Supporting Information

for

NHC-catalyzed cleavage of vicinal diketones and triketones followed by insertion of enones and ynones

Ken Takaki*, Makoto Hino, Akira Ohno, Kimihiro Komeyama, Hiroto Yoshida and Hiroshi Fukuoka

Address: Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8527, Japan Email: Ken Takaki - ktakaki@hiroshima-u.ac.jp

Experimental procedure, characterization data and copies of ¹H and ¹³C NMR spectra of the products

Table of contents

I.	General information	S2
II.	General procedure for the reaction of 1 with 2 and characterization data	of 4
		S2
III.	General procedure for the reaction of 5 with 6 and characterization data	of 7
		S11
IV.	Synthesis and characterization data of 10	S13
V.	Synthesis and characterization data of 12	S14
VI.	Reaction of 1d with 6a catalyzed by 12 and DIPEA	S14
VII.	References	S15
VIII	. Copies of ¹ H and ¹³ C NMR spectra of the products	S16

^{*} Corresponding author

I. General information

NMR spectra were taken on a Varian 400-MR (1 H, 399.82 MHz; 13 C, 100.54 MHz) spectrometer or Varian 500-MR (1 H, 499.82 MHz; 13 C, 125.68 MHz) spectrometer using residual chloroform (1 H, δ = 7.26) or CDCl₃ (13 C, δ = 77.0) as an internal standard. Mass spectra were obtained at 70 eV on a Simadzu GC-MS QP5050 spectrometer. High-resolution mass spectra were recorded with Thermo Fisher Scientific LTQ Orbitrap XL (ESI or APCI/FTMS mode). Melting points were measured on a Shimadzu melting point apparatus and are uncorrected. TLC monitoring was performed with Merck silica gel (60 F254). All reactions were conducted with a standard Schlenk technique under nitrogen or argon atmosphere. DMF, DCM and DCE solvents were distilled from CaH. Et₃N, DIPEA and iPr₂NH bases were distilled from molecular sieves 4 Å. MgCl₂ was dried by heat gun under vacuum.

II. General procedure for the reaction of 1 with 2 and characterization data of 4

A Schlenk tube was charged with thiazolium salt 3 (37 mg, 0.10 mmol), benzil (1a, 105 mg, 0.50 mmol), 1-(4-chlorophenyl)prop-2-yn-1-one (2i, 82 mg, 0.50 mmol), DCE (1.0 mL), and Et₃N (14 μ L, 0.10 mmol) under N₂. The mixture was stirred at room temperature for 12 h. After quenching with water, accurately weighted diphenylmethane (35.0 mg, 0.208 mmol) was added to the mixture as an internal standard. The organic layer was extracted with ether, washed with brine, dried over MgSO₄, and concentrated under vacuum. The residue was measured by 1 H NMR to determine the yield of 4ai (65% yield). Then, the crude product was purified by column chromatography on silica gel with hexane-EtOAc eluent to give a mixture of *E*- and *Z*-isomer (99 mg, 53% yield). Although the E/Z ratio (40:60 or the reverse) could be estimated by 13 C NMR spectra of the mixture [1], it was difficult to separate each other and determine which is which. Major isomer of 4ai crystalized from the mixture exceptionally and its *Z*-structure was confirmed by X-ray analysis.

2-Benzoyl-1,4-diphenylbut-2-ene-1,4-dione (4aa) [2]

Isolated in 64% yield, yellow oil: $R_f = 0.33$ (hexane / EtOAc = 5 / 1); ¹H NMR (CDCl₃, 399.82 MHz) δ 7.42 (4H, t, J= 7.6 Hz), 7.48-7.57 (5H, m), 7.62 (1H, t, J=

7.4 Hz), 7.87 (2H, d, J= 7.6 Hz), 7.99 (2H, d, J= 7.2 Hz), 8.04 (2H, d, J= 8.0 Hz); ¹³C NMR (CDCl₃, 100.54 MHz) δ 128.59, 128.63, 128.7, 128.8, 128.9, 130.1, 130.8, 133.6, 134.0, 135.4, 135.7, 136.0, 152.5, 188.5, 192.7, 193.8 (one carbon was obscured); MS m/z 340 (35), 247 (37), 105 (100); HRMS m/z ([M+Na]⁺) calcd for C₂₃H₁₆O₃Na, 363.0992, found 363.0994.

2-Benzoyl-4-phenyl-1-(o-tolyl)but-2-ene-1,4-dione (4ab)

Isolated in 54% yield as a mixture of two stereoisomers (74 / 26), yellow oil: $R_f=0.47$ and 0.41 (hexane / EtOAc = 5 / 1); 1 H NMR (CDCl₃, 499.82 MHz) δ 2.48 (3H, s, major C H_3), 2.64 (3H, s, minor C H_3), 7.17 (1H, t, J=7.5 Hz), 7.19 (1H, t, J=8.0 Hz), 7.29 (2H, t, J=7.5 Hz), 7.32 (1H, t, J=7.5 Hz), 7.38-7.56 (14H, m), 7.60 (1H, t, J=7.5 Hz), 7.70 (1H, d, J=7.5 Hz), 7.80-7.84 (5H, m), 7.94 (2H, d, J=7.5 Hz), 8.01 (2H, d, J=7.5 Hz); 13 C NMR (CDCl₃, 125.68 MHz) δ 20.3 (major), 21.3 (minor), 125.5, 128.54, 128.58, 128.63, 128.66, 128.71, 128.8, 129.7, 130.0, 131.3, 131.5, 131.6, 131.81, 131.83, 132.3, 133.1, 133.5, 133.86, 133.90, 134.1, 134.9, 135.7, 135.8, 135.98, 136.03, 136.1, 138.3, 140.3, 152.1, 152.6, 188.9 (major), 189.3 (minor), 193.2 (minor), 194.5 (major), 195.1 (minor), 195.5 (major) (two carbons were obscured); MS m/z 354 (7), 338 (7), 247 (26), 119 (82), 105 (100); HRMS m/z ([M+Na]+) calcd for $C_{24}H_{18}O_3Na$, 377.1148, found 377.1152.

2-Benzoyl-4-phenyl-1-(*m*-tolyl)but-2-ene-1,4-dione (4ac)

Isolated in 64% yield as a mixture of two stereoisomers (52 / 48), yellow oil: R_f = 0.41 (hexane / EtOAc = 5 / 1); 1 H NMR (CDCl₃, 499.82 MHz) δ 2.33 (3H, s, minor CH₃), 2.39 (3H, s, major CH₃), 7.28-7.33 (2H, m), 7.36-7.43 (8H, m), 7.47-7.56 (7H, m), 7.60 (1H, t, J= 7.5 Hz), 7.77 (1H, d, J= 7.5 Hz), 7.82-7.87 (7H, m), 7.99 (2H, d, J= 7.5 Hz), 8.04 (2H, d, J= 7.5 Hz); 13 C NMR (CDCl₃, 125.68 MHz) δ 21.2, 126.4, 127.4, 128.4, 128.5, 128.58, 128.66, 128.73, 128.9, 129.2, 130.0, 130.4, 130.8, 130.9, 133.5, 133.92, 133.95, 134.4, 134.8, 135.44, 135.45, 135.65, 135.68, 136.0, 136.1, 138.4, 138.7, 152.47, 152.49, 152.51, 152.53, 188.5, 192.7 (major), 192.9 (major), 193.8 (minor), 193.9 (minor) (four carbons were obscured); MS m/z 354 (41), 261 (25), 247 (43), 119 (100), 105 (100); HRMS m/z ([M+Na] $^+$) calcd for C₂₄H₁₈O₃Na, 377.1148, found 377.1151.

2-Benzoyl-4-phenyl-1-(p-tolyl)but-2-ene-1,4-dione (4ad)

Isolated in 63% yield as a mixture of two stereoisomers (52 / 48), yellow oil: $R_f = 0.38$ and 0.36 (hexane / EtOAc = 5 / 1); 1 H NMR (CDCl₃, 499.82 MHz) δ 2.34 (3H, s, minor C H_3), 2.40 (3H, s, major C H_3), 7.20 (2H, d, J = 8.0 Hz), 7.29 (2H, d, J = 8.0 Hz), 7.41 (6H, br t, J = 8.0 Hz), 7.48-7.51 (5H, m), 7.54 (2H, t, J = 7.5 Hz), 7.60 (1H, t, J = 7.5 Hz), 7.86-7.90 (6H, m), 7.96 (2H, d, J = 8.0 Hz), 8.00 (2H, d, J = 8.0 Hz), 8.04 (2H, d, J = 7.0 Hz); 13 C NMR (CDCl₃, 125.68 MHz) δ 21.60 (minor), 21.64 (major), 128.5, 128.60, 128.67, 128.7, 129.0, 129.1, 129.3, 129.4, 130.1, 130.26, 130.29, 130.6, 132.8, 133.3, 133.5, 133.9, 135.5, 135.7, 136.10, 136.11, 144.5, 145.2, 152.6, 152.9, 188.5 (major), 188.5 (minor), 192.2 (major), 192.7 (major), 193.3 (minor), 193.8 (minor) (four carbons were obscured); MS m/z 354 (18), 338 (8), 261 (11), 247 (33), 119 (100), 105 (91); HRMS m/z ([M+Na]⁺) calcd for $C_{24}H_{18}O_{3}Na$, 377.1148, found 377.1152.

2-Benzoyl-1-mesityl-4-phenylbut-2-ene-1,4-dione (4ae)

Isolated in 32% yield as a single stereoisomer, yellow oil: R_f = 0.50 (hexane / EtOAc = 5 / 1); 1 H NMR (CDCl₃, 499.82 MHz) δ 2.32 (6H, s), 2.33 (3H, s), 6.93 (2H, s), 7.41 (2H, t, J= 7.5 Hz), 7.44-7.48 (3H, m), 7.56 (2H, t, J= 7.5 Hz), 7.73 (2H, d, J= 7.5 Hz), 7.91 (2H, d, J= 7.5 Hz); 13 C NMR (CDCl₃, 125.68 MHz) δ 19.4, 21.1, 128.50, 128.58, 128.64, 128.65, 128.9, 133.5, 133.9, 134.2, 134.4, 135.0, 136.1, 136.2, 139.6, 151.1, 189.2, 195.2, 200.0; MS m/z 382 (25), 277 (59), 247 (65), 147 (100), 105 (94); HRMS m/z ([M+Na] $^+$) calcd for $C_{26}H_{22}O_3Na$, 405.1461, found 405.1467.

2-Benzoyl-1-(4-methoxyphenyl)-4-phenylbut-2-ene-1,4-dione (4af)

Isolated in 63% yield as a mixture of two stereoisomers (53/47); yellow oil: R_f = 0.23 and 0.20 (hexane / EtOAc = 5 : 1); 1 H NMR (CDCl₃, 499.82 MHz) δ 3.77 (3H, s, minor CH₃), 3.82 (3H, s, major CH₃), 6.88 (2H, d, J= 8.0 Hz), 6.96 (2H, d, J= 8.0 Hz), 7.42 (6H, br t, J= 7.5 Hz), 7.47-7.51 (5H, m) , 7.54 (2H, t, J= 7.5 Hz), 7.60 (1H, t, J= 7.5 Hz), 7.87 (4H, dm, J= 8.0 Hz), 7.96 (2H, d, J= 9.0 Hz), 8.02 (2H, d, J= 7.0 Hz), 8.04 (2H, d, J= 7.0 Hz), 8.06 (2H, d, J= 8.5 Hz); 13 C NMR

(CDCl₃, 125.68 MHz) δ 55.3 (minor), 55.4 (major), 113.8, 114.0, 128.0, 128.48, 128.55, 128.63, 128.70, 128.8, 129.0, 129.2, 130.0, 130.4, 131.4, 132.7, 133.5, 133.86, 133.91, 135.4, 135.6, 136.10, 136.12, 152.6, 153.6, 163.9, 164.4, 188.3 (major), 188.6 (minor), 190.8 (major), 192.0 (minor), 192.8 (minor), 193.9 (major) (three carbons were obscured); MS m/z 370 (17), 265 (7), 247 (50), 135 (100), 105 (53); HRMS m/z ([M+Na]⁺) calcd for $C_{24}H_{18}O_4Na$, 393.1097, found 393.1099.

2-Benzoyl-1-(2-chlorophenyl)-4-phenylbut-2-ene-1,4-dione (4ag)

Isolated in 31% yield as a mixture of two stereoisomers (80/20), yellow oil: $R_f = 0.30$ and 0.22 (hexane / EtOAc = 5 / 1); ¹H NMR (CDCl₃, 499.82 MHz) δ 7.32-7.61 (20H, m), 7.64 (1H, t, J = 7.0 Hz), 7.81 (2H, d, J = 8.0 Hz), 7.89 (3H, d, J = 7.5 Hz), 7.95 (2H, d, J = 8.0 Hz), 7.99 (2H, d, J = 8.0 Hz); ¹³C NMR (CDCl₃, 125.68 MHz) δ 126.9, 127.1, 128.72, 128.76, 128.79, 128.88, 128.92, 129.5, 130.0, 130.4, 130.9, 131.2, 132.0, 132.2, 133.2, 133.7, 134.2, 134.3, 135.4, 135.8, 135.9, 136.0, 136.1, 136.7, 149.9, 189.0 (major), 190.1 (minor), 192.2 (minor), 192.6 (minor), 193.3 (major), 194.1 (major) (seven carbons were obscured); MS m/z 374 (5), 358 (3), 339 (68), 281 (5), 247 (40), 139 (63), 105 (100); HRMS m/z ([M+Na]⁺) calcd for C₂₃H₁₅O₃ClNa, 396.0602, found 396.0606.

