Supporting Information

for

A novel approach to oxoisoaporphine alkaloids via regioselective metalation of alkoxy isoquinolines

Benedikt C. Melzer and Franz Bracher*

Address: Department für Pharmazie – Zentrum für Pharmaforschung, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, D-81377 Munich, Germany

Email: Franz Bracher* - Franz.Bracher@cup.uni-muenchen.de

Experimental procedures and copies of ¹H and ¹³C NMR spectra

Table of contents

Experimental procedures and characterization of all compounds	·S16
¹ H NMR spectrum of 8a	S17
¹³ C NMR spectrum of 8a	S18
¹ H NMR spectrum of 8b	S19
¹³ C NMR spectrum of 8b	S20
¹ H NMR spectrum of 8c	S21
¹³ C NMR spectrum of 8c	S22
¹ H NMR spectrum of 10a	S23
¹³ C NMR spectrum of 10a	S24
¹ H NMR spectrum of 10b	S25
¹³ C NMR spectrum of 10b	S26
¹ H NMR spectrum of 10c	S27
¹³ C NMR spectrum of 10c	S28
¹ H NMR spectrum of 4	S29
¹³ C NMR spectrum of 4	S30

^{*}Corresponding author

¹ H NMR spectrum of 5	S31
	S32
¹ H NMR spectrum of 6	S33
¹³ C NMR spectrum of 6	S34
¹ H NMR spectrum of 2	S35
¹³ C NMR spectrum of 2	S36
¹ H NMR spectrum of 18	S37
¹³ C NMR spectrum of 18	S38
¹ H NMR spectrum of 3	S39
¹³ C NMR spectrum of 3	S40
¹ H NMR spectrum of 19	S41
¹³ C NMR spectrum of 19	S42
¹ H NMR spectrum of 12	S43
¹³ C NMR spectrum of 12	S44
¹ H NMR spectrum of 15	S45
¹³ C NMR spectrum of 15	S46
¹ H NMR spectrum of 16	S47
¹³ C NMR spectrum of 16	S48
¹ H NMR spectrum of 17	S49
¹³ C NMR spectrum of 17	S50
Comparison of ¹ H NMR spectra of 12 and 12-D	S51
Comparison of ¹ H NMR spectra of 16 and 16-D	S52
References	S53

Experimental procedures and characterization of all compounds

General Information

Solvents used were of HPLC grade or p.a. grade and/or purified according to standard procedures. Melting points were determined by open tube capillary method with a Büchi melting point B-450 apparatus. IR measurements were carried out with a Perkin–Elmer FTIR Paragon 1000 spectrometer. NMR spectra were recorded with Jeol J NMR GX (400 or 500 MHz) and Avance III HD Bruker BioSpin (400 or 500 MHz) spectrometers with residual non-deuterated solvent as internal standard. Spectra were recorded in deuterated solvents and chemical shifts are reported in parts per million (ppm). *J* values are given in Hertz. Multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, m = multiplet. Signal assignments were carried out based on ¹H, ¹³C, HMBC, HMQC and COSY spectra. NMR spectra were analyzed with the NMR software MestReNova, Version 5.1.1-3092 (Mestrelab Research S.L.). HRMS were performed by electron impact (EI) at 70 eV with a Thermo Finnigan MAT 95 or a Jeol GCmate II spectrometer or by electrospray ionization (ESI) with a Thermo Finnigan LTQ FT Ultra Fourier Transform Ion Cyclotron resonance mass spectrometer. Chromatographic purification of products was performed by using flash column chromatography on Merck silica gel 60 (0.015–0.040 mm) as stationary phase.

General Procedures

General procedure A (iodination of isoquinolines 7a-c)

A flame-dried and nitrogen flushed 50 mL Schlenk flask, equipped with a magnetic stirring bar, was charged with the appropriate isoquinoline **7a–c** (prepared according to lit. [1,2]) (2.00 mmol) in dry THF (10 mL). TMPMgCl·LiCl (1.0 M in THF/toluene; 3.00 mL, 3.00 mmol) was added to this solution dropwise over 2 min. The reaction mixture was stirred at room temperature for 4 h. After cooling to 0 °C, a solution of iodine (0.761 g, 3.00 mmol) in dry

THF (3 mL) was added dropwise to the reaction mixture. The cooling bath was removed and the mixture was stirred at room temperature for 1 h. Then the mixture was quenched with satd. aqueous NH_4Cl solution (4 mL) and satd. aqueous $Na_2S_2O_3$ solution (4 mL). After extraction with dichloromethane (3 × 20 mL), the combined organic layers were dried with Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by flash column chromatography (ethyl acetate/dichloromethane = 1:5).

General procedure B (Suzuki cross-coupling of iodinated isoquinolines 8a-c)

The appropriate 1-iodoisoquinoline **8a-c**, methyl 5-methoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (**9**) (prepared according to lit. [3]) (1.2 equiv.) and Pd(PPh₃)₄ (5 mol %) were dissolved in THF (7–12 mL). After addition of an aqueous K_2CO_3 solution (1.0 M in water; 6.0 equiv) the mixture was heated under nitrogen at reflux for 24 h. The reaction mixture was allowed to cool to room temperature, poured into water (50 mL), and extracted with ethyl acetate (4 × 50 mL). The combined organic layers were dried with Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography.

General procedure C (ester hydrolysis and cyclization with Eaton's reagent to give oxoisoaporphines 4, 5, and 6)

The appropriate methyl ester (**10a–c**) was dissolved in concentrated hydrochloric acid (5–10 mL) and the mixture was heated at reflux for 2.5 h. The reaction mixture was allowed to cool to room temperature and then poured into water (50–100 mL). After neutralization to pH 7 with 10% aqueous KOH solution the mixture was extracted with *n*-butanol (4 × 100–250 mL), and the combined organic layers were concentrated under reduced pressure. To the crude residue Eaton's reagent (purchased from Sigma-Aldrich) (4–5 mL) was added dropwise, and the reaction mixture was stirred at 90 °C for 2 h. The reaction mixture was allowed to cool to room temperature and was then cautiously added dropwise to a 10% aqueous NH₃ solution (50–100 mL) while stirring. The mixture was extracted with dichloromethane (4 × 50–100

mL). The combined organic layers were dried with Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by flash column chromatography (dichloromethane/methanol = 97:3).

General procedure D (O-methylation of phenolic alkaloids 4 and 5)

The appropriate phenolic alkaloid (**4** or **5**) (0.50 or 0.65 mmol) was suspended in a mixture of chloroform (8 mL) and methanol (6 mL). Ag₂O (7 equiv) and CH₃I (240 equiv) were added and the mixture was heated to reflux for 6 h. After cooling to room temperature, the mixture was filtered and the precipitate was thoroughly washed with chloroform. The filtrate and the chloroform-extract were combined, washed with water (2 × 50 mL), dried with Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (dichloromethane/acetone = 98:2).

General procedure E (conversion of methyl esters to diethyl amides 12 and 16)

A flame-dried and nitrogen flushed 25 mL Schlenk flask, equipped with a magnetic stirring bar, was charged with diethylamine (2.0 equiv) in dry toluene (3 mL). Trimethylaluminium (2.0 M in toluene; 2.0 equiv) was added dropwise at 0 °C. The mixture was stirred at room temperature for 1 h before ester 10c or 15 (1.0 equiv) in dry toluene (2 mL) was added. The reaction mixture was heated to reflux for 2 h under an atmosphere of nitrogen. After cooling to room temperature the mixture was poured into 1 M HCl (50 mL) and made alkaline (pH 9) by the addition of 6 N NaOH. After extraction with ethyl acetate (3 × 50 mL), the combined organic layers were dried with Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by flash column chromatography.

Compounds

1-lodo-6,7-dimethoxyisoquinoline (8a)

This compound was prepared following general procedure A from 6,7-dimethoxyisoquinoline (**7a**, 0.378 g, 2.00 mmol) with TMPMgCl·LiCl (1.0 M in THF/toluene; 3.0 mL, 3.00 mmol) to give **8a** (0.419 g, 67%) as a brown solid. mp 139 – 140 °C (lit. [4] 140 – 141 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.11 (d, J = 5.5 Hz, 1H), 7.42 (d, J = 5.5 Hz, 1H), 7.36 (s, 1H), 7.00 (s, 1H), 4.07 (s, 3H), 4.04 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ (ppm) = 153.6, 151.6, 142.1, 132.7, 128.2, 124.9, 120.2, 111.2, 105.2, 56.5, 56.4; HRMS (EI): m/z (%) = 314.9801 (calcd for C₁₁H₁₀INO₂: 314.9757); IR (KBr pellet): v (cm⁻¹) = 2974, 2933, 2834, 1616, 1582, 1554, 1508, 1393, 1253, 1227, 1145, 1006, 930, 860, 775, 672.

1-lodo-5,6,7-trimethoxyisoquinoline (8b)

This compound was prepared following general procedure Α from 5,6,7trimethoxyisoquinoline (7b, 0.438 g, 2.00 mmol) with TMPMgCl·LiCl (1.0 M in THF/toluene; 3.0 mL, 3.00 mmol) to give **8b** (0.365 g, 53%) as a brown solid. mp $86 - 88 \,^{\circ}\text{C}$; ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.13 (d, J = 5.6 Hz, 1H), 7.77 (dd, J = 5.6, 0.7 Hz, 1H), 7.20 (s, 1H), 4.05 (s, 3H), 4.03 (s, 3H), 4.02 (s, 3H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) = 154.8, 146.6, 144.5, 141.4, 129.2, 127.9, 125.1, 115.5, 107.5, 61.8, 61.4, 56.4; HRMS (EI): m/z (%) = 344.9856 (calcd for $C_{12}H_{12}INO_3$: 344.9862); IR (KBr pellet): v (cm⁻¹) = 2966, 2936, 2835, 2360, 2342, 1615, 1576, 1549, 1484, 1471, 1427, 1376, 1350, 1299, 1254, 1240, 1201, 1180, 1136, 1118, 1034, 997, 944, 904, 829, 732, 651.

