95,137.66,135.42,135.25,128.83,128.80,128.41,127.40,126.31,125.22,79.53$, 33.00, 19.04.

HPLC-MS: 14.4 min, $239[\mathrm{M}+\mathrm{H}]^{+}$.
GC-MS: $9.0 \mathrm{~min}, 238$ (2, M), 132 (100), 104 (33), 103 (13), 78 (15), 77 (16).
Analytical data are in accordance with those reported in the literature (ref. 5 of the manuscript)

Methyl 3,7-dimethyl-1-oxoisochroman-3-carboxylate (4g)

Foam
$R_{f}=0.19(\mathrm{PE}: E t O A c=5: 1)$
 $1 \mathrm{H}), 3.15(\mathrm{~d}, \mathrm{~J}=16.3,1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR: $172.40,164.58,138.08,134.96,133.35,130.39,127.44,124.33,82.09,53.08,36.76,25.07,21.08$.
HPLC-MS: 12.2 min, $235[\mathrm{M}+\mathrm{H}]^{+}$.
GC-MS: $6.9 \mathrm{~min}, 234$ (7, M), 175 (100), 147 (51), 104 (15), 103 (12), 78 (11), 77 (13) 43 (28).

7-Methyl-3-phenylisochroman-1-one (4h)

White solid, m.p. $=129 \cdot 5-131.4^{\circ} \mathrm{C}$
$R_{f}=0.35(\mathrm{PE}: E t O A c=6: 1)$
${ }^{1} \mathrm{H}$ NMR: 7.97 ($\mathrm{s}, 1 \mathrm{H} \mathrm{Ar}$), 7.50-7.36 (m, 6H Ar), 7.18 ($\mathrm{d}, \mathrm{J}=7.7,1 \mathrm{H} \mathrm{Ar}$), 5.53 (dd, X part of ABX system, $J=$ $12.2,2.8,1 \mathrm{H}$), 3.29 (dd, A part of $A B X$ system, $J=18.0,12.2,1 \mathrm{H}$), 3.10 (dd, B part of ABX system, $J=18.0$, $2.8,1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR: $165.72,138.81,137.90,136.12,134.92,130.78,128.78,128.72,127.36,126.25,125.01,80.20$, 35.39, 21.18.

HPLC-MS: 13.4 min, $239[\mathrm{M}+\mathrm{H}]^{+}$.
GC-MS: $8.9 \mathrm{~min}, 238$ (28, m), 178 (19), 132 (100), 104 (100), 78 (23), 77 (34).

White solid, m.p. $=87.0-88.9^{\circ} \mathrm{C}$
$R_{f}=0.34(\mathrm{PE}: E t O A c=4: 1)$
${ }^{1} \mathrm{H}$ NMR: $8.20(\mathrm{~d}, J=2.1,1 \mathrm{H} \mathrm{Ar}), 7.63(\mathrm{dd}, J=8.1,2.1,1 \mathrm{H} \mathrm{Ar}), 7.10(\mathrm{~d}, J=8.1,1 \mathrm{HAr}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~d}, J=$ $16.7,1 \mathrm{H}), 3.15(\mathrm{~d}, \mathrm{~J}=16.7,1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR: $172.02,163.05,137.04,135.08,132.98,129.31,126.34,121.95,82.12,53.35,36.67,25.08$.
HPLC-MS: 15.3 min, 301 (299) [M+H] ${ }^{+}$.
GC-MS: $7.8 \mathrm{~min}, 300\left(9, \mathrm{M},{ }^{81} \mathrm{Br}\right), 298\left(9, \mathrm{M},{ }^{79} \mathrm{Br}\right), 241$ (88), 239 (90), 213 (31), 211 (33), 170 (11), 168 (11), 132 (24), 89 (43), 43 (100).