2-Benzoyl-1-(3-chlorophenyl)-4-phenylbut-2-ene-1,4-dione (4ah)

Isolated in 49% yield as a mixture of two stereoisomers (61 / 39), yellow oil: R_f = 0.35 (hexane / EtOAc = 5 / 1); 1 H NMR (CDCl₃, 499.82 MHz) δ 7.40 (2H, t, J= 7.5 Hz), 7.43-7.62 (15H, m), 7.67 (1H, t, J= 7.0 Hz), 7.86-7.90 (6H, m), 7.94 (1H, d, J= 7.5 Hz), 7.97 (1H, d, J= 8.0 Hz), 7.98 (1H, s), 8.01 (1H, s), 8.05 (2H, d, J= 8.0 Hz); 13 C NMR (CDCl₃, 125.68 MHz) δ 127.2, 128.3, 128.7, 128.82, 128.85, 128.89, 128.95, 129.7, 130.0, 130.07, 130.11, 130.8, 131.2, 133.4, 133.7, 133.9, 134.17, 134.19, 134.24, 134.9, 135.1, 135.3, 135.6, 135.9, 136.0, 137.0, 137.3, 151.89, 151.93, 188.28 (major), 188.33 (minor), 191.6 (minor), 192.6 (major), 192.9 (major), 193.5 (minor) (three carbons were obscured); MS m/z 374 (14), 358 (8), 281 (18), 247 (8), 139 (24), 105 (100); HRMS: m/z ([M+Na]⁺) calcd for $C_{23}H_{15}$ CIO₃Na, 397.0602, found 397.0606.

2-Benzoyl-1-(4-chlorophenyl)-4-phenylbut-2-ene-1,4-dione (4ai)

Isolated in 53% yield as a mixture of *E*- and *Z*-isomers (40 / 60), yellow oil. *Z*-isomer: crystallized partially from the mixture on standing: mp. 138-140 °C (from AcOEt / hexane); $R_f = 0.38$ (hexane / AcOEt = 5 / 1); ¹H NMR (CDCl₃, 499.82 MHz) δ 7.40 (2H, d, J= 8.5 Hz), 7.43 (2H, t, J= 8.0 Hz), 7.50-7.53 (3H, m), 7.57 (1H, t, J= 7.5 Hz), 7.64 (1H, t, J= 8.0 Hz), 7.87 (2H, d, J= 8.0 Hz), 7.94 (2H, d, J= 8.0 Hz), 8.04 (2H, d, J= 8.5 Hz); ¹³C NMR (CDCl₃, 125.68 MHz) δ 128.7, 128.8, 128.9, 129.0, 130.1, 130.3, 130.5, 134.15, 134.18, 135.3, 135.9, 140.0, 152.2, 188.30, 192.6, 192.8 (one carbons was obscured); MS m/z 374 (13), 358 (11), 281 (10), 247 (20), 139 (33), 105 (100) (measured as a E/Z mixture); HRMS m/z ([M+Na]⁺) calcd for $C_{23}H_{15}$ ClO₃Na, 397.0602, found 397.0606 (measured as a E/Z mixture).

E-isomer: R_f = 0.42 (hexane / AcOEt = 5 / 1); ¹H NMR (CDCl₃, 499.82 MHz) δ 7.43-7.51 (7H, m), 7.56 (1H, t, J= 7.5 Hz), 7.60 (1H, t, J= 7.5 Hz), 7.89 (2H, d, J= 8.0 Hz), 7.98 (2H, d, J= 8.0 Hz), 8.01 (2H, d, J= 8.5 Hz); ¹³C NMR (CDCl₃, 125.68 MHz) δ 128.7, 128.9, 129.1, 129.2, 130.6, 131.6, 133.78, 133.81, 134.2, 135.6, 136.1, 140.8, 152.8, 188.28, 191.6, 193.6 (one carbon was obscured).

2-Benzoyl-1-(4-bromophenyl)-4-phenylbut-2-ene-1,4-dione (4aj)

Isolated in 57% yield as a mixture of two stereoisomers (59 / 41), yellow oil: R_f = 0.43 and 0.35 (hexane / EtOAc = 5 / 1); 1 H NMR (CDCl₃, 499.82 MHz) δ 7.42-7.47 (6H, m), 7.51-7.54 (5H, m), 7.57-7.60 (4H, m), 7.63-7.66 (3H, m), 7.86 (2H, d, J= 8.5 Hz), 7.88 (4H, d, J= 8.0 Hz), 7.91 (2H, d, J= 8.5 Hz), 7.98 (2H, d, J= 7.5 Hz), 8.04 (2H, d, J= 8.0 Hz); 13 C NMR (CDCl₃, 125.68 MHz) δ 128.7, 128.81, 128.84, 128.9, 129.0, 129.6, 130.1, 130.41, 130.48, 130.51, 130.67, 130.69, 131.6, 131.9, 132.1, 133.7, 134.13, 134.14, 134.2, 134.5, 135.3, 135.5, 135.9, 136.0, 152.2, 152.4, 188.26 (minor), 188.28 (major), 191.7 (minor), 192.6 (major), 193.0 (major), 193.6 (minor) (two carbons were obscured); MS m/z 418 (11), 325 (8), 247 (34), 183 (29), 105 (100); HRMS m/z ([M+Na] $^+$) calcd for $C_{23}H_{15}BrO_3Na$, 441.0097, found 441.0097.

Methyl 4-(2-benzoyl-4-oxo-4-phenylbut-2-enoyl)benzoate (4ak)

Isolated in 44% yield as a mixture of two stereoisomers (59 / 41), yellow oil: $R_f = 0.56$ (hexane / EtOAc = 5 / 1); 1 H NMR (CDCl₃, 399.82 MHz) δ 3.92 (3H, s, major C H_3), 3.96 (3H, s, minor C H_3), 7.43-7.47 (6H, m), 7.52-7.62 (7H, m), 7.66 (1H, t, J = 7.4 Hz), 7.88 (4H, d, J = 8.0 Hz), 7.97 (2H, d, J = 8.0 Hz), 8.03-8.12 (8H, m), 8.17 (2H, d, J = 8.4 Hz); 13 C NMR (CDCl₃, 125.68 MHz) δ 52.3 (major), 52.5 (minor), 128.66, 128.75, 128.80, 128.83, 128.86, 128.89, 129.78, 129.80, 129.84, 130.1, 130.9, 131.7, 133.7, 134.0, 134.16, 134.22, 134.4, 135.3, 135.6, 135.87, 135.94, 138.86, 138.88, 151.7, 151.9, 165.8, 166.0, 188.3 (major), 188.4 (minor), 192.4 (minor), 192.7 (major), 193.57 (major), 193.64 (minor) (three carbons were obscured); MS m/z 398 (15), 382 (24), 305 (13), 247 (18), 163 (42), 105 (100); HRMS m/z ([M+Na] $^+$) calcd for $C_{25}H_{18}O_5Na$, 421.1046, found 421.1043.

2-Benzoyl-1-(4-cyanophenyl)-4-phenylbut-2-ene-1,4-dione (4al)

Isolated in 20% yield as a mixture of two stereoisomers (71 / 29), yellow oil: $R_f = 0.18$ (hexane / EtOAc = 5 / 1); 1 H NMR (CDCl₃, 499.82 MHz) $\bar{\delta}$ 7.42-7.49 (6H, m), 7.54-7.71 (8H, m), 7.75 (2H, d, J= 8.0 Hz), 7.81 (2H, d, J= 8.0 Hz), 7.88 (4H, d, J= 8.5 Hz), 7.95 (2H, d, J= 7.5 Hz), 8.04 (2H, d, J= 8.0 Hz), 8.10 (2H, d, J= 8.0 Hz), 8.12 (2H, d, J= 9.0 Hz); 13 C NMR (CDCl₃, 100.54 MHz) $\bar{\delta}$ 116.5 (major), 117.1 (minor), 117.6 (minor), 117.9 (major), 128.75, 128.78, 128.82, 128.96, 129.03, 129.3, 130.2, 130.4, 130.5, 131.7, 132.52, 132.53, 134.0, 134.36, 134.45, 134.51, 135.2, 135.5, 135.8, 135.9, 138.7, 138.8, 151.7, 151.8, 188.2, 191.6 (minor), 192.7 (major), 193.0 (major), 193.4 (minor) (three carbons were obscured); MS m/z 365 (16), 349 (4), 272 (10), 247 (5), 130 (14), 105 (100); HRMS m/z ([M+Na]⁺) calcd for $C_{24}H_{15}NO_3Na$, 388.0944, found 388.0948.

2-Benzoyl-1-(furan-2-yl)-4-phenylbut-2-ene-1,4-dione (4am)

Isolated in 41% yield as a mixture of two stereoisomers (65 / 35), yellow oil: R_f = 0.22 and 0.15 (hexane / EtOAc = 5 / 1); 1 H NMR (CDCl₃, 499.82 MHz) δ 6.50 (1H, dd, J= 3.5, 1.5 Hz,minor), 6.56 (1H, dd, J= 3.5, 1.5 Hz, major), 7.24 (1H, d, J= 4.0 Hz), 7.40-7.64 (16H, m), 7.89-7.96 (7H, m), 8.01 (2H, d, J= 8.0 Hz); 13 C

NMR (CDCl₃, 125.68 MHz) δ 112.7, 112.9, 119.2, 122.1, 128.69, 128.74, 128.75, 128.77, 128.80, 128.82, 129.9, 132.6, 133.6, 133.9, 134.06, 134.08, 134.13, 135.7, 136.0, 136.2, 147.1, 148.2, 149.1, 150.3, 151.1, 151.9, 177.4, 180.5, 188.9, 189.5, 192.4, 193.9 (two carbons were obscured); MS m/z 330 (11), 314 (11), 247 (41), 225 (7), 105 (100); HRMS m/z ([M+Na]⁺) calcd for C₂₁H₁₄O₄Na, 353.0784, found 353.0787.

2-Benzoyl-4-phenyl-1-(thiophen-2-yl)but-2-ene-1,4-dione (4an)

Isolated in 54% yield as a mixture of two stereoisomers (67 / 33), yellow oil: $R_f = 0.24$ (hexane / EtOAc = 5 / 1); 1 H NMR (CDCl₃, 499.82 MHz) δ 7.09 (1H, dd, J = 5.0, 4.0 Hz, minor), 7.19 (1H, dd, J = 5.0, 4.0 Hz, major), 7.43-7.71 (16H, m), 7.80 (1H, dd, J = 4.5, 1.0 Hz), 7.91 (2H, d, J = 8.5 Hz), 7.93 (2H, d, J = 8.0 Hz), 7.97 (1H, dd, J = 4.0, 1.0 Hz), 8.01 (2H, d, J = 7.5 Hz), 8.06 (2H, d, J = 7.5 Hz); 13 C NMR (CDCl₃, 125.68 MHz) δ 128.3, 128.66, 128.70, 128.75, 128.79, 128.81, 129.0, 130.1, 130.4, 131.7, 133.7, 134.07, 134.09, 134.4, 135.0, 135.3, 135.6, 136.0, 136.3, 136.5, 142.0, 142.9, 151.1, 152.5, 183.4 (major), 185.2 (minor), 188.4 (major), 188.7 (minor), 192.3 (minor), 193.5 (major) (four carbons were obscured); MS m/z 346 (11), 330 (3), 253 (7), 247 (40), 111 (50), 105 (100); HRMS m/z ([M+Na] $^+$) calcd for $C_{21}H_{14}O_3SNa$, 369.0556, found 369.0557.

2-Benzoyl-4-phenyl-1-(thiophen-3-yl)but-2-ene-1,4-dione (4ao)

Isolated in 61% yield as a mixture of two stereoisomers (67 / 33), yellow oil: $R_f = 0.28$ (hexane / EtOAc = 5 / 1); 1 H NMR (CDCl₃, 399.82 MHz) δ 7.30 (1H, dd, J = 5.2, 2.8 Hz, minor), 7.38 (1H, dd, J = 5.2, 2.8 Hz, major), 7.43-7.65 (16H, m), 7.90 (2H, d, J = 6.8 Hz), 7.92 (2H, d, J = 8.0 Hz), 8.00 (2H, d, J = 8.0 Hz), 8.07 (2H, d, J = 8.2 Hz), 8.10 (1H, dd, J = 2.8, 1.2 Hz, minor), 8.34 (1H, dd, J = 3.0, 1.0 Hz, major); 13 C NMR (CDCl₃, 125.68 MHz) δ 126.66, 126.70, 127.0, 127.5, 128.59, 128.61, 128.71, 128.76, 128.9, 130.08, 130.16, 130.7, 133.6, 133.99, 134.00, 134.09, 134.5, 135.3, 135.6, 136.0, 136.4, 139.9, 141.0, 152.5, 153.5, 185.2 (major), 186.8 (minor), 188.4 (major), 188.7 (minor), 192.6 (minor), 193.9 (major) (three carbons were obscured); MS m/z 346 (15), 330 (8), 253 (11), 247 (15), 111 (54), 105 (100); HRMS m/z ([M+Na] $^+$) calcd for $C_{21}H_{14}O_3SNa$, 369.0556, found 369.0557.