1-lodo-6-methoxyisoquinoline (8c)

This compound was prepared following general procedure A from 6-methoxyisoquinoline (**7c**, 0.318 g, 2.00 mmol) with TMPMgCl·LiCl (1.0 M in THF/toluene; 3.0 mL, 3.00 mmol) to give **8c** (0.336 g, 59%) as a brown solid. mp 53 – 54 °C; ¹H NMR (400 MHz, CDCl₃): $\bar{\delta}$ (ppm) = 8.12 (d, J = 5.6 Hz, 1H), 7.96 (d, J = 9.3 Hz, 1H), 7.43 (d, J = 5.6 Hz, 1H), 7.24 (dd, J = 9.3, 2.5 Hz, 1H), 6.96 (d, J = 2.5 Hz, 1H), 3.93 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): $\bar{\delta}$ (ppm) = 161.5, 143.5, 138.1, 134.8, 127.6, 126.7, 121.7, 120.7, 104.7, 55.8; HRMS (EI): m/z (%) = 284.9644 (calcd for C₁₀H₈INO: 284.9651); IR (KBr pellet): v (cm⁻¹) = 3004, 2925, 2829, 2360, 2343, 1619, 1555, 1486, 1467, 1432, 1396, 1373, 1339, 1301, 1261, 1241, 1168, 1133, 1029, 958, 864, 814, 695, 657.

Methyl 2-(6,7-dimethoxyisoquinolin-1-yl)-5-methoxybenzoate (10a)

This compound was prepared following general procedure B from 1-iodo-6,7-dimethoxyisoquinoline (**8a**) (0.315 g, 1.00 mmol), methyl 5-methoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (**9**) (0.351 g, 1.20 mmol), Pd(PPh₃)₄ (0.058 g, 0.05 mmol). The residue was purified by flash column chromatography (dichloromethane/methanol = 97 : 3) to give **10a** (0.272 g, 77%) as a white solid. mp 149 – 151 °C (lit. [5] 122 – 123 °C); ¹H NMR (400 MHz, CD₂Cl₂): δ (ppm) = 8.36 (d, J = 5.6 Hz, 1H), 7.52 (d, J = 2.8 Hz, 1H), 7.49 (d, J = 5.6 Hz, 1H), 7.46 (d, J = 8.6 Hz, 1H), 7.19 (dd, J = 8.6, 2.8 Hz, 1H), 7.14 (s, 1H), 6.94 (s, 1H), 3.99 (s, 3H), 3.93 (s, 3H), 3.75 (s, 3H), 3.41 (s, 3H); ¹³C NMR (101 MHz, CD₂Cl₂): δ (ppm) = 168.1, 159.9, 158.5, 153.2, 150.7, 141.6, 133.8, 133.5, 133.3, 132.6, 123.8, 119.0, 118.0, 115.4, 105.5, 105.4, 56.4, 56.2 (2C), 52.4; HRMS (EI): m/z (%) = 353.1258 (calcd for

 $C_{20}H_{19}NO_5$: 353.1263); IR (KBr pellet): v (cm⁻¹) = 3071, 3012, 2965, 2943, 2838, 2360, 2342, 1714, 1618, 1568, 1508, 1480, 1435, 1414, 1351, 1319, 1291, 1235, 1161, 1127, 1084, 1038, 887, 864, 831, 799.

Methyl 5-methoxy-2-(5,6,7-trimethoxyisoquinolin-1-yl)benzoate (10b)

This compound was prepared following general procedure B from 1-iodo-5,6,7-trimethoxyisoquinoline (**8b**) (0.219 g, 0.63 mmol), methyl 5-methoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (**9**) (0.222 g, 0.76 mmol), Pd(PPh₃)₄ (0.035 g, 0.03 mmol). The residue was purified by flash column chromatography (dichloromethane/ethyl acetate = 1 : 1) to give **10b** (0.157 g, 65%) as slightly yellow needles. mp 134 – 135 °C (lit. [6] 131.5 – 134.5 °C); ¹H NMR (400 MHz, CD_2CI_2): δ (ppm) = 8.39 (d, J = 5.8 Hz, 1H), 7.80 (dd, J = 5.8, 0.8 Hz, 1H), 7.52 (d, J = 2.8 Hz, 1H), 7.43 (d, J = 8.5 Hz, 1H), 7.19 (dd, J = 8.5, 2.8 Hz, 1H), 6.77 (s, 1H), 4.06 (s, 3H), 3.97 (s, 3H), 3.93 (s, 3H), 3.75 (s, 3H), 3.43 (s, 3H); ¹³C NMR (101 MHz, CD_2CI_2): δ (ppm) = 168.0, 160.0, 158.8, 154.1, 147.4, 144.2, 141.0, 133.7, 133.2, 132.6, 128.6, 125.1, 118.0, 115.5, 114.1, 101.6, 62.0, 61.5, 56.3, 56.2, 52.4; HRMS (EI): m/z (%) = 383.1364 (calcd for $C_{21}H_{21}NO_6$: 383.1369); IR (KBr pellet): v (cm⁻¹) = 3008, 2938, 2840, 2360, 2342, 1713, 1614, 1572, 1556, 1488, 1476, 1443, 1405, 1376, 1297, 1241, 1193, 1126, 1070, 1041, 1028, 1001, 956, 868, 835.

Methyl 5-methoxy-2-(6-methoxyisoquinolin-1-yl)benzoate (10c)

This compound was prepared following general procedure B from 1-iodo-6-methoxyisoquinoline (**8c**) (0.360 g, 1.26 mmol), methyl 5-methoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (**9**) (0.442 g, 1.51 mmol), Pd(PPh₃)₄ (0.073 g, 0.06 mmol). The residue was purified by flash column chromatography (dichloromethane/methanol = 97 : 3) to give **10c** (0.304 g, 75%) as a slightly yellow solid. mp 76 – 77 °C; ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.47 (d, J = 5.7 Hz, 1H), 7.59 (d, J = 2.7 Hz, 1H), 7.57 – 7.53 (m, 2H), 7.41 (d, J = 8.4 Hz, 1H), 7.18 (dd, J = 8.4, 2.7 Hz, 1H), 7.11 (d, J = 2.5 Hz, 1H), 7.08 (dd, J = 9.0, 2.5 Hz, 1H), 3.95 (s, 3H), 3.93 (s, 3H), 3.43 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ (ppm) = 167.3, 160.6, 160.3, 159.6, 142.6, 138.3, 133.3, 132.2, 132.1, 128.9, 123.5, 120.0, 119.3, 118.2, 115.1, 104.6, 55.8, 55.6, 52.1; HRMS (EI): m/z (%) = 323.1154 (calcd for C₁₉H₁₇NO₄: 323.1158); IR (KBr pellet): v (cm⁻¹) = 3055, 2953, 2835, 1714, 1621, 1560, 1507, 1468, 1437, 1406, 1375, 1357, 1313,1256, 1233, 1222, 1120, 1077, 1029, 986, 973, 858, 840, 793, 782, 680.

6-Hydroxy-5,9-dimethoxy-7*H*-dibenzo[*de,h*]quinolin-7-one

(4, 6-O-demethylmenisporphine)

This compound was prepared following general procedure C from methyl 2-(6,7-dimethoxyisoquinolin-1-yl)-5-methoxybenzoate (**10a**) (0.611 g, 1.73 mmol) using conc. HCl (10 mL), H_2O (100 mL), and for extraction *n*-butanol (4 × 250 mL). The crude acid was further treated following the general procedure with Eaton's reagent (5 mL), aqueous NH_3 solution

(100 mL) and for extraction dichloromethane (4 × 100 mL) to give **4** (0.239 g, 45%) as a yellow solid. mp 245 – 246 °C (lit. [5] 248 – 249 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.98 (d, J = 8.9 Hz, 1H), 8.77 (d, J = 5.2 Hz, 1H), 7.95 (d, J = 2.7 Hz, 1H), 7.61 (d, J = 5.2 Hz, 1H), 7.47 (dd, J = 8.9, 2.7 Hz, 1H), 7.33 (s, 1H), 4.11 (s, 3H), 4.02 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ (ppm) = 184.8, 164.7, 161.0, 153.0, 144.2, 143.9, 131.9, 131.2, 130.8, 127.3, 123.4, 119.9, 116.4, 112.3, 109.0, 107.4, 56.5, 55.9; HRMS (EI): m/z (%) = 307.0829 (calcd for C₁₈H₁₃NO₄: 307.0845); IR (KBr pellet): v (cm⁻¹) = 3422, 2978, 2841, 2360, 2342, 1584, 1494, 1481, 1438, 1278, 1202, 1028, 1003, 866, 840, 818, 668, 623.

6-Hydroxy-4,5,9-trimethoxy-7*H*-dibenzo[*de,h*]quinolin-7-one (5, dauriporphinoline)

This compound was prepared following general procedure C from methyl 2-(5,6,7-trimethoxyisoquinolin-1-yl)-5-methoxybenzoate (**10b**) (0.339 mg, 0.88 mmol) using conc. HCl (5 mL), H₂O (50 mL), and for extraction *n*-butanol (4 × 100 mL). The crude acid was further treated following the general procedure with Eaton's reagent (5 mL), aqueous NH₃ solution (50 mL) and for extraction dichloromethane (4 × 50 mL) to give **5** (0.173 g, 58%) as a yellow solid. mp 196 – 197 °C; ¹H NMR (500 MHz, CDCl₃): δ = 9.00 (d, J = 8.9 Hz, 1H), 8.81 (d, J = 5.3 Hz, 1H), 7.99 (d, J = 5.3 Hz, 1H), 7.95 (d, J = 2.7 Hz, 1H), 7.45 (dd, J = 8.9, 2.7 Hz, 1H), 4.36 (s, 3H), 4.10 (s, 3H), 4.02 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ = 181.9, 170.7, 161.0, 154.8, 143.9, 143.8, 140.7, 131.9, 130.6, 127.4, 127.2, 122.8, 117.6, 116.1, 107.1, 106.1, 61.8, 61.7, 55.9; HRMS (EI): m/z (%) = 337.0940 (calcd for C₁₉H₁₅NO₅: 337.0950); IR (KBr pellet): v (cm⁻¹) = 3448, 2948, 2366, 2345, 1611, 1577, 1560, 1486, 1457, 1397, 1375, 1288, 1145, 1090, 1073, 1014, 980, 829, 741, 638.