7-Bromo-3-phenylisochroman-1-one (4j)

White solid, m.p. $=141.5-143.3^{\circ} \mathrm{C}$
$R_{f}=0.16(\mathrm{PE}: \mathrm{EtOAc}=10: 1)$
${ }^{1} \mathrm{H}$ NMR: 8.28 ($\mathrm{d}, \mathrm{J}=2.0,1 \mathrm{H} \mathrm{Ar}$), 7.68 ($\left.\mathrm{dd}, J=8.2,2.2,1 \mathrm{H} \mathrm{Ar}\right), 7.48-7.37(\mathrm{~m}, 5 \mathrm{H} \mathrm{Ar}), 7.18(\mathrm{~d}, J=8.2,1 \mathrm{H} \mathrm{Ar})$, 5.55 (dd, X part of $A B X$ system, $J=12.3,2.7,1 \mathrm{H}$), 3.28 (dd, A part of $A B X$ system, $J=16.5,12.3,1 \mathrm{H}$), 3.12 (dd, B part of $A B X$ system, $J=16.5,2.7,1 H$).
${ }^{13}$ C NMR: 164.11, 138.20, 137.76, 136.95, 133.28, 129.21, 128.95, 128.88, 126.94, 126.20, 121.67, 80.06, 35.16 .

HPLC-MS: 16.2 min, 305 (303) [M+H] ${ }^{+}$.
GC-MS: $9.7 \mathrm{~min}, 304\left(7, \mathrm{M},{ }^{81} \mathrm{Br}\right), 302\left(7, \mathrm{M},{ }^{79} \mathrm{Br}\right), 198\left(94,{ }^{81} \mathrm{Br}\right), 196\left(100,{ }^{79} \mathrm{Br}\right), 170\left(26,{ }^{81} \mathrm{Br}\right), 168(27$, $\left.{ }^{79} \mathrm{Br}\right), 89$ (41), 77 (14), 63 (18).
trans 3,4-Diphenylisochroman-1-one (4k)

White solid, m.p. $=135.1-137.2$
$R_{f}=0.43(\mathrm{PE}: E t O A c=6: 1)$
${ }^{1} \mathrm{H}$ NMR: 8.24 (dd, $\left.J=7.4,1.7,1 \mathrm{H} \mathrm{Ar}\right), 7.50$ (td, $\left.J=7.4,1.7,1 \mathrm{H} \mathrm{Ar}\right), 7.47-7.41(\mathrm{~m}, 1 \mathrm{H}$ Ar), 7.27-7.14 (m, 8 H Ar), 7.03-7.00 (m, 2H Ar), $6.92(\mathrm{~d}, J=7.4,1 \mathrm{H}$ Ar), $5.64(\mathrm{~d}, J=10.0,1 \mathrm{H}), 4.51(\mathrm{~d}, J=10.0,1 \mathrm{H})$.
${ }^{13}$ C NMR: $165.06,142.67,137.93,137.42,134.20,130.44,129.71,128.94,128.58,128.30,128.15,127.98$, 127.80, 127.20, 125.17, 85.40, 51.11.

HPLC-MS: 18.1 min, $301[\mathrm{M}+\mathrm{H}]^{+}$.
Decomposes during GC-MS analysis

N-(4-methoxybenzyl)acetamide (5)

$R_{f}=0.13(P E: E t O A c=1: 1)$
${ }^{1} \mathrm{H}$ NMR: 7.21 ($\mathrm{d}, \mathrm{J}=8.7,2 \mathrm{H} \mathrm{Ar}$), $6.87(\mathrm{~d}, \mathrm{~J}=8.7,2 \mathrm{H} \mathrm{Ar}), 5.67$ (broad s, 1 H NH), $4.36(\mathrm{~d}, J=5.6,2 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H})$.

Analytical data are in accordance with those reported in the literature (i. e. Chem. Commun. 2012, 48, 11626-11628)

3-Phenylisochroman-1-imine (9)

The crude mixture was concentrated under vacuum, no work-up was performed at this stage. A quick column cromatography was performed using EA/PE 1:4 with $5 \% \mathrm{Et}_{3} \mathrm{~N}$, affording the target compound as an oil.
$R f=0.30(P E: E t O A c=1: 1)$
${ }^{1} \mathrm{H}$ NMR: 8.23 (d, $J=7.5,1 \mathrm{H}$ Ar), $7.55-7.33(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}+\mathrm{NH}), 7.23(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$ Ar), 5.28 (dd, X part of $A B X$ system $J=11.6,2.9,1 H$), 3.27 (dd, A part of $A B X$ system $J=16.1,11.6,1 \mathrm{H}$), 3.06 (dd, B part of $A B X$ system $J=16.2,2.9 \mathrm{~Hz}, 1 \mathrm{H})$.