2-Benzoyl-1-(1-naphthyl)-4-phenylbut-2-ene-1,4-dione (4ap)

Isolated in 52% yield as a mixture of two stereoisomers (69 / 31), yellow oil: $R_f = 0.55$ (hexane / EtOAc = 5 / 1); 1 H NMR (CDCl₃, 499.82 MHz) δ 7.38-7.65 (21H, m), 7.79-7.84 (4H, m), 7.93 (1H, d, J= 8.0 Hz), 7.97 (1H, d, J= 8.5 Hz), 8.01 (2H, d, J= 7.0 Hz), 8.05-8.13 (5H, m), 8.52 (1H, d, J= 9.0 Hz), 9.09 (1H, d, J= 8.5 Hz); 13 C NMR (CDCl₃, 125.68 MHz) δ 124.15, 124.22, 125.2, 126.1, 126.5, 126.8, 128.21, 128.23, 128.56, 128.59, 128.63, 128.65, 128.70, 128.72, 128.76, 128.82, 130.0, 130.14, 130.36, 130.62, 130.71, 131.6, 132.1, 132.6, 133.03, 133.35, 133.45, 133.57, 133.69, 133.74, 133.91, 134.0, 134.1, 134.3, 135.7, 136.03, 136.04, 136.1, 152.8, 152.9, 188.9 (major), 189.3 (minor), 193.2 (minor), 194.7 (major), 194.9 (minor), 195.1 (major); MS m/z 390 (12), 374 (10), 285 (14), 247 (96), 155 (74), 127 (100), 105 (96); HRMS m/z ([M+Na] $^+$) calcd for $C_{27}H_{18}O_3Na$, 413.1148, found 413.1153.

2-Benzoyl-1-(2-naphthyl)-4-phenylbut-2-ene-1,4-dione (4aq)

Isolated in 50% yield as a mixture of two stereoisomers (53 / 47), yellow oil: $R_f = 0.36$ and 0.30 (hexane / EtOAc = 5 : 1); 1 H NMR (CDCl₃, 499.82 MHz) δ 7.37-7.61 (18H, m), 7.80 (1H, d, J = 8.0 Hz), 7.84-7.91 (8H, m), 7.97 (1H, d, J = 8.0 Hz), 8.03-8.09 (6H, m), 8.50 (1H, s, major), 8.65 (1H, s, minor); 13 C NMR (CDCl₃, 125.68 MHz) δ 123.9, 124.5, 126.6, 127.1, 127.69, 127.75, 128.61, 128.62, 128.66, 128.67, 128.75, 128.78, 128.79, 129.1, 129.2, 129.7, 129.8, 130.2, 130.5, 130.8, 131.6, 132.2, 132.4, 132.8, 133.3, 133.4, 133.6, 134.01, 134.05, 135.5, 135.7, 135.82, 135.84, 136.11, 136.12, 152.8, 153.1, 188.5, 192.6, (minor) 192.8 (major), 193.8 (major), 193.9 (minor) (four carbons were obscured); MS m/z 390 (14), 374 (26), 297 (5), 247 (41), 155 (86), 105 (100); HRMS m/z ([M+Na] $^+$) calcd for $C_{27}H_{18}O_3Na$, 413.1148, found 413.1143.

3-Benzoyl-1,6-diphenylhex-2-ene-1,4-dione (4ar)

Isolated in 13% yield as a single stereoisomer, yellow oil: R_f = 0.35 (hexane / EtOAc = 5 / 1); ¹H NMR (CDCl₃, 499.82 MHz) δ 2.94-3.03 (4H, m) , 7.15 (2H, d, J= 6.5 Hz), 7.20 (1H, t, J= 7.2 Hz), 7.26-7.28 (2H, m), 7.44 (2H, t, J= 7.2 Hz), 7.48 (2H, t, J= 7.5 Hz), 7.58 (1H, t, J= 7.5 Hz), 7.61 (1H, t, J= 7.5 Hz), 7.86 (2H,

d, J= 6.0 Hz), 7.92 (2H, d, J= 8.5 Hz), 7.92 (1H, s); ¹³C NMR (CDCl₃, 125.68 MHz) δ 29.5, 42.3, 126.3, 128.4, 128.50, 128.52, 128.80, 128.89, 128.92, 130.4, 133.9, 134.2, 135.7, 136.3, 140.2, 150.7, 188.8, 195.7, 196.5; MS m/z 368 (1), 352 (9), 263 (2), 133 (20), 105 (100); HRMS m/z ([M+Na]⁺) calcd for C₂₅H₂₀O₃Na, 391.1305, found 391.1302.

2-Benzoyl-1,4-di-p-tolylbut-2-ene-1,4-dione (4ba)

Isolated in 48% yield (76% yield by use of MgCl₂) as a mixture of two stereoisomers (50 / 50), yellow oil: R_f = 0.35 (hexane / EtOAc = 5 / 1); 1 H NMR (CDCl₃, 499.82 MHz) δ 2.38 (3H, s, CH₃), 2.40 (6H, s, CH₃), 2.44 (3H, s, CH₃), 7.24 (6H, d, J= 8.5 Hz), 7.32 (2H, d, J= 7.5 Hz), 7.44 (2H, t, J= 7.5 Hz), 7.48 (2H, s, CH), 7.52 (2H, t, J= 7.5 Hz), 7.54 (1H, t, J= 7.5 Hz), 7.63 (1H, t, J= 7.5 Hz), 7.79 (4H, d, J= 8.0 Hz), 7.89 (2H, d, J= 7.5 Hz), 7.97 (2H, d, J= 8.0 Hz), 8.05 (2H, d, J= 7.5 Hz); 13 C NMR (CDCl₃, 125.68 MHz) δ 21.60, 21.63, 128.5, 128.6, 128.8, 128.9, 129.1, 129.28, 129.39, 129.436, 129.443, 130.1, 130.3, 130.4, 130.8, 132.9, 133.3, 133.4, 133.68, 133.70, 133.9, 135.5, 135.7, 144.4, 145.09, 145.11, 145.2, 152.2, 152.5, 187.9, 188.0, 192.3, 192.9, 193.4, 194.0 (three carbons were obscured); MS m/z 368 (16), 352 (22), 261 (21), 119 (100), 105 (33); HRMS m/z ([M+Na]⁺) calcd for C₂₅H₂₀O₃Na, 391.1305; found 391.1308.

2-Benzoyl-1,4-bis(4-methoxyphenyl)but-2-ene-1,4-dione (4ca)

Isolated in 16% yield (25% yield by use of MgCl₂) as a mixture of two stereoisomers (50 / 50), yellow oil; R_f = 0.25 (hexane / AcOEt = 3 / 1); 1 H NMR (CDCl₃, 499.82 MHz) δ 3.82 (3H, s, OCH₃), 3.84 (6H, s, OCH₃), 3.87 (3H, s, OCH₃), 6.90 (6H, d, J = 8.5 Hz), 6.98 (2H, d, J = 9.0 Hz), 7.41-7.53 (7H, m), 7.62 (1H, t, J = 7.5 Hz), 7.87-7.89 (4H, m), 7.96 (2H, d, J = 9.0 Hz), 8.02 (2H, d, J = 7.5 Hz), 8.06 (4H, m); 13 C NMR (CDCl₃, 125.68 MHz) δ 55.4, 55.5, 55.6, 113.9, 114.0, 128.3, 128.6, 128.7, 129.1, 129.36, 129.39, 129.6, 130.2, 130.8, 131.2, 131,4, 132.8, 133.5, 133.9, 135.6, 135.8, 152.1, 153.2, 163.9, 164.2, 164.4, 186.6, 186.9, 191.1, 192.4, 193.1, 194.1 (six carbons were obscured); MS m/z 400 (13), 384 (51), 207 (69), 135 (100), 77 (43); HRMS m/z ([M + Na]⁺) calcd for C₂₅H₂₀O₅Na 423.1203, found 423.1205.

2-Benzoyl-1,4-bis(4-chlorophenyl)but-2-ene-1,4-dione (4da)

Isolated in 56% yield (74% yield by use of MgCl₂) as a mixture of two stereoisomers (53 / 47), yellow oil: $R_f = 0.50$ and 0.43 (hexane / AcOEt = 5 / 1); ¹H NMR (CDCl₃, 399.82 MHz) δ 7.38-7.55 (15H, m), 7.63 (1H, t, J = 7.2 Hz), 7.81 (4H, d, J = 8.4 Hz), 7.91 (2H, d, J = 8.8 Hz), 7.95-7.99 (4H, m), 8.02 (2H, d, J = 8.0 Hz); ¹³C NMR (CDCl₃, 100.54 MHz) δ 128.7, 128.8, 128.93, 128.96, 129.08, 129.13, 129.16, 129.9, 130.0, 130.1, 130.3, 131.5, 133.5, 133.8, 134.0, 134.2, 135.1, 135.4, 140.1, 140.6, 140.7, 140.8, 152.7, 153.0, 187.1, 191.3 (minor), 192.4 (major), 192.5 (major), 193.4 (minor) (five carbons were obscured); MS m/z 408 (15), 315 (10), 281 (32), 139 (100), 105 (96); HRMS m/z ([M + Na]⁺) calcd for $C_{23}H_{14}Cl_2O_3Na$ 431.0212, found 431.0214.

2-Benzoyl-1,4-bis(4-bromophenyl)but-2-ene-1,4-dione (4ea)

Isolated in 42% yield (63% yield by use of MgCl₂) as a mixture of two stereoisomers (58 / 42), yellow oil: R_f (hexane : AcOEt = 5 / 1) = 0.45 and 0.40; 1 H NMR (CDCl₃, 399.82 MHz) δ 7.41-7.58 (13H, m), 7.62-7.66 (3H, m), 7.73 (4H, d, J = 8.4 Hz), 7.84 (2H, d, J = 8.8 Hz), 7.90 (2H, d, J = 8.4 Hz), 7.95 (2H, d, J = 7.8 Hz), 8.02 (2H, d, J = 8.0 Hz); 13 C NMR (CDCl₃, 125.68 MHz) δ 128.7, 128.8, 128.97, 129.03, 129.58, 129.67, 129.70, 129.8, 130.1, 130.2, 130.4, 131.6, 132.0, 132.13, 132.18, 132.21, 133.9, 134.0, 134.3, 134.4, 134.66, 134.70, 135.2, 135.4, 152.8, 153.1, 187.4, 191.5 (minor), 192.4 (major), 192.8 (major), 193.3 (minor) (three carbons were obscured); MS m/z 495 (21), 405 (15), 325 (33), 183 (75), 105 (100); HRMS m/z ([M + Na]⁺) calcd for $C_{23}H_{14}Br_2O_3Na$ 518.9202, found 518.9205.

III. General procedure for the reaction of cyclic 1,2-diketones 5 with enone 6.

A Schlenk tube was charged with thiazolium salt **3** (37 mg, 0.10 mmol), cyclohexane-1,2-dione (**5a**) (56 mg, 0.50 mmol), phenyl vinyl ketone (**6a**) (66 mg, 0.50 mmol), DMF (1.0 mL), and then iPr₂NH (14 μ L, 0.10 mmol) under N₂. The mixture was stirred at room temperature for 24 h. After quenching with water, accurately weighted diphenylmethane (35.0 mg, 208 mmol) was added to the

mixture as an internal standard. The organic layer was extracted with ether, washed with brine, dried over MgSO₄, and concentrated under vacuum. The residue was measured by ¹H NMR to determine the yield of **7a** (49% yield) and bicyclo[3.2.1]octanone **8** (*ca*.10% yield). Then, the crude products were purified by column chromatography on silica gel with hexane-EtOAc eluent to give 55 mg (45% yield) of **7a** and ca. 12 mg (10% yield) of **8**.

2-Benzoylcyclooctane-1,4-dione (7a)

Isolated in 45% yield as a yellow oil; $R_f = 0.38$ (hexane : EtOAc = 3/1); ¹H NMR (CDCl₃, 499.82 MHz) δ 1.63-1.87 (2H, m), 1.98-2.06 (2H, m), 2.37-2.41 (1H, m), 2.56-2.65 (3H, m), 2.68 (1H, dd, J = 12.0, 4.5 Hz), 3.45 (1H, t, J = 12.0 Hz), 4.86 (1H, dd, J = 12.0, 4.5 Hz), 7.46 (2H, t, J = 7.5 Hz), 7.56 (1H, t, J = 7.5 Hz), 7.85 (2H, d, J = 7.5 Hz); ¹³C NMR (CDCl₃, 100.53 MHz) δ 24.5, 25.4, 40.9, 42.3, 42.5, 59.9, 128.3, 128.9, 133.7, 135.7, 193.4, 209.4, 213.5; MS m/z 244 (27), 133 (26), 105 (100); HRMS m/z ([M + Na]⁺) calcd for $C_{15}H_{16}O_3Na$, 267.0992, found 267.0994.