5,9-Dimethoxy-7*H*-dibenzo[*de,h*]quinolin-7-one (6, bianfugecine)

This compound was prepared following general procedure C from methyl 5-methoxy-2-(6-methoxyisoquinolin-1-yl)benzoate (**10c**) (0.120 g, 0.37 mmol) using conc. HCl (5 mL), H₂O (50 mL), and for extraction *n*-butanol (4 × 100 mL). The crude acid was further treated following the general procedure with Eaton's reagent (4 mL), aqueous NH₃ solution (50 mL) and for extraction dichloromethane (4 × 50 mL) to give **6** (0.008 g, 7%) as a yellow solid. mp 196 – 198 °C (lit. [7] 199 – 201 °C); ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.80 (d, J = 8.7 Hz, 1H), 8.65 (d, J = 5.7 Hz, 1H), 8.27 (d, J = 2.6 Hz, 1H), 7.85 (d, J = 2.8 Hz, 1H), 7.59 (d, J = 5.7 Hz, 1H), 7.41 (d, J = 2.6 Hz, 1H), 7.35 (dd, J = 8.8, 2.8 Hz, 1H), 4.04 (s, 3H), 3.99 (s, 3H); HRMS (EI): m/z (%) = 291.0895 (calcd for C₁₈H₁₃NO₃: 291.0895).

5,6,9-Trimethoxy-7*H*-dibenzo[*de,h*]quinolin-7-one (2, menisporphine)

This compound was prepared following general procedure D from 6-hydroxy-5,9-dimethoxy-7H-dibenzo[de,h]quinolin-7-one (**4**) (0.200 g, 0.65 mmol), Ag₂O (1.054 g, 4.55 mmol), and CH₃I (9.7 mL, 156 mmol) to give **2** (0.070 g, 33%) as yellow needles. mp 185 – 186 °C (lit. [5] 199.5 – 200.5 °C); ¹H NMR (400 MHz, CDCI₃): δ (ppm) = 8.78 (d, J = 8.8 Hz, 1H), 8.65 (d, J = 5.5 Hz, 1H), 7.86 (d, J = 2.8 Hz, 1H), 7.55 (d, J = 5.5 Hz, 1H), 7.39 (s, 1H), 7.33 (dd, J = 8.8, 2.8 Hz, 1H), 4.14 (s, 3H), 4.07 (s, 3H), 3.98 (s, 3H); ¹³C NMR (101 MHz, CDCI₃): δ (ppm) = 182.8, 161.5, 156.6, 155.7, 147.5, 143.8, 135.0, 133.4, 129.8, 127.0, 122.1, 120.6, 119.2, 118.6, 111.6, 109.1, 61.7, 56.4, 55.8; HRMS (EI): m/z (%) = 321.0996 (calcd for C₁₉H₁₅NO₄:

321.1001); IR (KBr pellet): v (cm⁻¹) = 3422, 2965, 2361, 1656, 1604, 1474, 1413, 1349, 1279, 1242, 1140, 1027, 1013, 992, 864, 843, 628, 607.

The isomer 5,7,9-trimethoxy-6*H*-dibenzo[de,h]quinolin-6-one (18)

was obtained as yellow needles (0.049 g, 23%). mp 168 – 169 °C (lit. [5] 173 – 175 °C); 1 H NMR (500 MHz, CDCl₃): $\bar{\delta}$ (ppm) = 9.18 (d, J = 9.0 Hz, 1H), 8.87 (d, J = 4.6 Hz, 1H), 7.86 (d, J = 2.6 Hz, 1H), 7.50 (dd, J = 9.0, 2.6 Hz, 1H), 7.44 (d, J = 4.6 Hz, 1H), 6.77 (s, 1H), 4.22 (s, 3H), 4.02 (s, 3H), 3.98 (s, 3H); 13 C NMR (126 MHz, CDCl₃): $\bar{\delta}$ (ppm) = 177.9, 164.2, 160.5, 156.1, 147.9, 142.1, 135.1, 131.8, 130.3, 126.8, 122.2, 119.9, 117.8, 115.5, 109.2, 104.8, 62.7, 56.1, 55.8; HRMS (EI): m/z (%) = 321.0995 (calcd for $C_{19}H_{15}NO_4$: 321.1001); IR (KBr pellet): v (cm⁻¹) = 3430, 2937, 1648, 1624, 1519, 1455, 1418, 1307, 1286, 1267, 1225, 1200, 1138, 1090, 1029, 985, 838.

4,5,6,9-Tetramethoxy-7*H*-dibenzo[*de,h*]quinolin-7-one (3, dauriporphine)

This compound was prepared following general procedure D from 6-hydroxy-4,5,9-trimethoxy-7*H*-dibenzo[de,h]quinolin-7-one (**5**) (0.170 g, 0.50 mmol), Ag₂O (0.811 g, 3.50 mmol, and CH₃I (7.5 mL, 120 mmol) to give **3** (0.086 g, 49%) as yellow needles. mp 159 – 161 °C (lit. [6] 161 – 163 °C); ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.81 (d, J = 8.7 Hz, 1H), 8.68 (d, J = 5.6 Hz, 1H), 7.95 (d, J = 5.6 Hz, 1H), 7.88 (d, J = 2.7 Hz, 1H), 7.32 (dd, J = 8.7, 2.7 Hz, 1H), 4.27 (s, 3H), 4.17 (s, 3H), 4.05 (s, 3H), 3.98 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ (ppm) = 181.6, 161.6, 161.0, 153.2, 147.5, 146.5, 143.2, 135.2, 129.6, 128.6, 127.1, 121.8,

120.2, 116.6, 114.6, 109.0, 62.0 (2C), 61.9, 55.8; HRMS (EI): m/z (%) = 351.1099 (calcd for $C_{20}H_{17}NO_5$: 351.1107); IR (KBr pellet): v (cm⁻¹) = 3448, 2946, 2363, 2345, 1645, 1602, 1572, 1487, 1467, 1458, 1396, 1352, 1336, 1280, 1214, 1126, 1022, 830, 734, 636.

The isomer 4,5,7,9-tetramethoxy-6*H*-dibenzo[*de,h*]quinolin-6-one (19)

was obtained as yellow needles (0.051 g, 29%). mp 194 – 196 °C (lit. [6] 159 – 161.5 °C); 1 H NMR (500 MHz, CDCl₃): δ (ppm) = 9.20 (d, J = 9.0 Hz, 1H), 8.97 (d, J = 4.8 Hz, 1H), 7.94 (d, J = 4.8 Hz, 1H), 7.85 (d, J = 2.7 Hz, 1H), 7.50 (dd, J = 9.0, 2.7 Hz, 1H), 4.30 (s, 3H), 4.22 (s, 3H), 4.03 (s, 3H), 4.02 (s, 3H); 13 C NMR (126 MHz, CDCl₃): δ (ppm) = 180.3, 162.9, 160.6, 152.3, 147.9, 143.0, 142.3, 133.5, 131.9, 129.8, 126.9, 121.7, 117.9, 116.9, 115.5, 104.9, 62.6, 61.2, 61.1, 55.8.; HRMS (EI): m/z (%) = 351.1108 (calcd for $C_{20}H_{17}NO_5$: 351.1107); IR (KBr pellet): v (cm⁻¹) = 3440. 2936, 1622, 1615, 1560, 1521, 1455, 1419, 1373, 1355, 1302, 1271, 1228, 1204, 1127, 1088, 1069, 1019, 989, 935, 830.

N,N-Diethyl-5-methoxy-2-(6-methoxyisoquinolin-1-yl)benzamide (12)

This compound was prepared following general procedure E from diethylamine (0.082 g, 1.12 mmol), trimethylaluminium (2.0 M in toluene; 0.56 mL, 1.12 mmol) and methyl 5-methoxy-2-(6-methoxyisoquinolin-1-yl)benzoate (**10c**) (0.181 mg, 0.56 mmol). The residue was purified by flash column chromatography (ethyl acetate/dichloromethane = 2 : 1) to give **12** (0.064 g, 31%) as a white solid. mp 156 – 157 °C; ¹H NMR (500 MHz, CD₂Cl₂): δ (ppm) = 8.38 (d, J = 5.7 Hz, 1H), 7.81 – 7.78 (m, 1H), 7.51 (d, J = 6.3 Hz, 1H), 7.42 (d, J = 8.5 Hz,

1H), 7.13 – 7.11 (m, 2H), 7.04 (dd, J = 8.5, 2.7 Hz, 1H), 6.96 (d, J = 2.6 Hz, 1H), 3.94 (s, 3H), 3.90 (s, 3H), 3.45 – 2.86 (m_{br}, 4H, 2xCH₂), 0.95 (t, J = 7.1 Hz, 3H), 0.59 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CD₂Cl₂): δ (ppm) = 170.0, 161.2, 160.1, 159.1, 142.9, 140.2, 139.0, 132.2, 130.1, 129.9, 123.6, 120.1, 119.7, 114.3, 112.4, 104.9, 56.1, 56.0, 43.4, 38.4, 14.0, 12.0; HRMS (EI): m/z (%) = 364.1752 (calcd for C₂₂H₂₄N₂O₃: 364.1787); IR (KBr pellet): v (cm⁻¹) = 2963, 2933, 2361, 1625, 1601, 1560, 1475, 1376, 1361, 1269, 1234, 1128, 1029, 974, 880, 868, 826.