The compound degraded during ${ }^{13} \mathrm{C}$ NMR analysis
GC-MS: $8.1 \mathrm{~min}, 223$ (7, M), 178 (7), 146 (13), 118 (17), 117 (80), 107 (100), 90 (19), 89 (18), 79 (15), 77 (18), 51(11).

3-(4-Methoxybenzyl)isobenzofuran-1(3H)-one)(13a)

Foam
$R_{f}=0.40(\mathrm{PE}: E t O A c=4: 1)$
${ }^{1} \mathrm{H}$ NMR: $7.84(\mathrm{~d}, J=7.5,1 \mathrm{H} \mathrm{Ar}), 7.60(\mathrm{td}, J=7.5,1.1,1 \mathrm{H} \mathrm{Ar}), 7.48(\mathrm{t}, J=7.5,1 \mathrm{HAr}), 7.17(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 0.8$, 1H Ar), 7.13-7.09 (m, 2H Ar), 6.84-6.79 (m, 2H Ar), 5.65 (t, X part of $A B X$ system, $J=6.3,1 \mathrm{H}$), 3.78 ($\mathrm{s}, 3 \mathrm{H}$), 3.23 (dd, A part of $A B X$ system, $J=14.1,6.3,1 H$), 3.10 (dd, B part of $A B X$ system, $J=14.1,6.3,1 \mathrm{H}$)
${ }^{13}$ C NMR: $170.41,158.81,149.28,133.78,130.87,129.24,126.97,126.42,125.78,122.4,114.03,81.50$, 55.34, 40.03.

HPLC-MS: $13.0 \mathrm{~min}, 239[\mathrm{M}+\mathrm{H}]^{+}$.

GC-MS: $9.1 \mathrm{~min}, 254$ (22, M), 133 (19), 121 (100), 78 (12) 77 (25).
Analytical data are in accordance with the literature (J. Chem. Soc., Perkin Trans. 1 1982, 2819-2826)

White solid, m.p. $=87.7-89.4$ (lit. 83-84)
$R_{f}=0.47$ (PE:EtOAc=4:1)
${ }^{1} \mathrm{H}$ NMR: 7.85 (d, $\left.J=7.6,1 \mathrm{H} \mathrm{Ar}\right), 7.60$ (td, $J=7.6,1.2,1 \mathrm{H} \mathrm{Ar}$), 7.49 (t, 7.6, 1H Ar), 7.16 (dd, J = 7.6, 0.8, 1H Ar), $7.10(\mathrm{~s}, 4 \mathrm{H}$ Ar), $5.67(\mathrm{t}, \mathrm{X}$ part of ABX system, $J=6.4,1 \mathrm{H}$), 3.26 (dd, A part of $A B X$ system, $J=14.1,6.5$, $1 \mathrm{H}), 3.10$ (dd, B part of $A B X$ system, $J=14.1,6.5,1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR: $170.47,149.35,136.91,133.80,131.97,129.72,129.38,129.28,126.42,125.82,122.48,81.51$, 40.58, 21.23.

HPLC-MS: 14.5 min, $239[\mathrm{M}+\mathrm{H}]^{+}$.
GC-MS: 8.4 min, 238 (5, M), 133 (34), 106 (12), 105 (100), 77 (15).
Analytical data are in accordance with the literature (Org. Lett. 2009, 11, 4712-4715)

Methyl 2-((3-oxo-1,3-dihydroisobenzofuran-1-yl)methyl)benzoate (13c)

White solid, m.p.= 107.8-109.5 (lit. 111-112)
$R_{f}=0.36$ (PE:EtOAc=4:1)
${ }^{1} \mathrm{H}$ NMR: 8.03 (dd, $\left.J=8.1,1.4,1 \mathrm{H} \mathrm{Ar}\right), 7.96-7.84(\mathrm{~m}, 1 \mathrm{H} \mathrm{Ar}), 7.66$ (td, $\left.J=7.5,1.1,1 \mathrm{H} \mathrm{Ar}\right), 7.59-7.44$ (m, 3 H Ar), 7.40-7.34 (m, 2H Ar), 5.77 (dd, X part of $A B X$ system, $J=9.0,3.5,1 \mathrm{H}$), 3.95 (dd A part of $A B X$ system, $J=$ $13.7,3.5,1 \mathrm{H}$), $3.94(\mathrm{~s}, 3 \mathrm{H}), 3.12$ (dd B part of $A B X$ system, $J=13.7,9.0,1 \mathrm{H}$).
${ }^{13}$ C NMR: $170.62,167.86,149.99,138.77,134.03,133.06,132.64,131.30,129.31,129.16,127.52,126.23$, 125.73, 122.67, 82.12, 52.28, 40.65.