2-Benzoylcyclononane-1,4-dione (7b)

Isolated in 24% yield as a white solid; mp 107-108 °C; R_f = 0.20 (hexane / EtOAc = 5 / 1); ¹H NMR (CDCl₃, 399.82 MHz) δ 1.55-1.58 (1H, m), 1.67-1.69 (1H, m), 1.77-1.86 (4H, m), 2.31-2.37 (1H, m), 2.49-2.55 (1H, m), 2.63-2.71 (2H, m), 2.74 (1H, dd, J= 10.8, 2.4 Hz, CHCHH), 3.32 (1H, dd, J= 10.8, 9.2 Hz, CHCHH), 5.00 (1H, dd, J= 9.2, 2.4 Hz, CHCHH), 7.46 (2H, t, J= 6.0 Hz), 7.57 (1H, t, 6.0 Hz), 7.86-7.88 (2H, m,); ¹³C NMR (CDCl₃, 100.54 MHz) δ 21.3, 22.3, 28.2, 40.7, 43.2, 46.4, 58.4, 128.3, 128.8, 133.6, 135.9, 193.7, 209.7, 214.6; MS m/z 258 (17), 133 (14), 105 (100); HRMS m/z ([M+Na]⁺) calcd for $C_{16}H_{18}O_3Na$, 281.1154; found 281.1148.

2-Benzoylcyclotetradecane-1,4-dione (7c)

Isolated in 43% yield as a white solid; mp 90-91 °C; $R_f = 0.15$ (hexane / EtOAc = 5 / 1); ¹H NMR (CDCl₃, 399.82 MHz) δ 1.14-1.40 (13H, m), 1.48-1.56 (1H, m), 1.70-1.79 (1H, m), 1.84-1.94 (1H, m), 2.37-2.43 (1H, m), 2.53 (2H, t, J= 6.0 Hz),

2.65-2.73 (1H, m), 2.83 (1H, dd, J= 18.0, 3.6 Hz, CHCHH), 3.47 (1H, dd, 18.0, 9.6 Hz, CHCHH), 5.27 (1H, dd, J= 9.6, 3.6 Hz, CHCHH), 7.49 (2H, t, J= 7.6 Hz), 7.59 (1H, t, 7.2 Hz), 8.00-8.02 (2H, m); ¹³C NMR (CDCl₃, 125.68 MHz) δ 21.3, 22.5, 25.3, 25.6, 25.7, 26.2, 26.8, 40.8, 41.5, 41.8, 56.4, 128.8, 128.9, 133.7, 135.7, 195.4, 205.6, 209.0 (one carbone was obscured); MS m/z 328 (41), 133 (44), 105 (100); HRMS m/z ([M+Na]⁺) calcd for C₂₁H₁₈O₃Na, 351.1936; found 351.1928.

7-Benzoyl-1-hydroxybicyclo[3.2.1]octan-8-one (8)

Two stereoisomers were obtained in ca. 10% (6/4) combined yield. Major isomer: yellow solid, mp 100-102 °C; R_f = 0.23 (hexane / AcOEt = 3 / 1); ¹H NMR (CDCl₃, 399.82 MHz) δ 1.80 (1H, m), 1.87-2.04 (5H, m), 2.31-2.37 (2H, m), 2.62 (1H, m), 3.26 (1H, br s), 4.07 (1H, dd, J = 10.4, 4.4 Hz), 7.48 (2H, t, J = 7.6 Hz), 7.58 (1H, t, J = 7.2 Hz), 7.94 (2H, d, J = 7.8 Hz); ¹³C NMR (CDCl₃, 100.53 MHz) δ 18.2, 25.9, 35.4, 41.9, 43.1, 45.1, 79.7, 128.4, 128.6, 133.4, 136.8, 202.1, 216.7; HRMS: m/z ([M+Na]⁺) calcd for C₁₅H₁₆O₃Na, 267.0992, found 267.0991. Minor isomer: brown solid; R_f = 0.33 (Hexane / AcOEt = 3 / 1); ¹H NMR (CDCl₃, 399.82 MHz) δ 1.47 (1H, dt, J = 14.4, 6.4 Hz), 1.62 (1H, td, J = 13.2, 6.4 Hz), 1.93 (1H, td, J = 14.0, 5.1 Hz), 2.03-2.14 (3H, m), 2.25 (1H, m), 2.62-2.69 (2H, m), 3.23 (1H, br s), 3.84 (1H, dd, J = 11.6, 7.2 Hz), 7.47 (2H, t, J = 7.6 Hz), 7.58 (1H, t, J = 7.4 Hz), 8.11 (2H, d, J = 8.4 Hz); ¹³C NMR (CDCl₃, 100.53 MHz) δ 16.9, 22.3, 35.7, 40.6, 41.8, 47.2, 79.6, 128.3, 129.3, 133.4, 137.3, 198.7, 218.1.

IV. Synthesis of (*E*)-1-(3-Mesityl-3,4,5,6,7,8-hexahydro-2*H*-cyclohepta [*d*]thiazol-2-ylidene)-2-oxo-2-phenylethyl benzoate (10)

Thiazolium salt **3** (744 mg, 2.0 mmol) and 1,3-diphenylpropane-1,2,3-trione (**9**) (476 mg, 2.0 mmol) were dissolved in DMF (4.0 mL) under argon. After addition of DIPEA (341 μ L, 2.0 mmol), the mixture was stirred at room temperature for 12 h. The reaction was quenched with water and then the organic layer was extracted with dichloromethane, washed with brine, dried over MgSO₄, and concentrated under vacuum. The crude product was purified by column chromatography on silica gel to give the bisacylated Breslow intermediates **10** (845 mg, 83% yield).

10: yellow solid; mp 196-197 °C (from EtOAc / hexane): $R_f = 0.20$ (EtOAc / hexane = 1 / 1); 1 H NMR (CDCl₃, 499.82 MHz) δ 1.48-1.52 (2H, m), 1.71 (3H, s, CH₃), 1.75-1.79 (4H, m), 1.86 (3H, s, CH₃), 2.01-2.04 (2H, m), 2.14 (3H, s, CH₃), 2.67-2.70 (2H, m), 6.36 (1H, s), 6.63 (1H, s), 7.12-7.14 (3H, m), 7.22 (2H, t, J= 7.5 Hz), 7.41 (1H, t, J= 7.5 Hz), 7.48 (2H, d, J= 7.5 Hz), 7.60-7.62 (2H, m); 13 C NMR (CDCl₃, 100.54 MHz) δ 17.3, 17.9, 20.5, 26.3, 26.4, 26.6, 27.4, 31.1, 118.0, 120.2, 127.4, 127.5, 127.6, 128.7, 128.8, 128.99, 129.02, 129.5, 132.5, 134.3, 135.5, 135.8, 137.6, 138.7, 139.2, 152.0, 164.9, 180.2; HRMS m/z ([M+Na] $^+$) calcd for $C_{32}H_{31}NO_3SNa$, 532.1922; found 532.1907.

V. Synthesis of 2-(((4-chlorobenzoyl)oxy)(4-chlorophenyl)methyl)-3-mesityl-5,6,7,8-tetrahydro-4*H*-cyclohepta[*d*]thiazol-3-ium perchlorate (12)

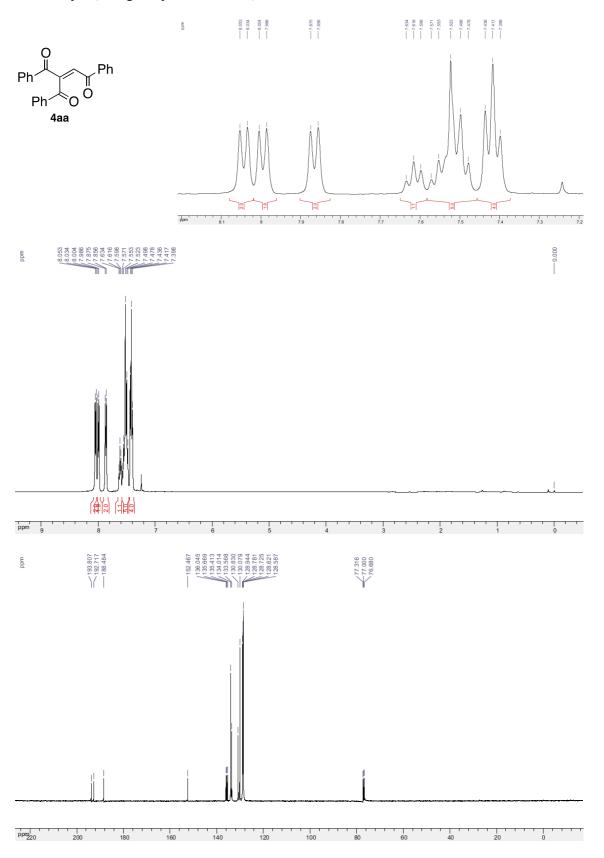
Thiazolium salt **3** (744 mg, 2.0 mmol) and 1,2-bis(4-chlorophenyl)ethane-1,2-dione (**1d**, 557 mg, 2.0 mmol) were dissolved in DCM (8.0 mL) under argon. After addition of DIPEA (341 μ L, 2.0 mmol), the mixture was stirred at room temperature for 12 h. Then, all volatile compounds were evaporated under vacuum without aqueous treatment. The residue was directly chromatographed on silica gel with EtOAc eluent to afford **12** (1.20 g, 92% yield).

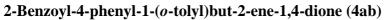
12: white solid; mp 115-120 °C: $R_f = 0.10$ (EtOAc); ¹H NMR (CDCl₃, 499.82 MHz) δ 1.30 (3H, s, CH₃), 1.54-1.70 (2H, m), 1.79-1.99 (4H, m), 2.10 (3H, s, CH₃), 2.40 (3H, s, CH₃), 2.42-2.54 (2H, m), 3.14-3.29 (2H, m), 6.68 (1H, s, OCH), 6.92 (1H, s), 7.11 (1H, s), 7.16-7.18 (2H, m), 7.33-7.36 (2H, m), 7.47-7.49 (2H, m), 8.00-8.03 (2H, m); ¹³C NMR (CDCl₃, 100.54 MHz) δ 16.5, 17.3, 21.1, 25.3, 26.2, 26.9, 28.0, 30.4, 71.5, 125.7, 129.1, 129.5, 130.0, 130.1, 130.28, 130.32, 130.7, 131.5, 133.5, 134.8, 136.8, 140.2, 140.9, 142.8, 149.3, 163.1, 167.0; MS m/z 239 (100), 140 (32), 113 (9), 110 (28); Elemental Analysis calcd for $C_{31}H_{30}Cl_3NO_6S$: C, 57.20; H, 4.65; N, 2.15; found C, 56.85; H, 4.59; N, 2.10.

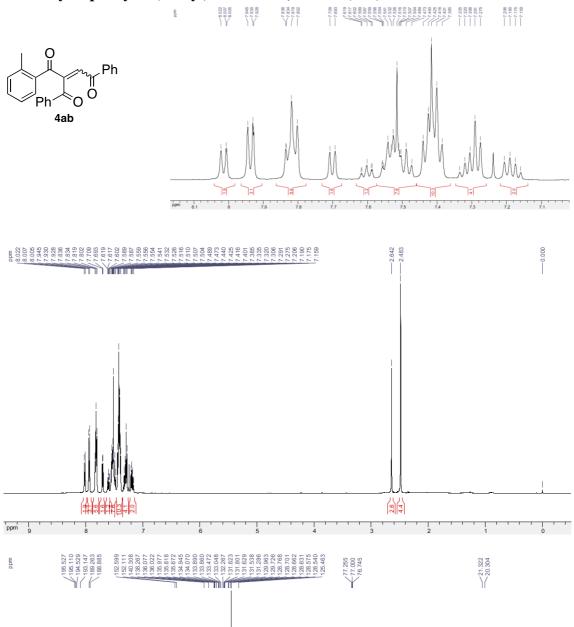
VI. Reaction of 1,2-bis(4-chlorophenyl)ethane-1,2-dione (1d) with phenyl vinyl ketone (6a) catalyzed by 12 and DIPEA

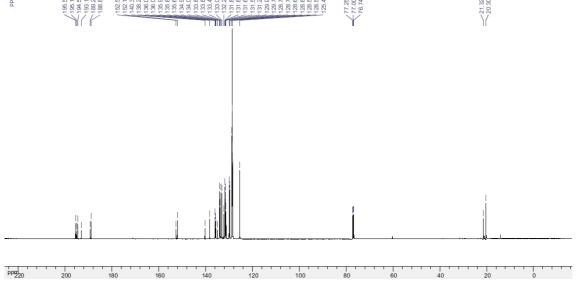
Benzil **1d** (140 mg, 0.50 mmol), enone **6a** (66 mg, 0.50 mmol), and the salt **12** (65 mg, 0.10 mmol) were dissolved in DMF (4.0 mL) under argon. The reaction

was started by addition of DIPEA (17 μ L, 0.1 mmol) and the stirring was continued for 16 h at 50 °C. After quenching with water, accurately weighted diphenylmethane (35.0 mg, 208 mmol) was added to the mixture as an internal standard. The organic layer was extracted with ether, washed with brine, dried over MgSO₄, and concentrated under vacuum. The residue was measured by ¹H NMR to determine the yield of **13** (85% yield). The crude product **13** was purified by column chromatography on silica gel.