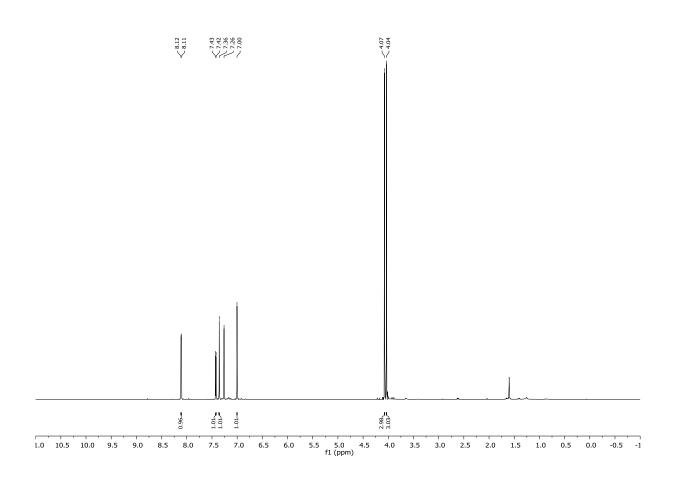
Methyl 5-methoxy-2-(naphthalen-1-yl)benzoate (15)

Methyl 2-bromo-5-methoxybenzoate (14) (0.980 g, 4.00 mmol), naphthalene-1-boronic acid (13) (0.826 g, 4.80 mmol) and Pd(PPh₃)₄ (0.231 g, 0.20 mmol) were dissolved in THF (24 mL). After addition of an aqueous K_2CO_3 solution (1.0 M in water; 12.0 mL, 12.00 mmol) the mixture was heated under nitrogen at reflux for 16 h. The reaction mixture was allowed to cool to room temperature, poured into water (50 mL), and extracted with ethyl acetate (3 × 50 mL). The combined organic layers were dried with Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (*i*-hexane/ethyl acetate = 9 : 1) to give 15 (0.791 g, 68%) as a white solid. mp 129 – 130 °C; ¹H NMR (400 MHz, CD₂Cl₂): δ (ppm) = 7.90 (d, J = 8.1 Hz, 1H), 7.85 (d, J = 8.3 Hz, 1H), 7.54 (d, J = 2.8 Hz, 1H), 7.52 – 7.44 (m, 3H), 7.37 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 7.33 – 7.27 (m, 2H), 7.17 (dd, J = 8.4, 2.8 Hz, 1H), 3.92 (s, 3H), 3.39 (s, 3H); ¹³C NMR (101 MHz, CD₂Cl₂): δ (ppm) = 167.9, 159.5, 140.1, 134.1, 133.9, 133.6, 133.0, 133.0, 128.7, 127.8, 126.8, 126.4, 126.1, 126.1, 125.7, 118.1, 115.3, 56.2, 52.2; HRMS (EI): m/z (%) = 292.1086 (calcd for C₁₉H₁₆O₃: 292.1099); IR (KBr pellet): v (cm⁻¹) = 3015, 2950, 1719, 1602, 1559, 1495, 1430, 1395, 1283, 1248, 1214, 1118, 1075, 1055, 1033, 881, 834, 806, 787.

N,N-Diethyl-5-methoxy-2-(napththalen-1-yl)benzamide (16)

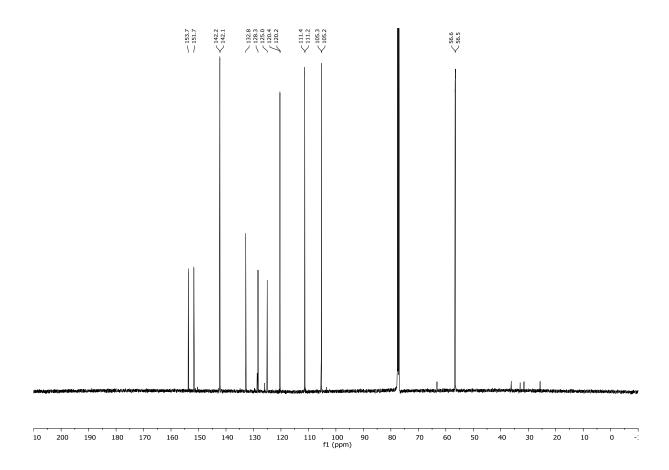
This compound was prepared following general procedure E from diethylamine (0.100 g, 1.37 mmol), trimethylaluminium (2.0 M in toluene; 0.68 mL, 1.37 mmol) and methyl 5-methoxy-2-(naphthalen-1-yl)benzoate (15) (0.200 mg, 0.68 mmol). The residue was purified by flash column chromatography (ethyl acetate/*i*-hexane = 1 : 1) to give 16 (0.133 g, 58%) as a pale white solid. mp 107 – 109 °C; ¹H NMR (400 MHz, (CD₃)₂SO, 333 K): $\bar{\delta}$ (ppm) = 7.93 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.65 (d, J = 8.1 Hz, 1H), 7.52 – 7.41 (m, 3H), 7.35 (d, J = 6.9 Hz, 1H), 7.32 (d, J = 8.5 Hz, 1H), 7.11 (dd, J = 8.5, 2.7 Hz, 1H), 6.95 (d, J = 2.7 Hz, 1H), 3.87 (s, 3H), 3.16 – 2.57 (m_{br}, 4H), 0.95 – 0.54 (m, 3H), 0.42 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, (CD₃)₂SO, 333K): $\bar{\delta}$ (ppm) = 168.0, 158.4, 138.8, 136.3, 133.0, 131.9, 131.4, 128.3, 127.8, 127.3, 127.0, 125.5, 125.3, 124.6 (2C), 113.7, 111.5, 55.2, 41.8, 36.9, 13.1, 11.2; HRMS (EI): m/z (%) = 333.1719 (calcd for C₂₂H₂₃NO₂: 333.1729); IR (KBr pellet): v (cm⁻¹) = 3056, 2970, 2933, 2836, 1630, 1607, 1564, 1473, 1460, 1432, 1393, 1314, 1290, 1271, 1230, 1169, 1074, 1035, 803, 780.

9-Methoxy-7*H*-benzo[*c*]fluoren-7-one (17)

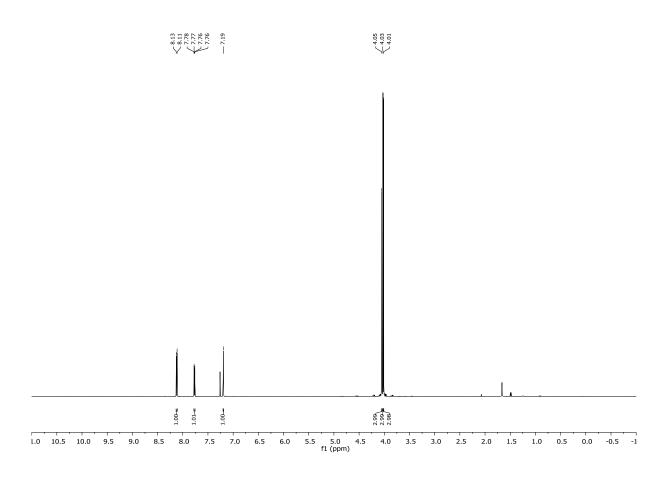

A flame-dried and nitrogen flushed 10 mL Schlenk tube, equipped with a magnetic stirring bar, was charged with *N*,*N*-diethyl-5-methoxy-2-(napththalen-1-yl)benzamide (**16**) (0.060 g, 0.18 mmol) in dry THF (2 mL). LDA (2.0 M in THF/heptane/ethylbenzene; 0.36 mL, 0.72 mmol) was added to this solution dropwise at 0 °C. The mixture was stirred at room temperature for 1 h. Then the mixture was quenched with deuterium oxide (0.3 mL) and

stirred for 20 min. Satd. aqueous NH₄Cl solution (3 mL) was added and the mixture was extracted with dichloromethane (3 × 20 mL). The combined organic layers were dried with Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (ethyl acetate/*i*-hexane = 1 : 1) to give **17** (0.018 g, 38%) as a red solid. mp 133 – 134 °C; ¹H NMR (500 MHz, CD₂Cl₂): δ (ppm) = 8.42 – 8.39 (m, 1H), 7.89 (d, J = 8.3 Hz, 1H), 7.88 – 7.85 (m, 1H), 7.70 (d, J = 8.2 Hz, 1H), 7.63 (d, J = 8.2 Hz, 1H), 7.62 – 7.55 (m, 2H), 7.20 – 7.19 (m, 1H), 6.98 (dd, J = 8.3, 2.6 Hz, 1H), 3.87 (s, 3H); ¹³C NMR (126 MHz, CD₂Cl₂): δ (ppm) = 194.3, 161.0, 144.0, 138.5, 137.3, 137.0, 132.1, 129.9, 129.0, 128.8, 128.7, 127.9, 125.4, 124.7, 120.0, 118.7, 110.6, 56.2; HRMS (EI): m/z (%) = 260.0836 (calcd for C₁₈H₁₂O₂: 260.0837); IR (KBr pellet): v (cm⁻¹) = 2903, 1714, 1606, 1573, 1483, 1465, 1386, 1369, 1282, 1265, 1246, 1225, 1017, 1001, 868, 823, 774.

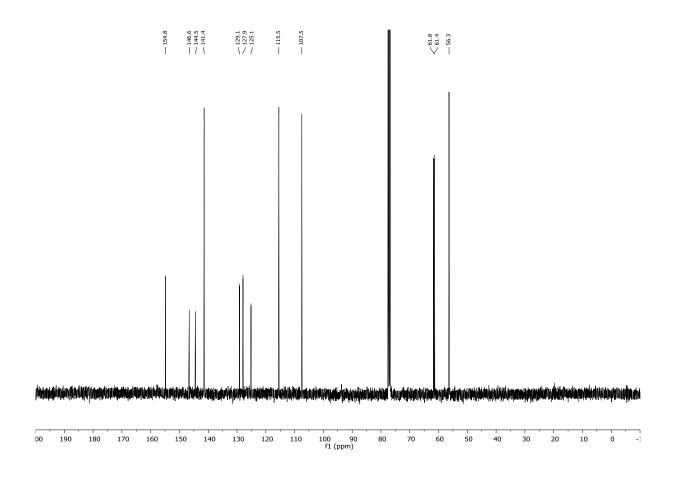
Copies of ¹H and ¹³C spectra of all compounds


¹H NMR spectrum of 1-iodo-6,7-dimethoxyisoquinoline (8a)