HPLC-MS: $13.4 \mathrm{~min}, 283[\mathrm{M}+\mathrm{H}]^{+}$.
GC-MS: 9.5 min, 282 (1, M), 250 (6), 149 (11), 133 (100), 105 (13), 77 (21), 51 (11).
Analytical data are in accordance with the literature (Chem. Heterocycl. Compd. 2012, 47, 1212-1224)

Foam
$R_{f}=0.45(\mathrm{PE}: \mathrm{EtOAc}=4: 1)$
${ }^{1} \mathrm{H}$ NMR: 7.77 (d, $\left.J=7.6,1 \mathrm{HAr}\right), 7.59$ (td, $\left.J=7.6,1.1,1 \mathrm{HAr}\right), 7.45(\mathrm{t}, J=7.6,1 \mathrm{HAr}), 7.19(\mathrm{dd}, J=7.6,0.6,1 \mathrm{H}$ Ar), 6.75-6.72 (m, 2H Ar), 6.69-6.66 (m, 2H Ar), 5.42 (dd, X part of $A B X$ system, $J=7.4,3.1,1 \mathrm{H}$), $3.74(\mathrm{~s}, 3 \mathrm{H})$, 3.47 (dd, A part of $A B X$ system, $J=12.8,7.4,1 H$), 3.19 (dd, B part of $A B X$ system, $J=12.8,3.1,1 \mathrm{H}$), $2.66(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13}$ C NMR: 171.47, 167.94, 158.64, 145.55, 133.83, 130.81, 130.76, 128.82, 127.17, 125.16, 123.53, 113.73, 60.13, 55.27, 37.65, 25.73.

HPLC-MS: $10.3 \mathrm{~min}, 296[\mathrm{M}+\mathrm{H}]^{+}$.
GC-MS: 9.6 min, 295 (3, M), 132 (17), 121 (100), 77 (13), 43 (13).

3-Methyl-5-(4-methylbenzyl)benzo[e][1,3]oxazepin-1(5H)-one (14b)

White solid, m.p. $=109.1-110.7^{\circ} \mathrm{C}$
$R_{f}=0.52(\mathrm{PE}: E t O A c=4: 1)$
${ }^{1} \mathrm{H}$ NMR: 7.77 (d, $\left.J=7.6,1 \mathrm{H} \mathrm{Ar}\right), 7.59$ (td, $\left.J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H} \mathrm{Ar}\right), 7.45(\mathrm{t}, J=7.6,1 \mathrm{HAr}), 7.18(\mathrm{~d}, J=7.6,1 \mathrm{H}$ Ar), 6.95 (d, J = 8.0, 2H Ar), 6.72 (d, J = 8.0, 2H Ar), 5.44 (d, X part of ABX system, J = 7.6, 2.9, 1H), 3.50 (dd, A part of $A B X$ system, $J=12.8,7.6,1 \mathrm{H}$), 3.18 (dd, B part of $A B X$ system, $J=12.8,2.9,1 \mathrm{H}$), $2.66(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}$, 3 H).
${ }^{13}$ C NMR: $171.46,167.95,145.57,136.62,133.80,132.09,130.79,129.65,129.03,128.80,125.12,123.56$, 60.06, 38.11, 25.74, 21.19.

HPLC-MS: 11.8 min, $280[\mathrm{M}+\mathrm{H}]^{+}$.
GC-MS: 8.9 min, 279 (9, M), 132 (100), 105 (48), 77 (13), 43 (14).

Compound 4a

Compound 4b

Compound 4c

Compound 4d

Compound $4 e$

Compound $4 f$

Compound 4g

Compound 4h

Compound 4i

Compound 4j

Compound 4k

Compound 5

Compound 9

Compound 13a

Compound 13b

Compound 13c

Compound 14a

Compound 14b