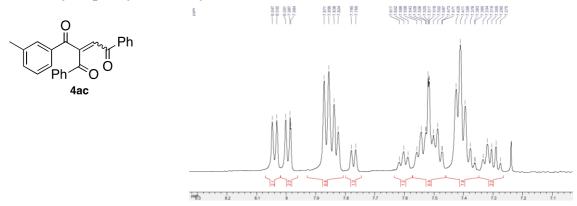

2-Benzoyl-1,4-bis(4-chlorophenyl)butane-1,4-dione (**13**) [3]:Isolated as a yellow solid (169 mg, 82%): mp 151-153°C; R_f = 0.25 (hexane / AcOEt = 10 / 1); 1 H NMR (CDCl₃, 399.82 MHz) δ 3.66 (1H, dd, J = 18.0, 5.6 Hz, C*H*H), 3.80 (1H, dd, J = 18.0, 6.8 Hz, CH*H*), 6.04 (1H, br t, J = 6.4 Hz, CH), 7.42 (2H, d, J = 8.4 Hz), 7.44, (2H, d, J = 8.4 Hz), 7.45 (2H, t, J = 7.2 Hz), 7.60 (1H, t, J = 7.2 Hz), 7.93-7.95 (4H, m), 8.00 (2H, d, J = 7.2 Hz); 13 C NMR (CDCl₃, 100.53 MHz) δ 37.9, 51.4, 128.6, 129.01,129.04, 129.2, 129.7, 130.0, 133.9, 134.0, 134.3, 135.2, 140.1, 140.2, 194.3, 195.4, 195.5; MS m/z 392 (100), 207 (43), 179 (25), 139 (38), 105 (93); HRMS m/z ([M + Na]⁺) calcd for C₂₃H₁₆Cl₂O₃Na 433.0369, found 433.0370.

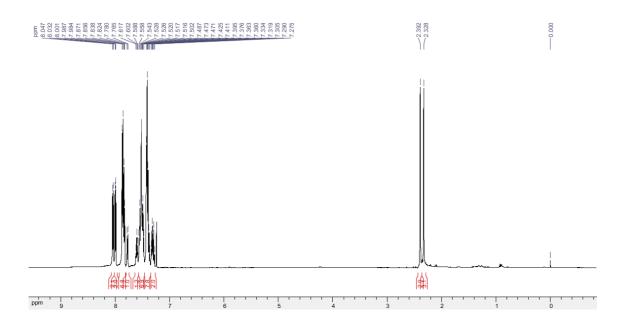

VII. References

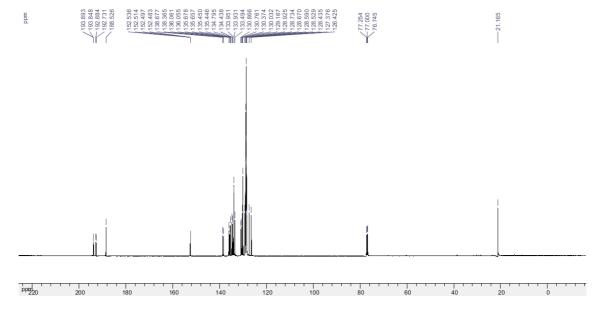

- 1. The E/Z ratio of 4 could be estimated by the signal intensity (height) of well recognizable three carbonyl carbons in ¹³C NMR spectra. For example, the mixture of 4ai showed three pairs of signals [188.28 (lower) and 188.30 (higher), 191.6 (lower) and 192.6 (higher), 192.8 (higher) and 193.6 (lower)]. Average of the three ratios was 40/60. The ratio was also determinable by ¹H NMR integration of methyl signals in 4ab-4ad, 4af, and 4ak.
- 2. Gao, M.; Yang, Y.; Wu, Y.-D.; Deng, C.; Cao, L.-P.; Meng, X.-G.; Wu, A.-X. *Org. Lett.*, **2010**, *12*, 1856-1859. doi:10.1021/ol100473f
- 3. Takaki, K.; Ohno, A.; Hino, M.; Shitaoka, T.; Komeyama, K.; Yoshida, H. *Chem. Commun.* **2014**, *50*, 12285-12288. doi:10.1039/c4cc05436a

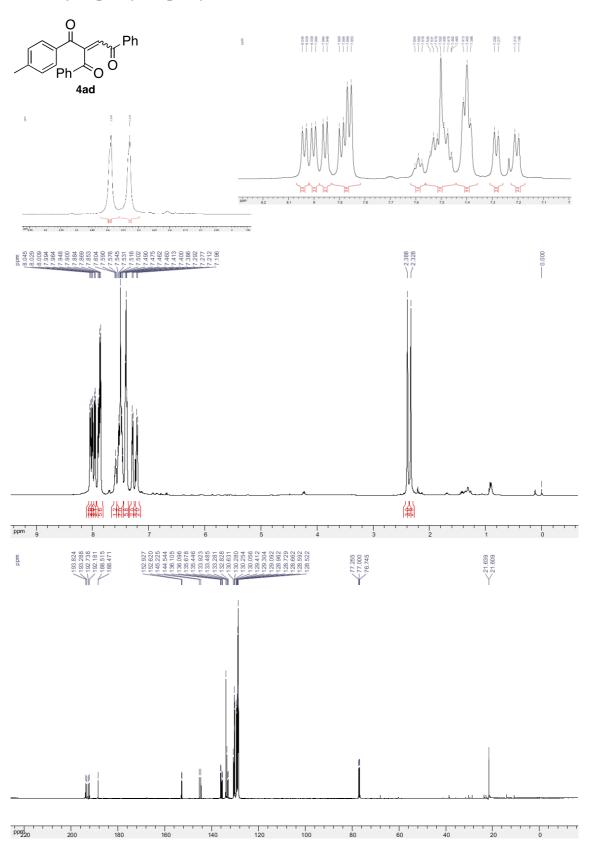

VIII. Copies of ¹H and ¹³C NMR spectra of the products

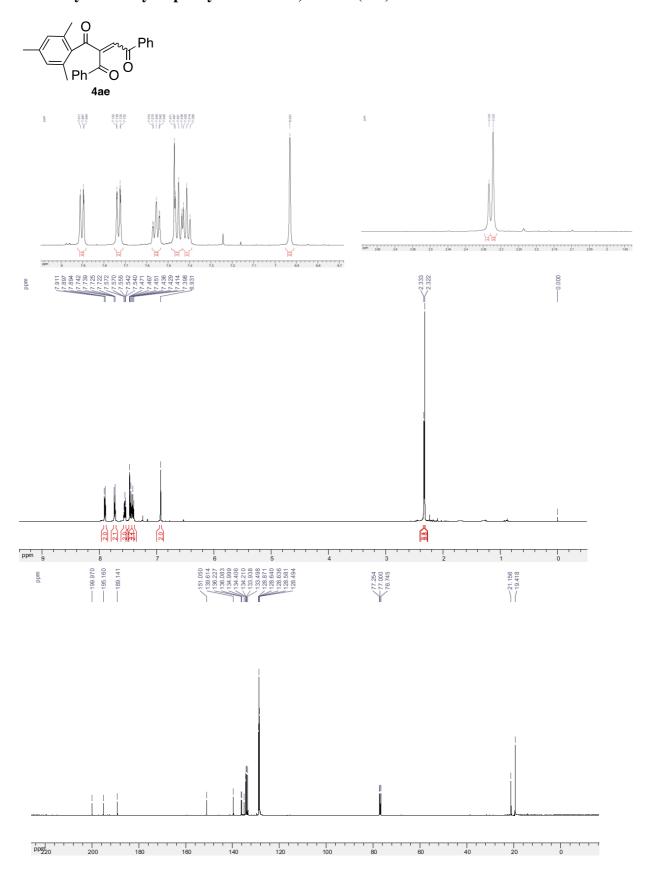
2-Benzoyl-1,4-diphenylbut-2-ene-1,4-dione (4aa)

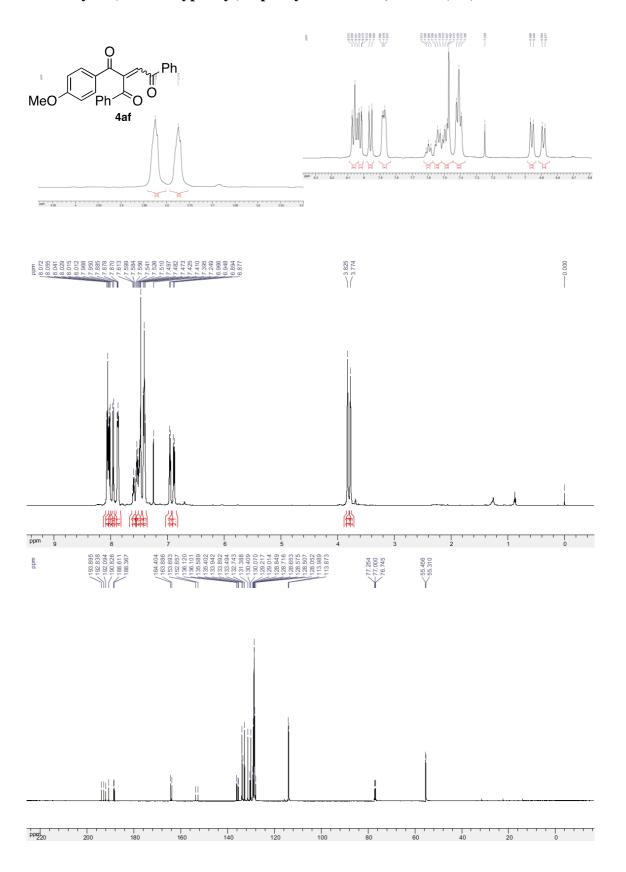


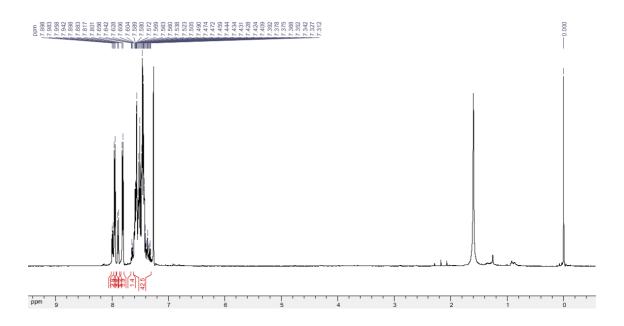


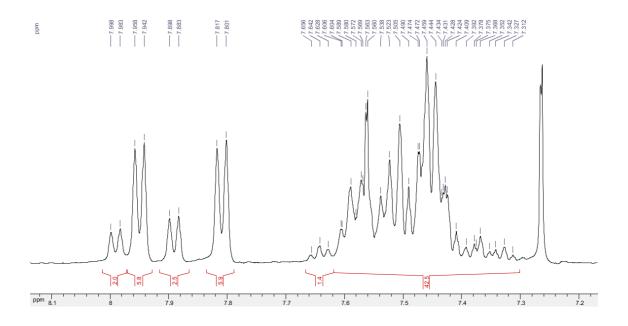



${\bf 2\text{-}Benzoyl\text{-}4\text{-}phenyl\text{-}1\text{-}} (\textit{m}\text{-}tolyl) \\ \text{but-}2\text{-}ene\text{-}1\text{,}4\text{-}dione~(4ac)$

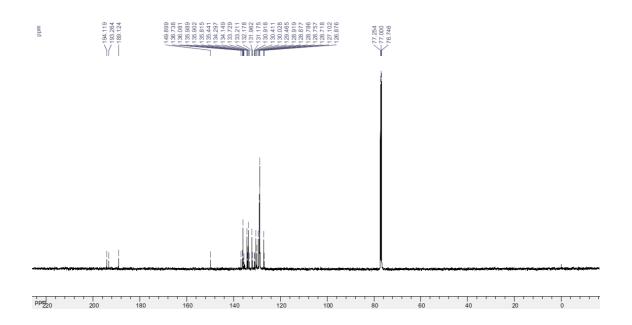


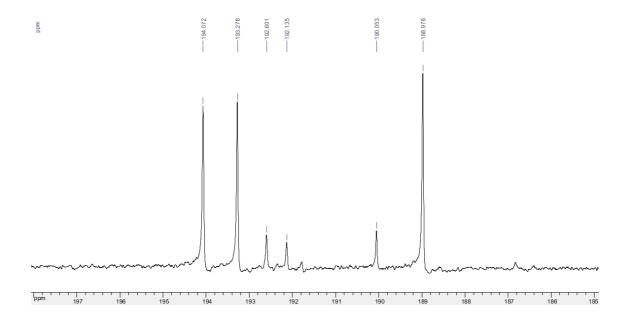

2-Benzoyl-4-phenyl-1-(p-tolyl)but-2-ene-1,4-dione (4ad)