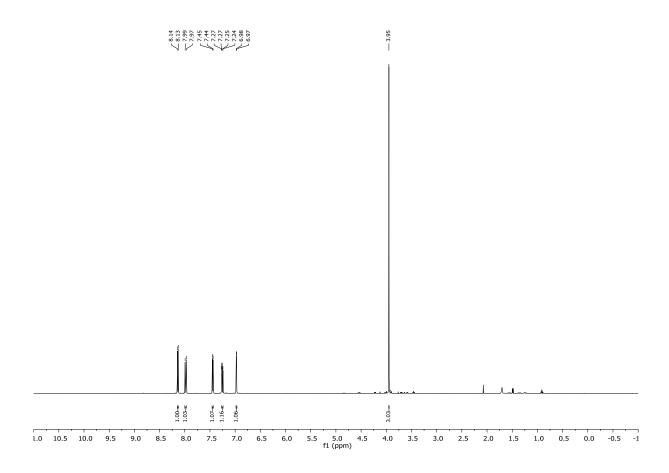
Frequency: 500 MHz


¹³C NMR spectrum of 1-iodo-6,7-dimethoxyisoquinoline (8a)

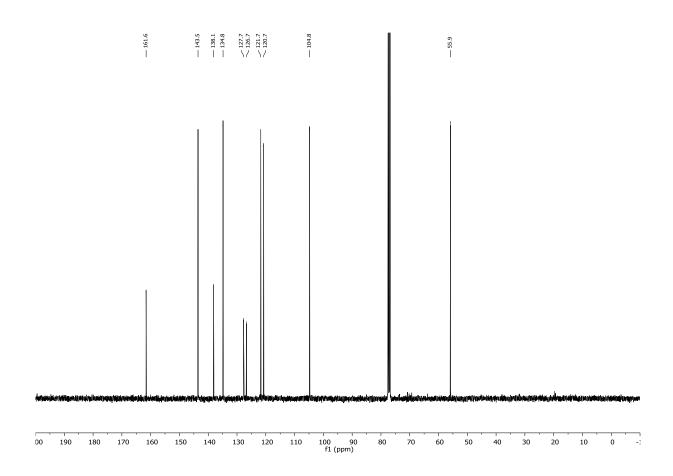
Frequency: 126 MHz Solvent: CDCl₃


¹H NMR spectrum of 1-iodo-5,6,7-trimethoxyisoquinoline (8b)

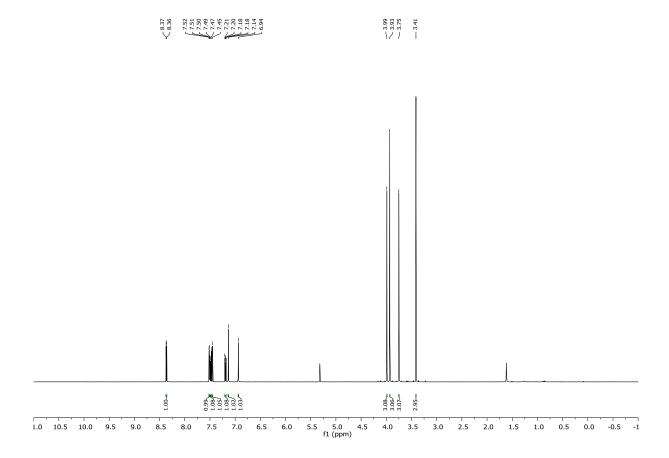
Frequency: 400 MHz


¹³C NMR spectrum of 1-iodo-5,6,7-trimethoxyisoquinoline (8b)

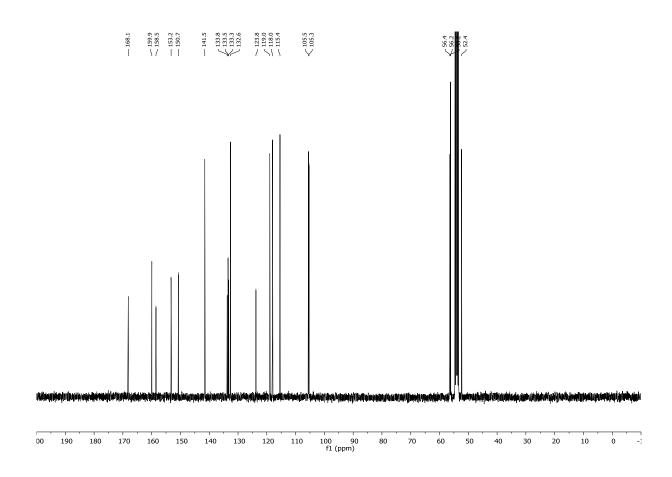
Frequency: 101 MHz Solvent: CDCl₃


¹H NMR spectrum of 1-iodo-6-methoxyisoquinoline (8c)

Frequency: 400 MHz

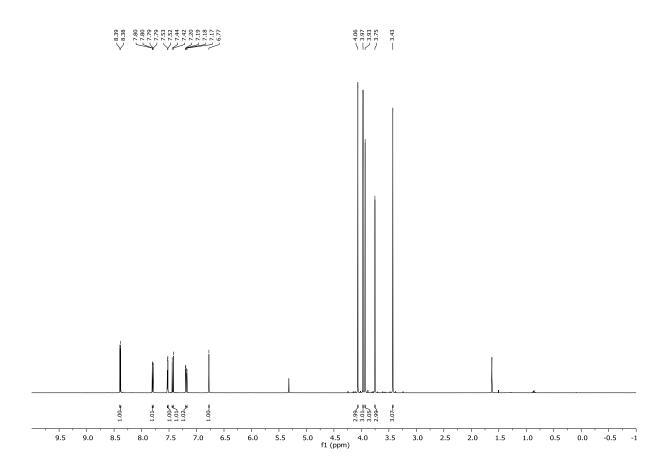

¹³C NMR spectrum of 1-iodo-6-methoxyisoquinoline (8c)

Frequency: 101 MHz

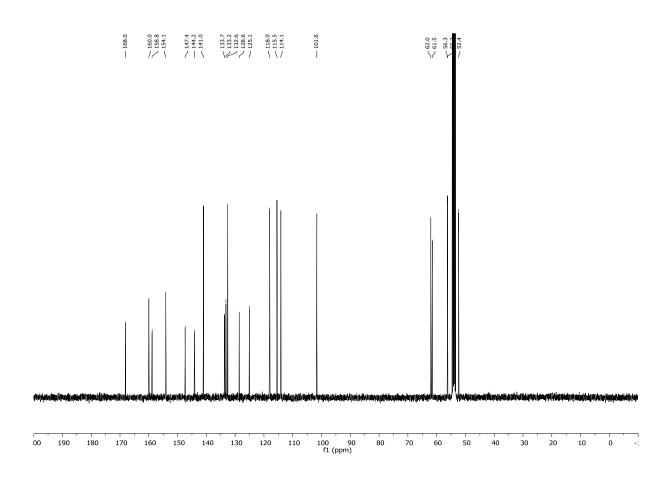

¹H NMR spectrum of methyl 2-(6,7-dimethoxyisoquinolin-1-yl)-5-methoxybenzoate (10a)

Frequency: 400 MHz Solvent: CD₂Cl₂

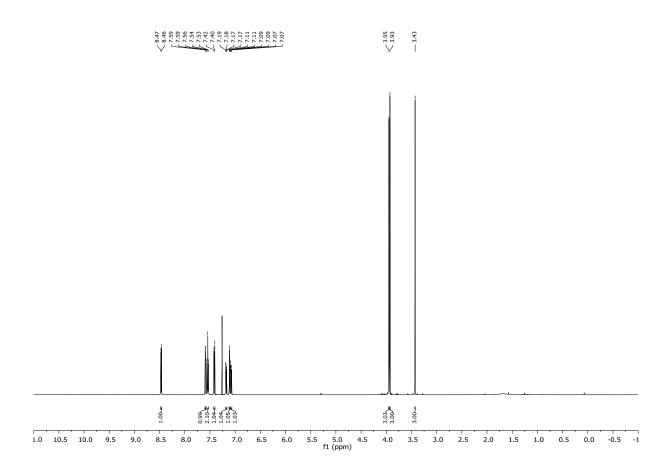
¹³C NMR spectrum of methyl 2-(6,7-dimethoxyisoquinolin-1-yl)-5-methoxybenzoate (10a)


Frequency: 101 MHz Solvent: CD₂Cl₂

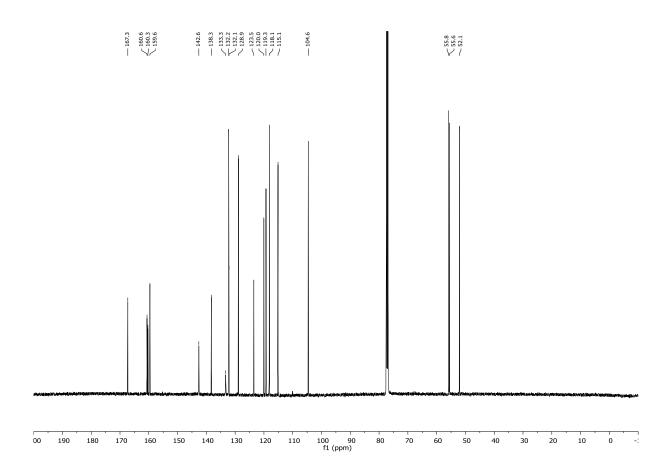
¹H NMR spectrum of methyl 2-(5,6,7-trimethoxyisoquinolin-1-yl)-5-methoxybenzoate (10b)


Frequency: 400 MHz

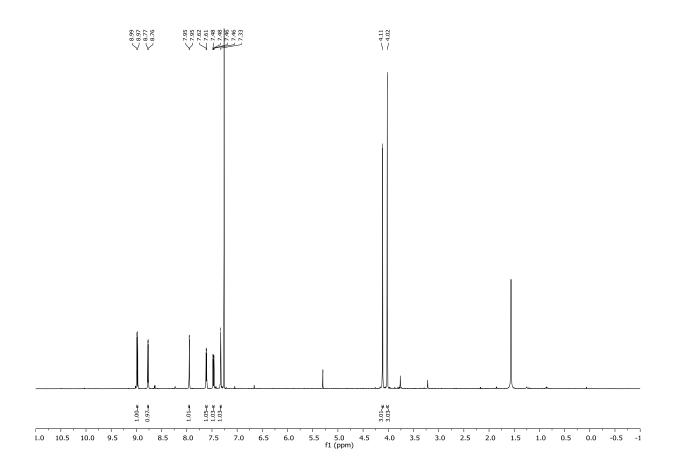
Solvent: CD₂Cl₂


¹³C NMR spectrum of methyl 2-(5,6,7-trimethoxyisoquinolin-1-yl)-5-methoxybenzoate (10b)