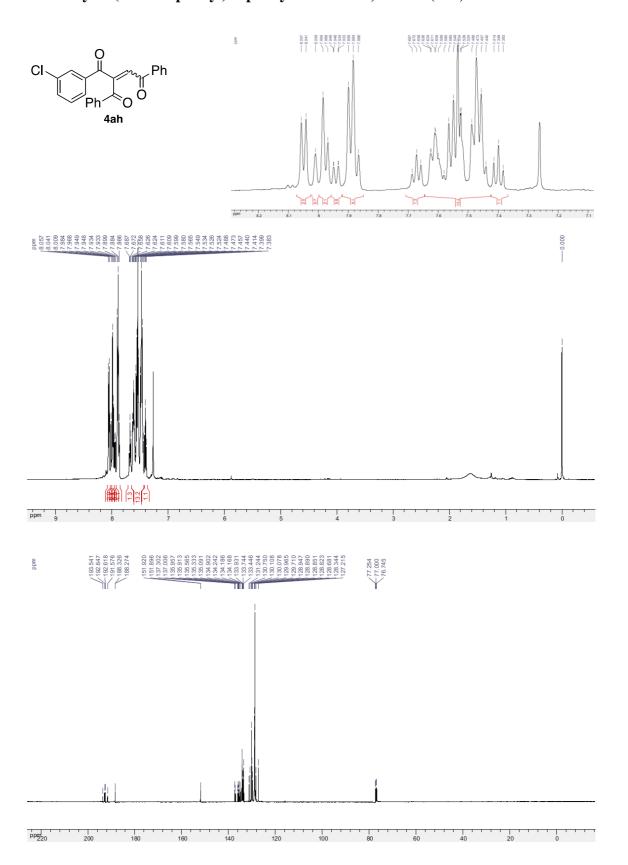

$\hbox{\bf 2-Benzoyl-1-mesityl-4-phenylbut-2-ene-1,4-dione} \ (4ae)$



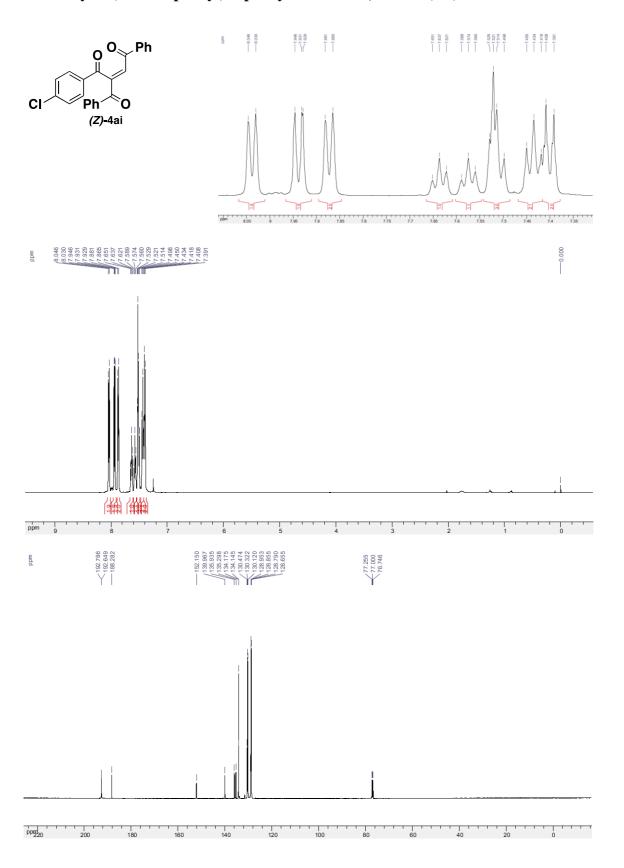
2-Benzoyl-1-(4-methoxyphenyl)-4-phenylbut-2-ene-1,4-dione (4af)

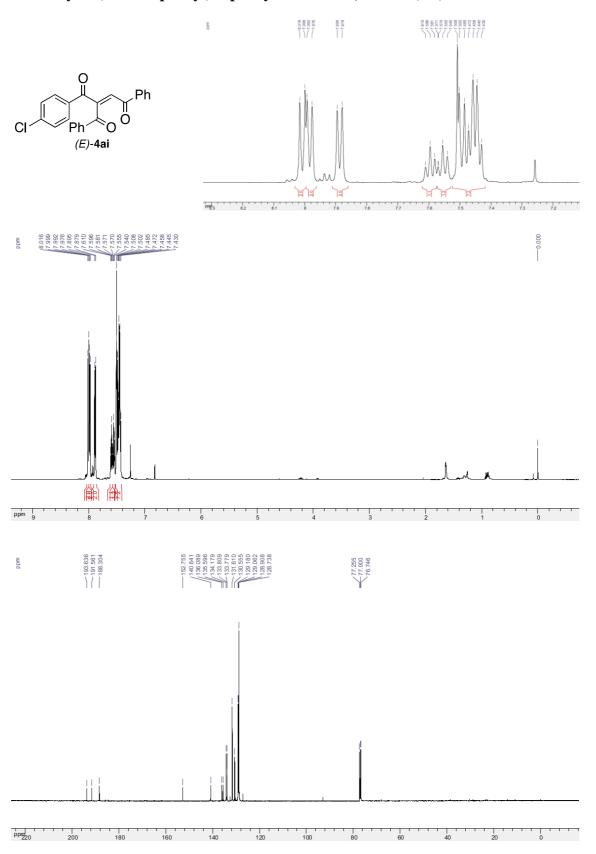


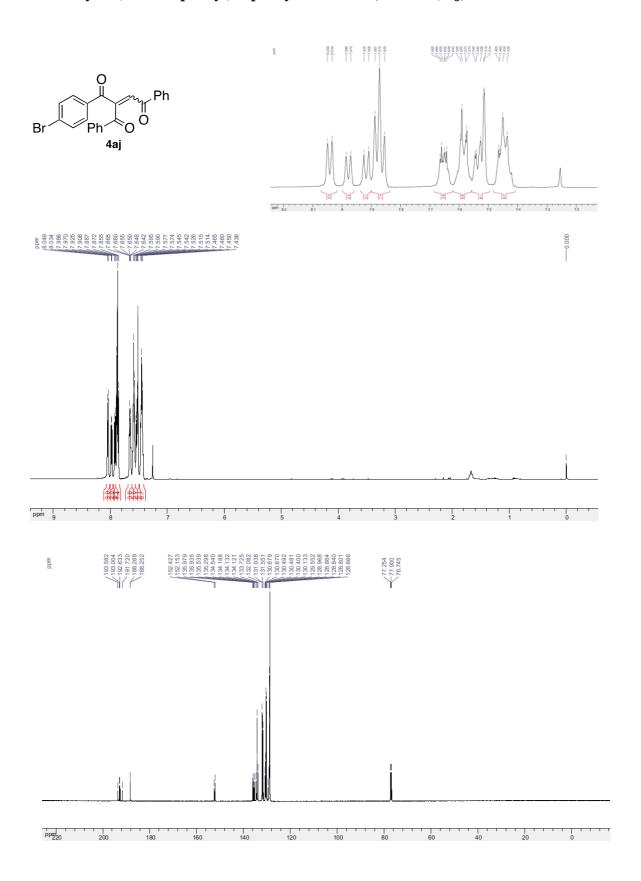

$\hbox{$2$-Benzoyl-1-(2-chlorophenyl)-4-phenylbut-2-ene-1,4-dione (4ag)}$

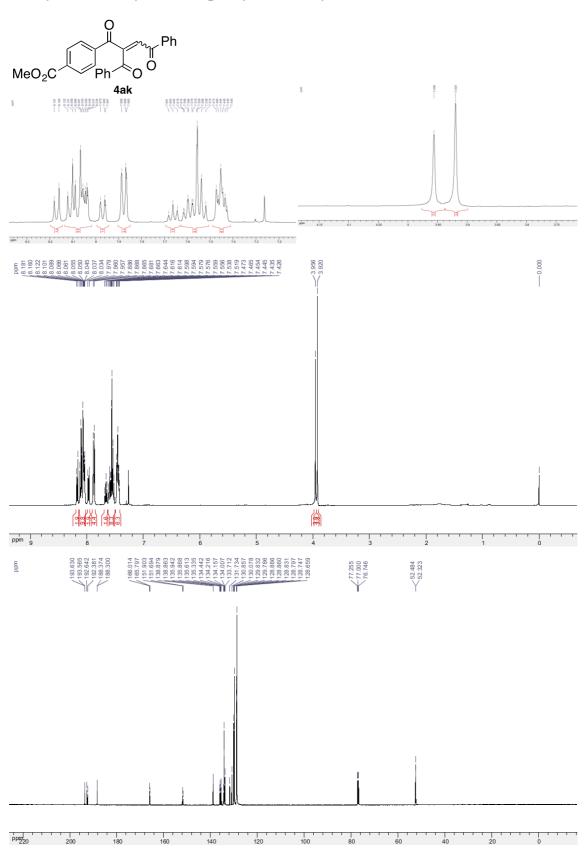


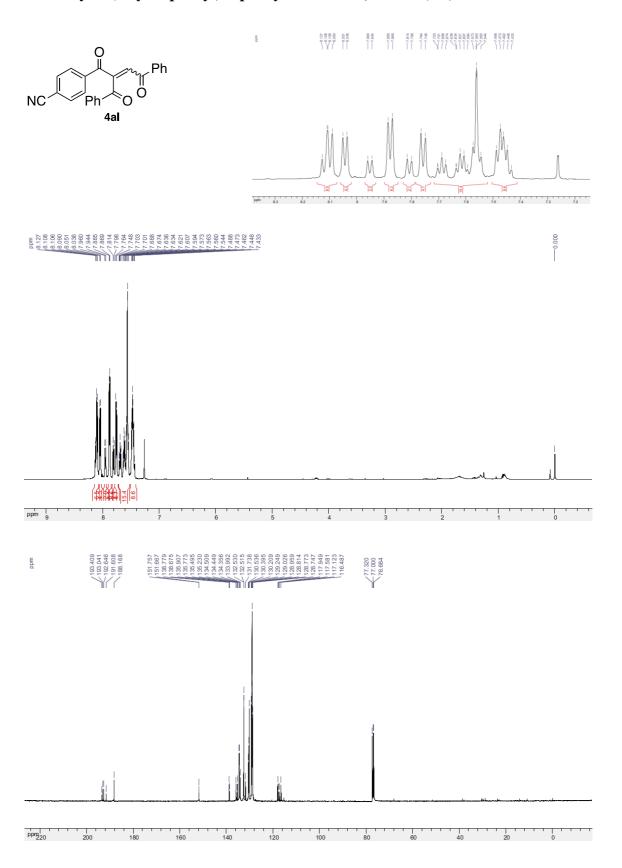
2-Benzoyl-1-(2-chlorophenyl)-4-phenylbut-2-ene-1,4-dione (4ag)

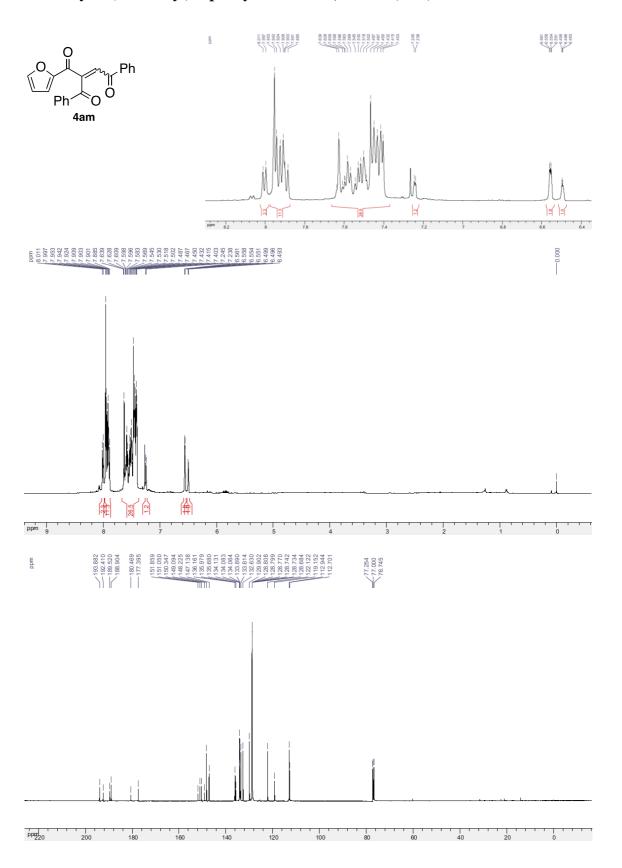


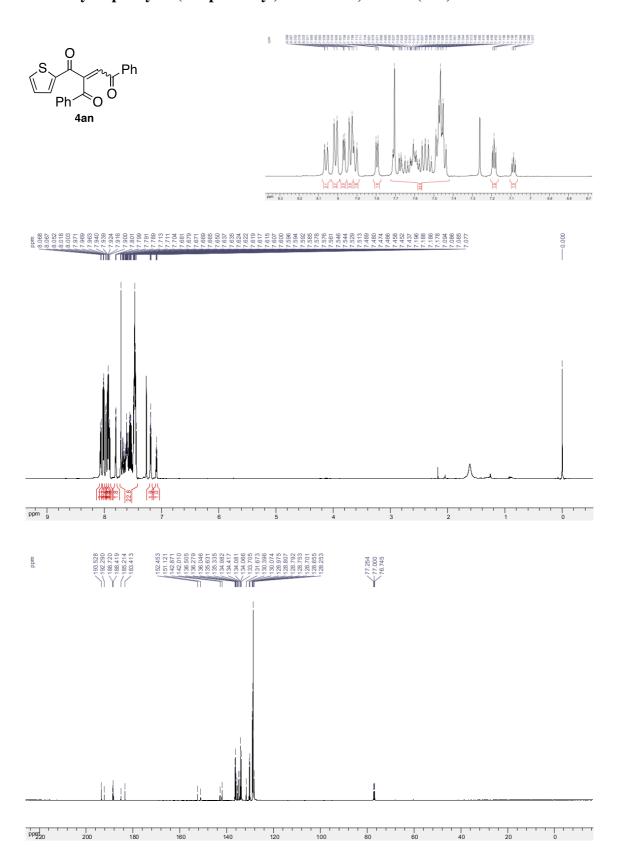

$\hbox{$2$-Benzoyl-1-(3-chlorophenyl)-4-phenylbut-2-ene-1,4-dione (4ah)}$

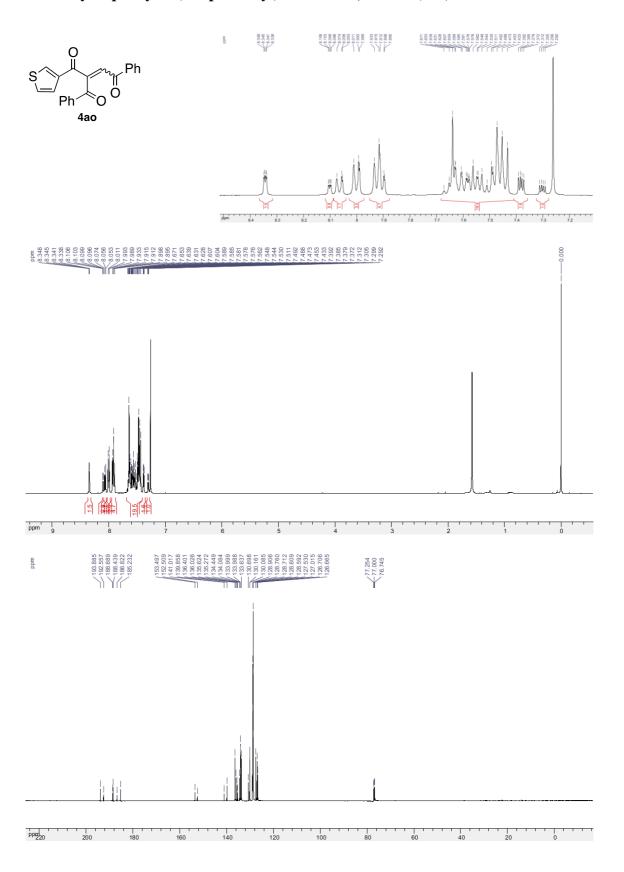

2-Benzoyl-1-(4-chlorophenyl)-4-phenylbut-2-ene-1,4-dione (4ai)