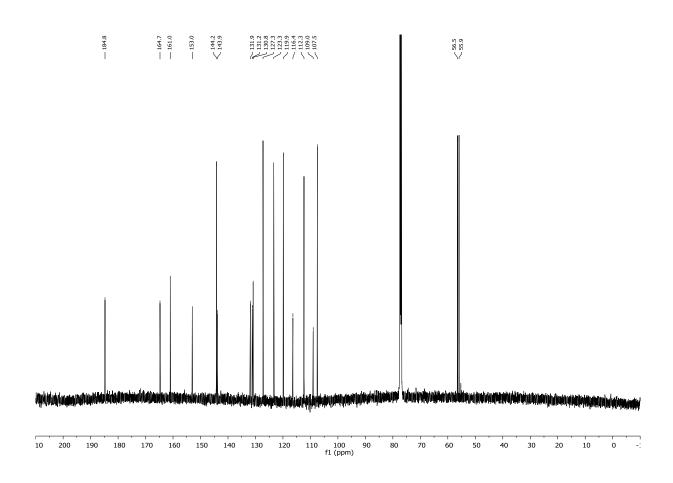
Frequency: 101 MHz Solvent: CD₂Cl₂


¹H NMR spectrum of methyl 2-(6-methoxyisoquinolin-1-yl)-5-methoxybenzoate (10c)

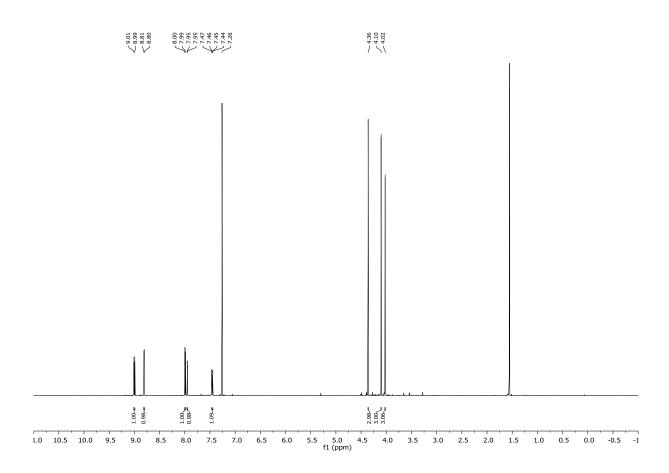
Frequency: 500 MHz


¹³C NMR spectrum of methyl 2-(6-methoxyisoquinolin-1-yl)-5-methoxybenzoate (10c)

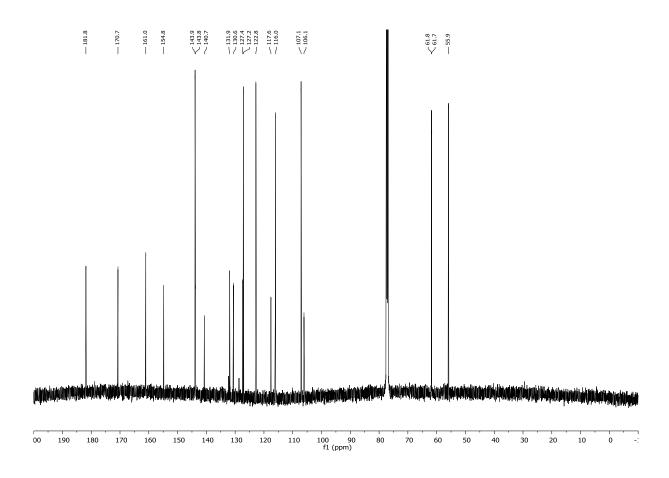
Frequency: 126 MHz


¹H NMR spectrum of 6-hydroxy-5,9-dimethoxy-7*H*-dibenzo[*de,h*]quinolin-7-one (6-*O*-demethylmenisporphine, 4)

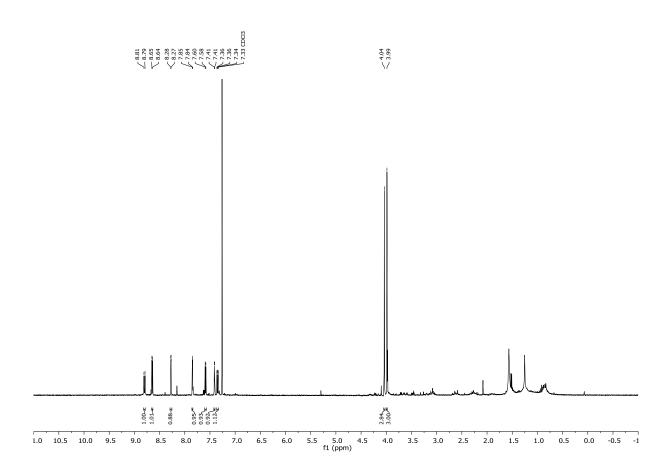
Frequency: 500 MHz Solvent: CDCl₃


¹³C NMR spectrum of 6-hydroxy-5,9-dimethoxy-7*H*-dibenzo[*de,h*]quinolin-7-one (6-*O*-demethylmenisporphine, 4)

Frequency: 126 MHz Solvent: CDCl₃


¹H NMR spectrum of 6-hydroxy-4,5,9-trimethoxy-7*H*-dibenzo[*de,h*]quinolin-7-one (dauriporphinoline, 5)

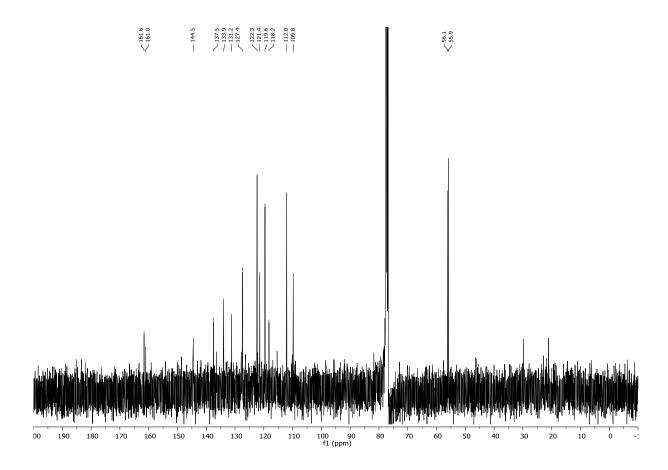
Frequency: 500 MHz


¹³C NMR spectrum of 6-hydroxy-4,5,9-trimethoxy-7*H*-dibenzo[*de,h*]quinolin-7-one (dauriporphinoline, 5)

Frequency: 126 MHz Solvent: CDCl₃

¹H NMR spectrum of 5,9-dimethoxy-7*H*-dibenzo[*de,h*]quinolin-7-one (bianfugecine, 6)

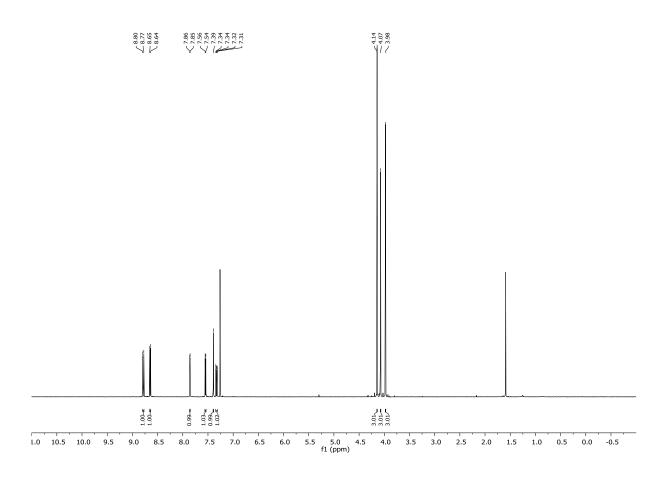
Frequency: 400 MHz



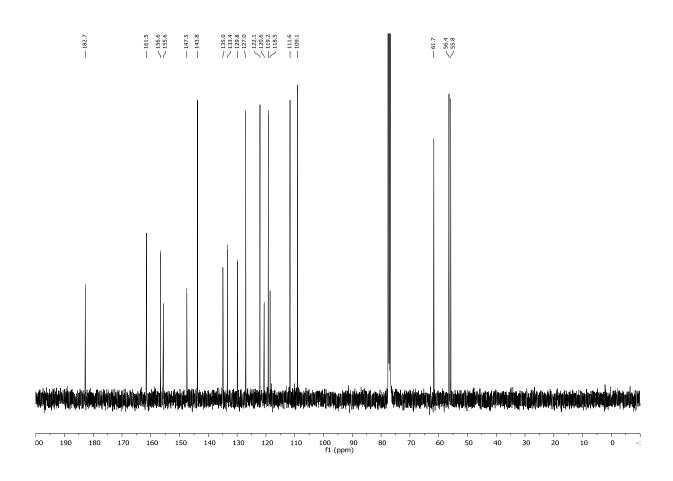
¹³C NMR spectrum of 5,9-dimethoxy-7*H*-dibenzo[*de,h*]quinolin-7-one (bianfugecine, 6)

Frequency: 101 MHz

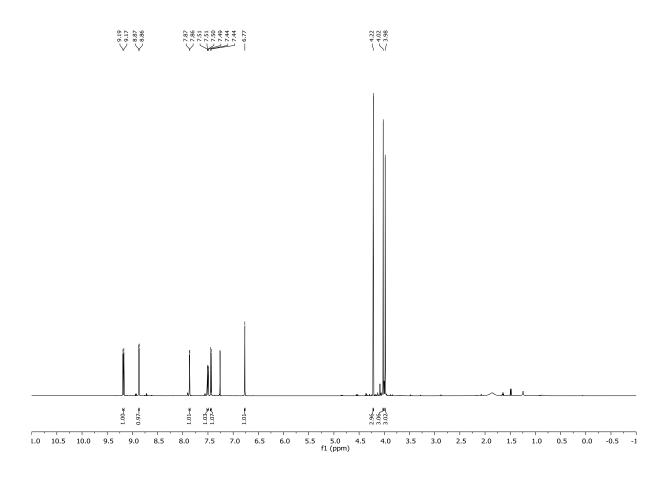
Solvent: CDCl₃


3 carbon resonance signals are not distinguishable from background noise

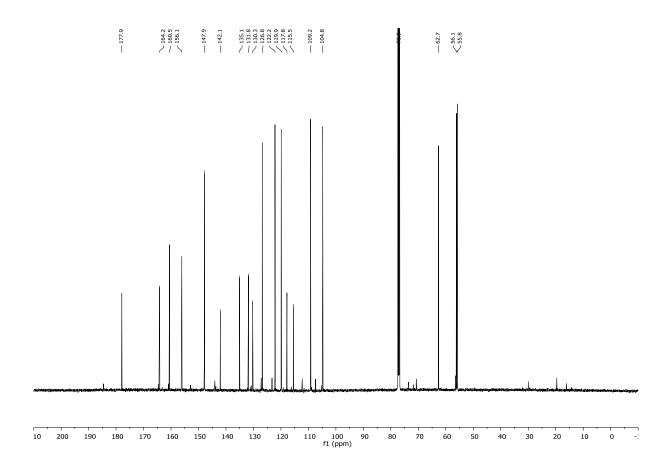
1 H NMR spectrum of 5,6,9-trimethoxy-7*H*-dibenzo[de,h]quinolin-7-one (menisporphine,


2)

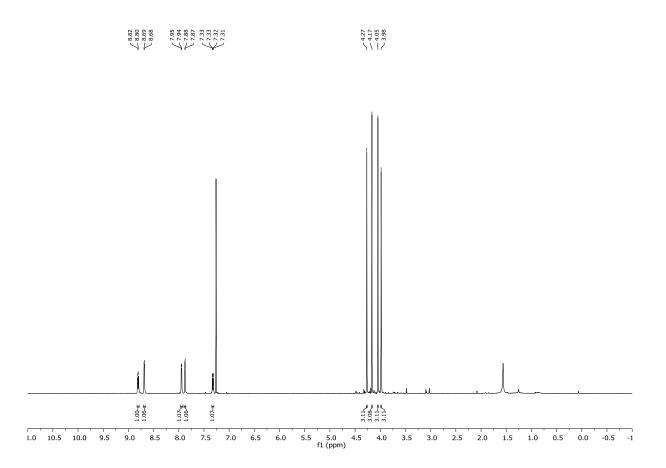
Frequency: 400 MHz Solvent: CDCl₃


¹³C NMR spectrum of 5,6,9-trimethoxy-7*H*-dibenzo[*de,h*]quinolin-7-one (menisporphine, 2)

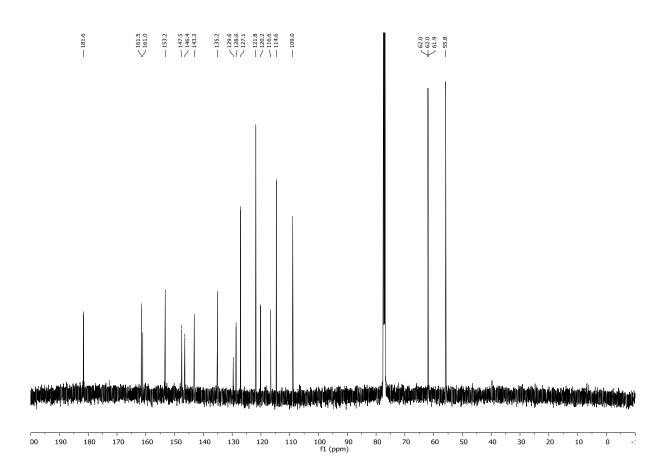
Frequency: 101 MHz Solvent: CDCl₃


¹H NMR spectrum of 5,7,9-trimethoxy-6*H*-dibenzo[*de,h*]quinolin-6-one (18)

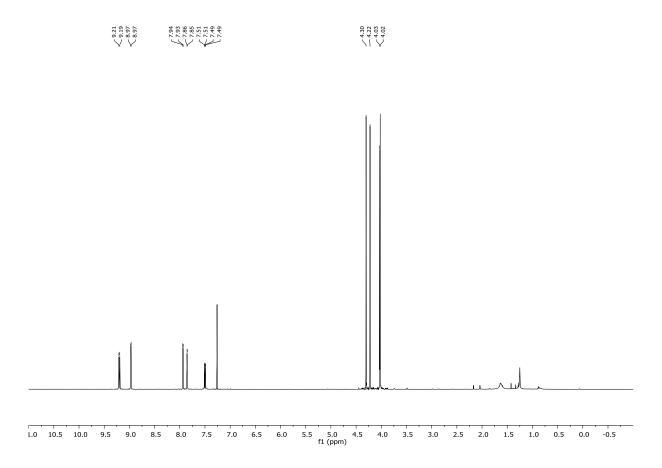
Frequency: 500 MHz


13 C NMR spectrum of 5,7,9-trimethoxy-6*H*-dibenzo[de,h]quinolin-6-one (18)

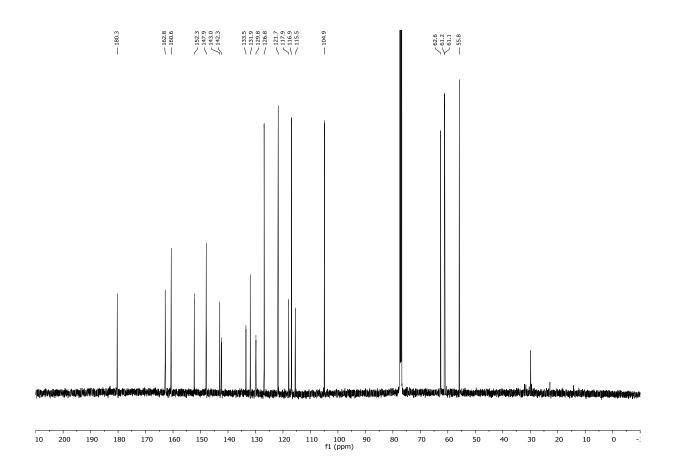
Frequency: 126 MHz


¹H NMR spectrum of 4,5,6,9-tetramethoxy-7*H*-dibenzo[*de,h*]quinolin-7-one (dauriporphine, 3)

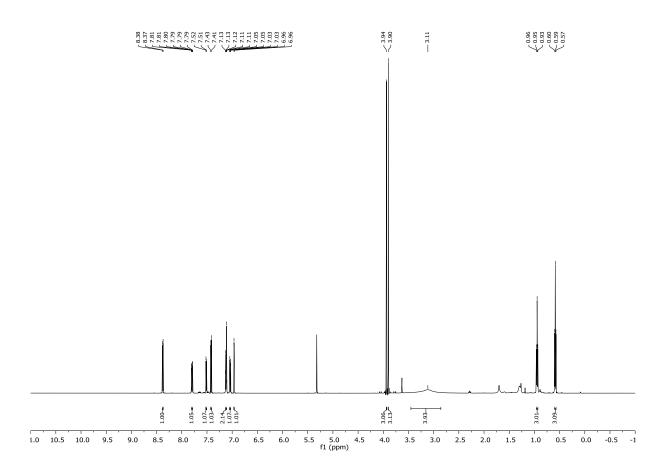
Frequency: 500 MHz


¹³C NMR spectrum of 4,5,6,9-tetramethoxy-7*H*-dibenzo[*de,h*]quinolin-7-one (dauriporphine, 3)

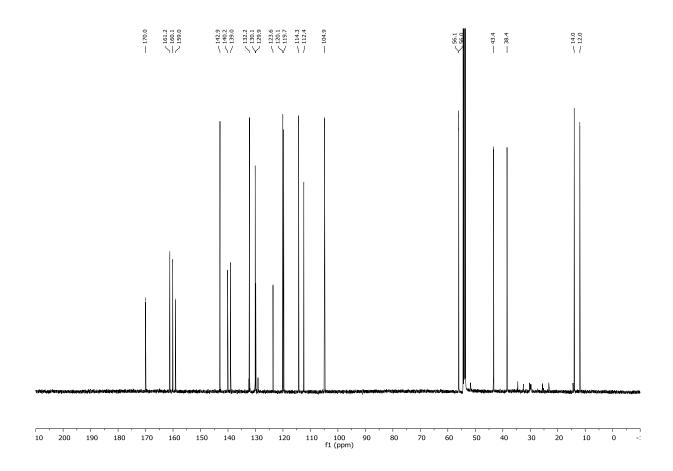
Frequency: 126 MHz Solvent: CDCl₃


¹H NMR spectrum of 4,5,7,9-tetramethoxy-6*H*-dibenzo[*de,h*]quinolin-6-one (19)

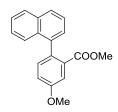
Frequency: 500 MHz


¹³C NMR spectrum of 4,5,7,9-tetramethoxy-6*H*-dibenzo[*de,h*]quinolin-6-one (19)

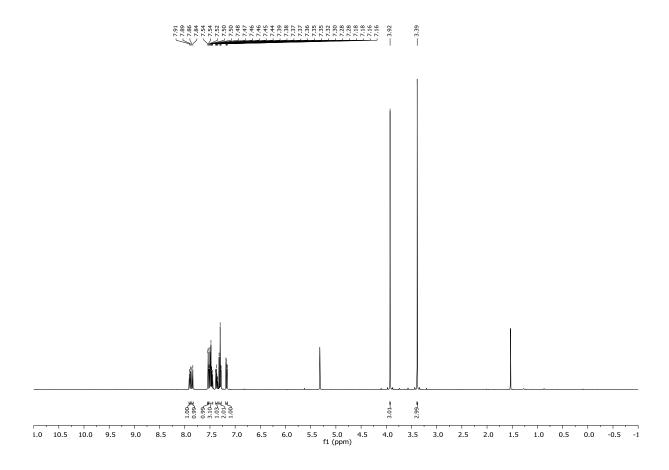
Frequency: 126 MHz


¹H NMR spectrum of *N,N*-diethyl-5-methoxy-2-(6-methoxyisoquinolin-1-yl)benzamide (12)