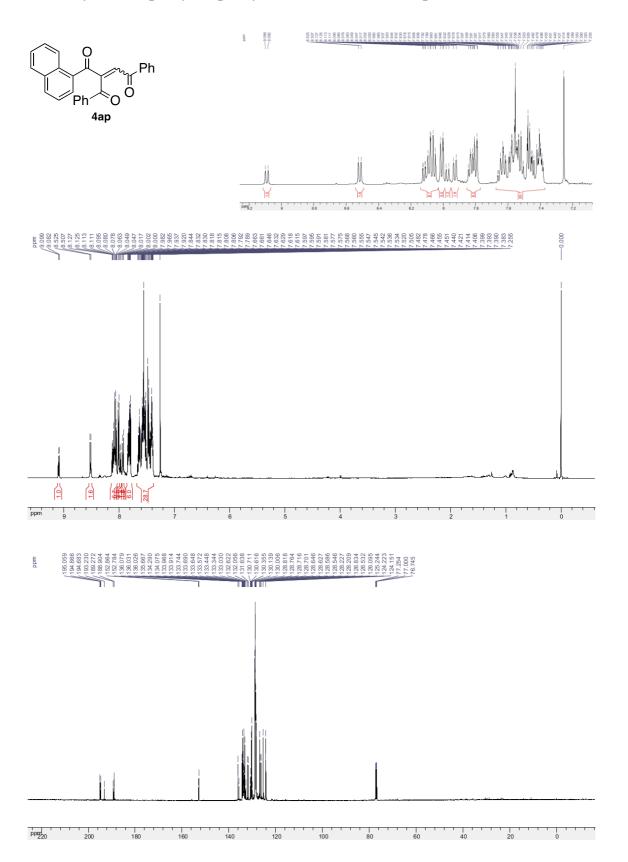

$\hbox{\bf 2-Benzoyl-1-(4-chlorophenyl)-4-phenylbut-2-ene-1,4-dione (4ai)}$

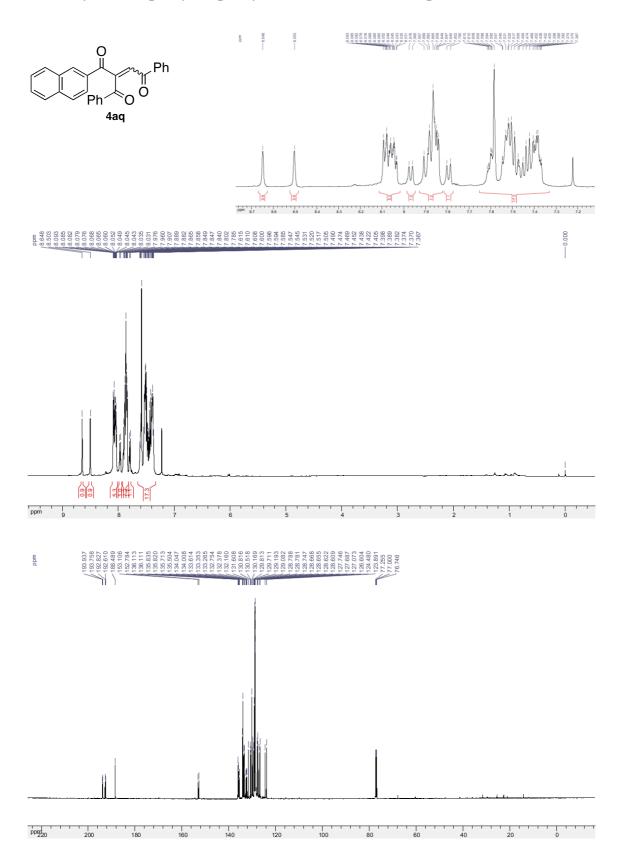

2-Benzoyl-1-(4-bromophenyl)-4-phenylbut-2-ene-1,4-dione (4aj)

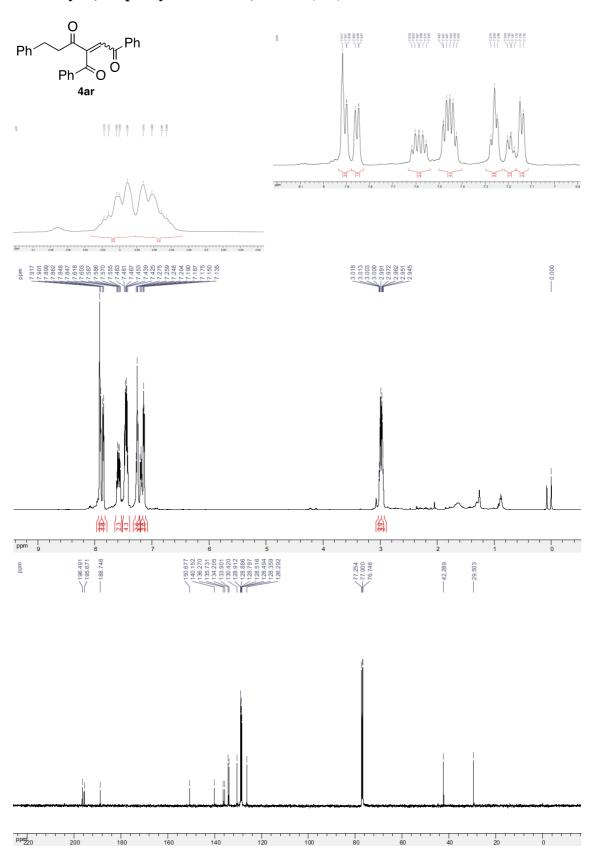

Methyl 4-(2-benzoyl-4-oxo-4-phenylbut-2-enoyl)benzoate (4ak)

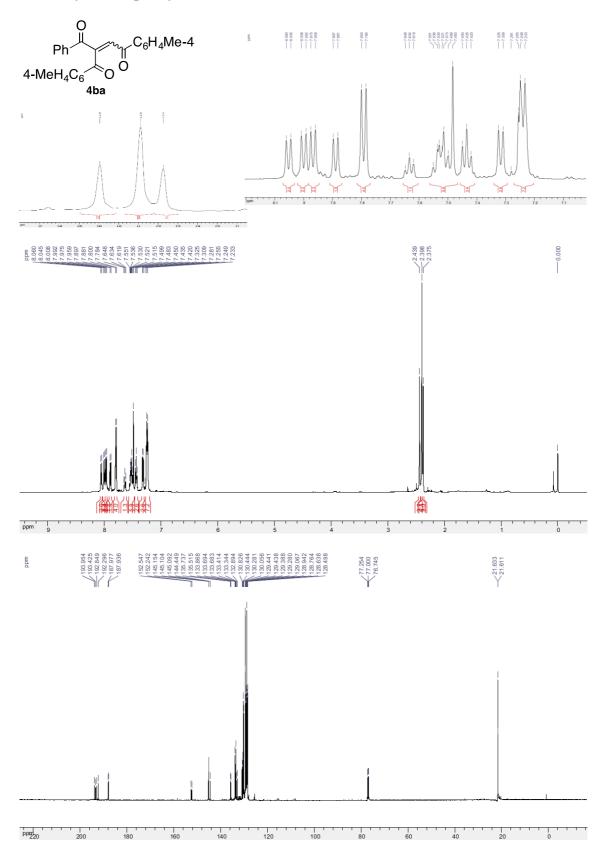

2-Benzoyl-1-(4-cyanophenyl)-4-phenylbut-2-ene-1,4-dione (4al)

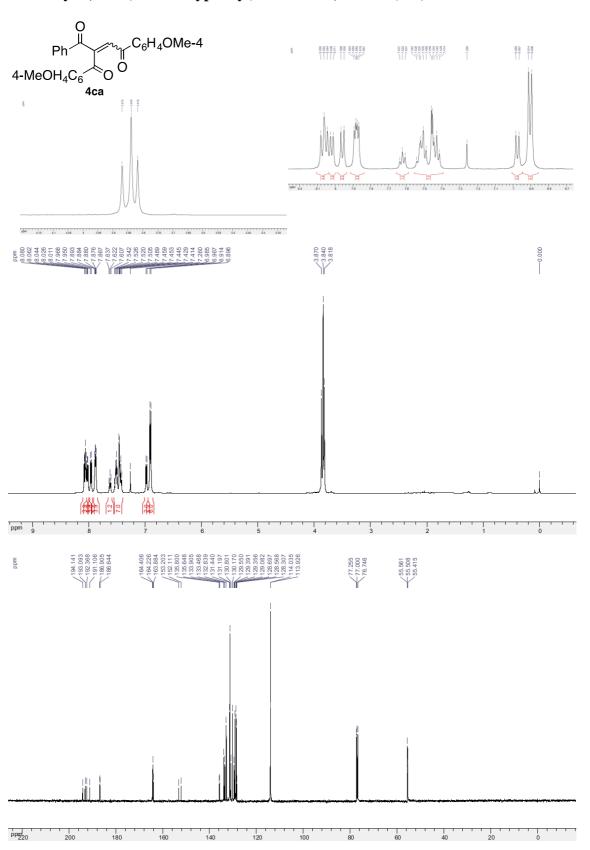

2-Benzoyl-1-(furan-2-yl)-4-phenylbut-2-ene-1,4-dione (4am)

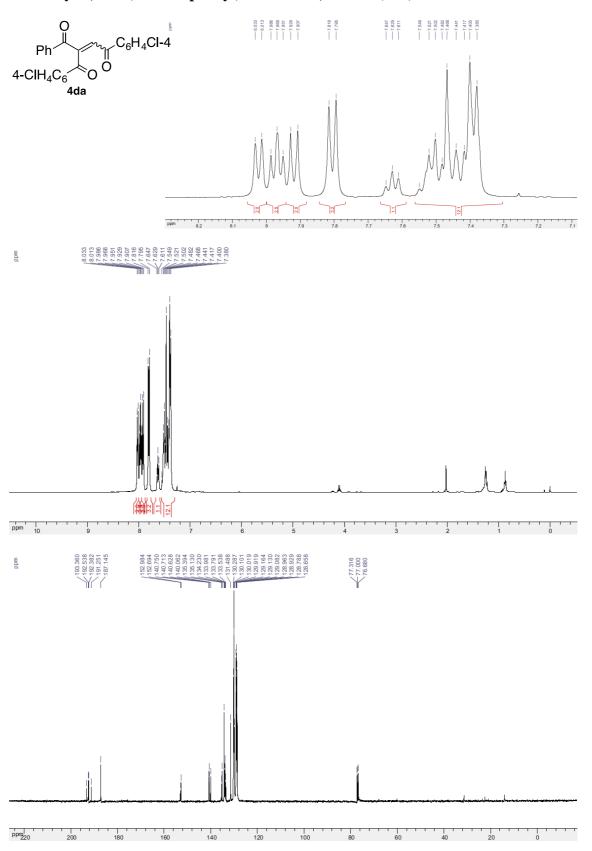

2-Benzoyl-4-phenyl-1-(thiophen-2-yl)but-2-ene-1,4-dione (4an)