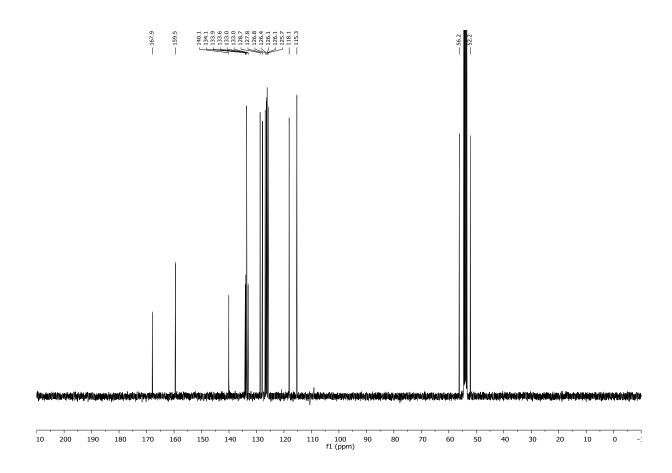
Frequency: 500 MHz Solvent: CD₂Cl₂



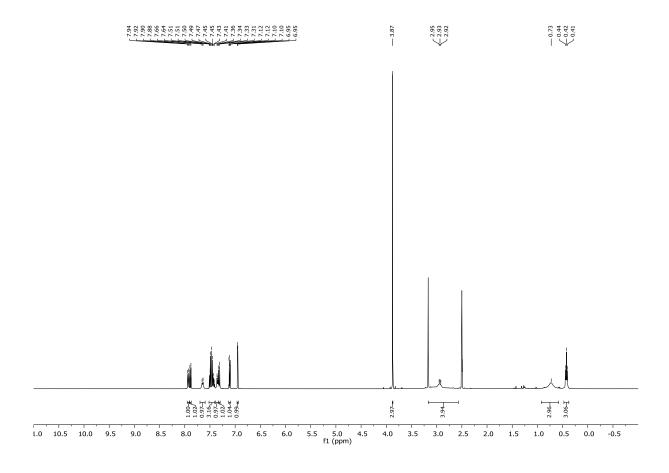
13 C NMR spectrum of *N,N*-diethyl-5-methoxy-2-(6-methoxyisoquinolin-1-yl)benzamide (12)


Frequency: 126 MHz Solvent: CD₂Cl₂

¹H NMR spectrum of methyl 5-methoxy-2-(naphthalen-1-yl)benzoate (15)



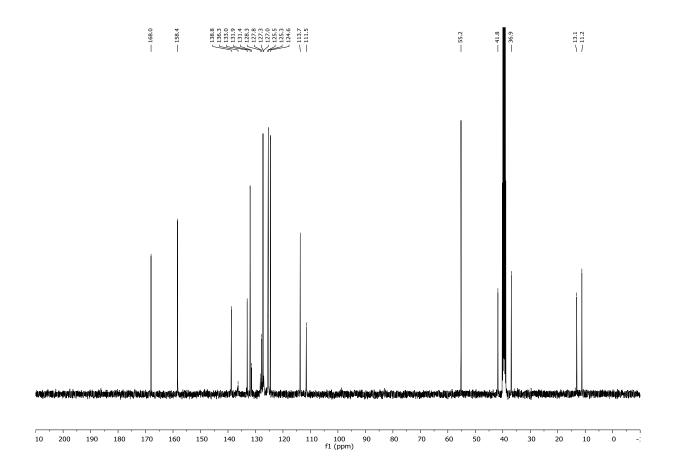
Frequency: 400 MHz Solvent: CD₂Cl₂


¹³C NMR spectrum of methyl 5-methoxy-2-(naphthalen-1-yl)benzoate (15)

Frequency: 101 MHz Solvent: CD₂Cl₂

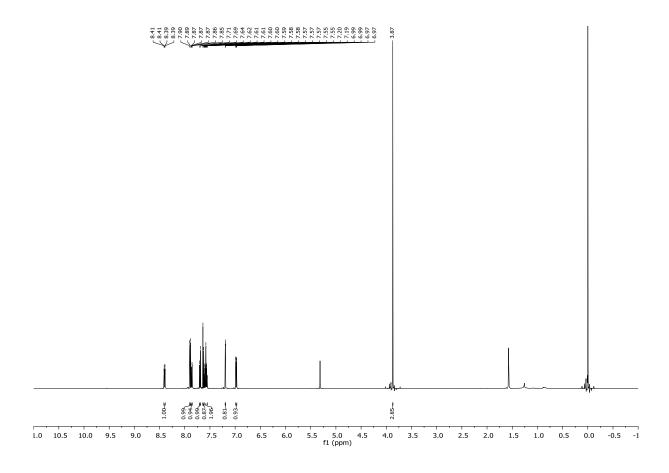
¹H NMR spectrum of *N,N*-diethyl-5-methoxy-2-(naphthalen-1-yl-)benzamide (16)

Frequency: 400 MHz Solvent: (CD₃)₂SO Temperature: 333 K

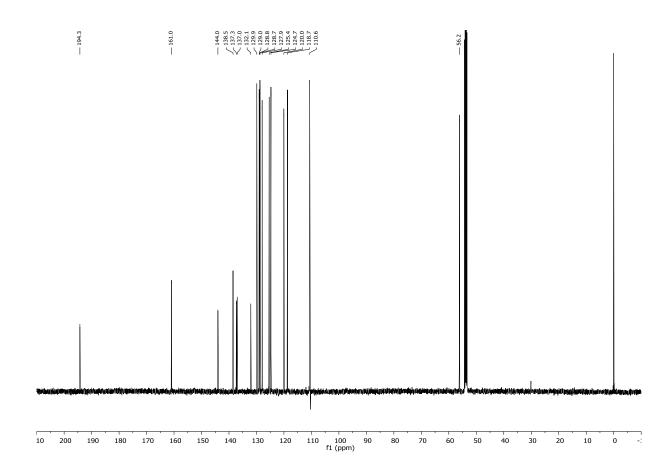


¹³C NMR spectrum of *N,N*-diethyl-5-methoxy-2-(naphthalen-1-yl)benzamide (16)

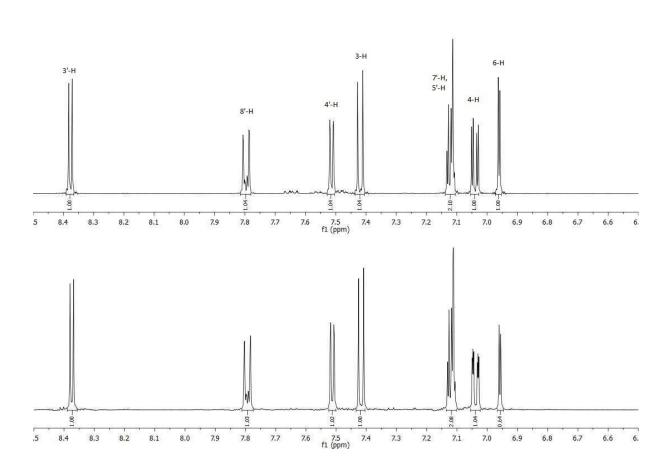
Frequency: 101 MHz


Solvent: (CD₃)₂SO

Temperature: 333 K


¹H NMR spectrum of 9-methoxy-7*H*-benzo[*c*]fluoren-7-one (17)

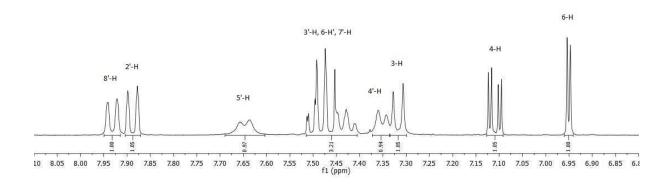
Frequency: 500 MHz Solvent: CD₂Cl₂

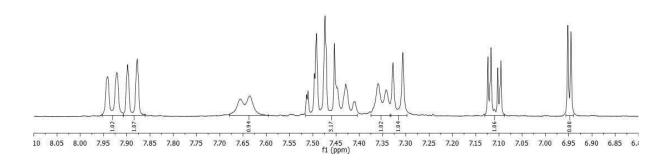

¹³C NMR spectrum of 9-methoxy-7*H*-benzo[*c*]fluoren-7-one (17)

Frequency: 126 MHz Solvent: CD₂Cl₂

Comparison of ¹H NMR spectra of *N,N*-diethyl-5-methoxy-2-(6-methoxyisoquinolin-1-yl)benzamide (12) and partly deuterated 12-D

Frequency: 500 MHz Solvent: CD₂Cl₂




Comparison of ¹H NMR spectra of *N,N*-diethyl-5-methoxy-2-(napthalen-1-yl)benzamide (16) and partly deuterated 16-D

6'
$$\stackrel{5'}{\longrightarrow} \stackrel{4'}{\longrightarrow} \stackrel{3'}{\longrightarrow} \stackrel{6'}{\longrightarrow} \stackrel{5'}{\longrightarrow} \stackrel{4'}{\longrightarrow} \stackrel{3'}{\longrightarrow} \stackrel{NEt_2}{\longrightarrow} \stackrel{NEt_2}{\longrightarrow} \stackrel{(16. \text{ top})}{\longrightarrow} \stackrel{(16-D, \text{ bottom; about 20\% deuterium incorporation)}}$$

Frequency: 400 MHz Solvent: (CD₃)₂SO

Temperature: 333 K

References

- 1. Boger, D. L.; Brotherton, C. E.; Kelley, M. D. *Tetrahedron* **1981**, *37*, 3977–3980.
- 2. Kucznierz, R.; Dickhaut, J.; Leinert, H.; von der Saal, W. Synth. Commun. 1999, 29, 1617–1625.
- 3. Krätzschmar, F.; Kaßel, M.; Delony, D.; Breder, A. Chem. Eur. J. 2015, 21, 7030-7037.
- 4. Metzger, A.; Schade, M. A.; Knochel, P. Org. Lett. 2008, 10, 1107-1110.
- 5. Kunitomo, J.; Satoh, M. Tetrahedron 1983, 39, 3261-3265.
- 6. Chaudhary, S.; Pecic, S.; LeGendre, O.; Harding, W. W. *Tetrahedron Lett.* **2009**, *50*, 2437–2439.
- 7. Kunitomo, J.; Miyata, Y. *Heterocycles* **1986**, *24*, 437–440.