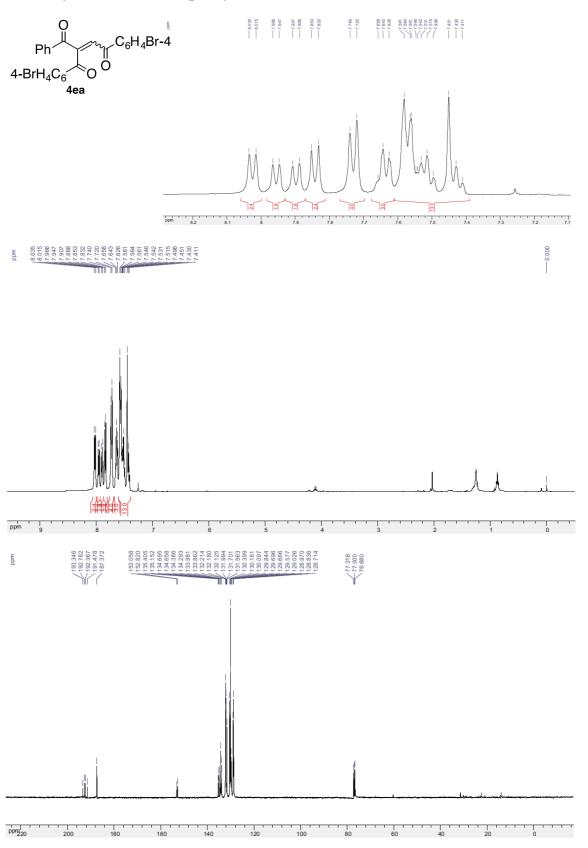

2-Benzoyl-4-phenyl-1-(thiophen-3-yl)but-2-ene-1,4-dione (4ao)


2-Benzoyl-1-(1-naphthyl)-4-phenylbut-2-ene-1,4-dione (4ap)

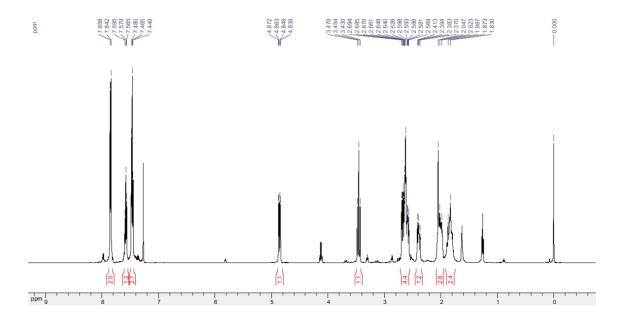

2-Benzoyl-1-(2-naphthyl)-4-phenylbut-2-ene-1,4-dione (4aq)

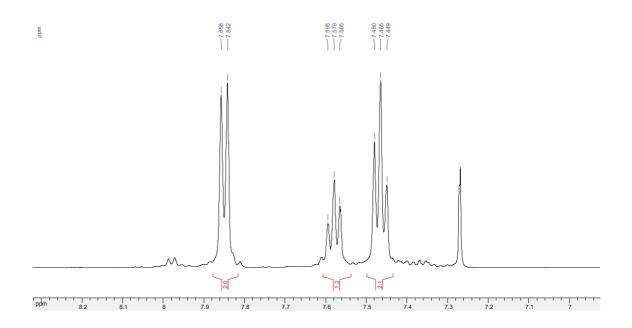

3-Benzoyl-1,6-diphenylhex-2-ene-1,4-dione (4ar)

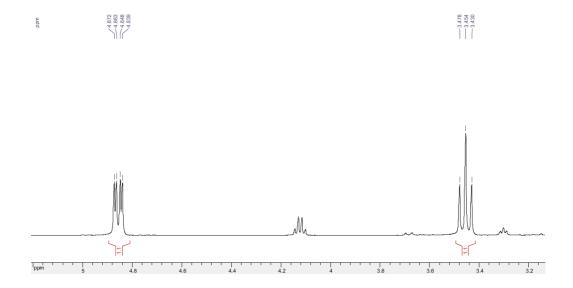

2-Benzoyl-1,4-di-*p*-tolylbut-2-ene-1,4-dione (4ba)

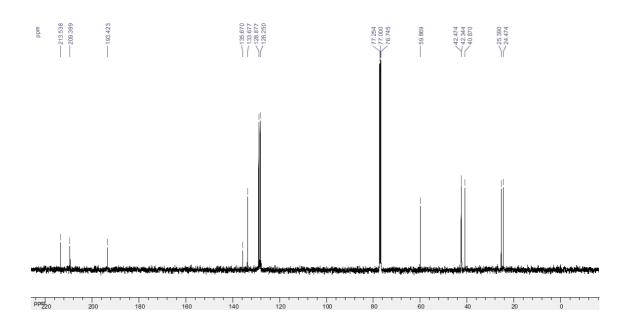

2-Benzoyl-1,4-bis(4-methoxyphenyl)but-2-ene-1,4-dione (4ca)

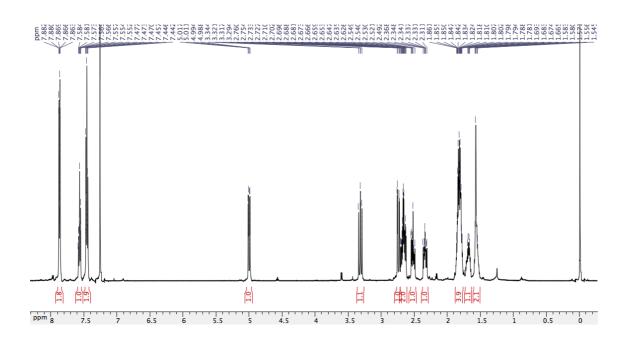
2-Benzoyl-1,4-bis(4-chlorophenyl)but-2-ene-1,4-dione (4da)

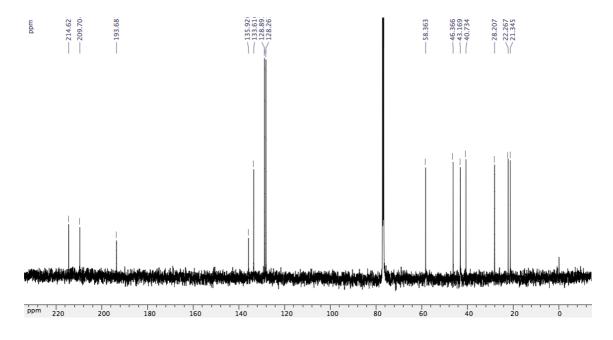


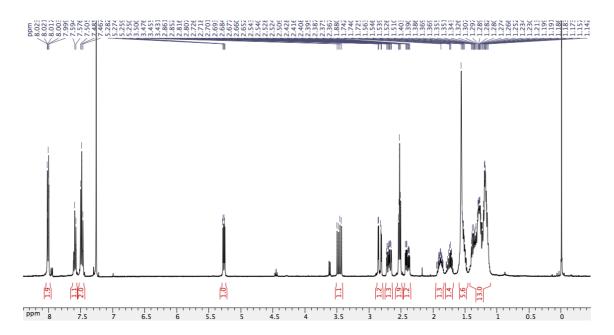

2-Benzoyl-1,4-bis(4-bromophenyl)but-2-ene-1,4-dione (4ea)

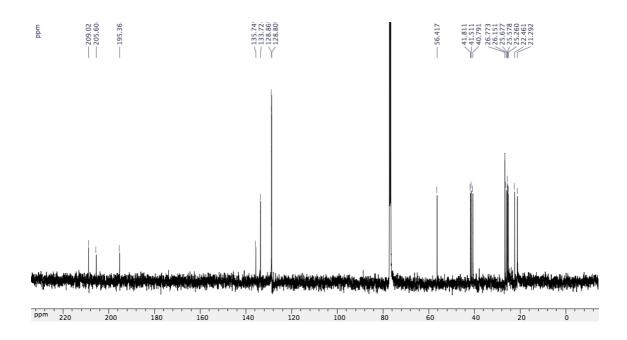

2-Benzoylcyclooctane-1,4-dione (7a)

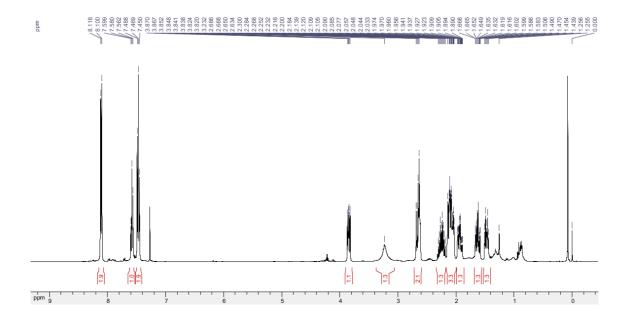


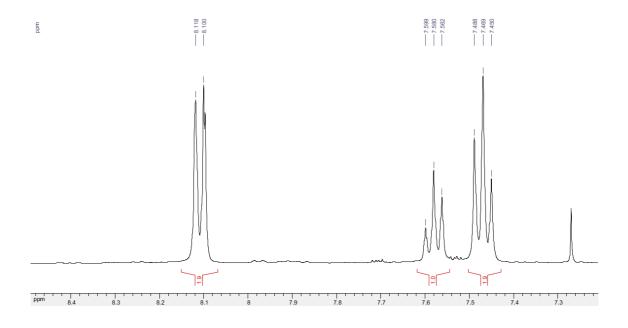


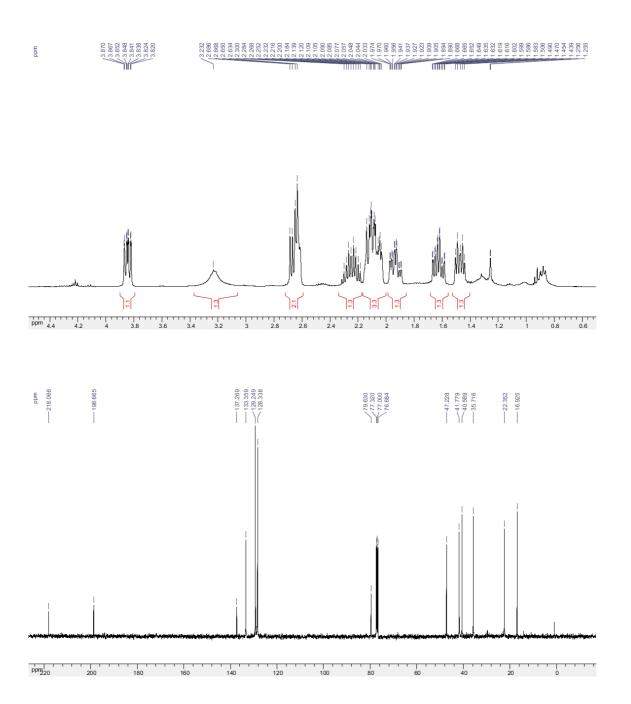

2-Benzoylcyclooctane-1,4-dione (7a)

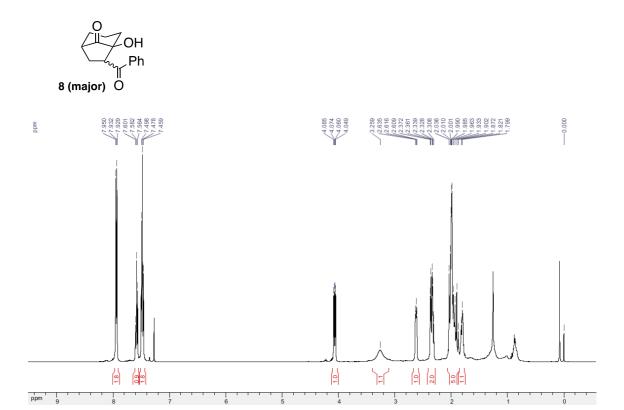


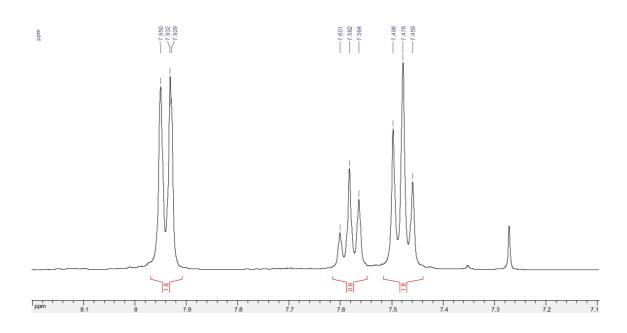

2-Benzoylcyclononane-1,4-dione (7b)


2-Benzoylcyclotetradecane-1,4-dione (7c)

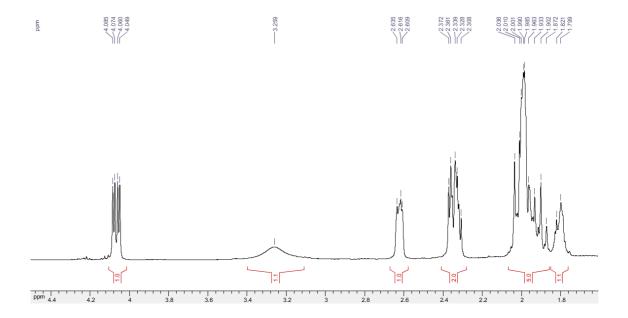


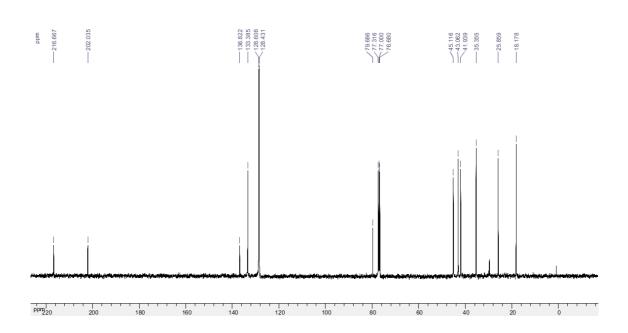

7-Benzoyl-1-hydroxybicyclo[3.2.1]octan-8-one (8)

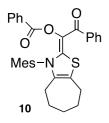


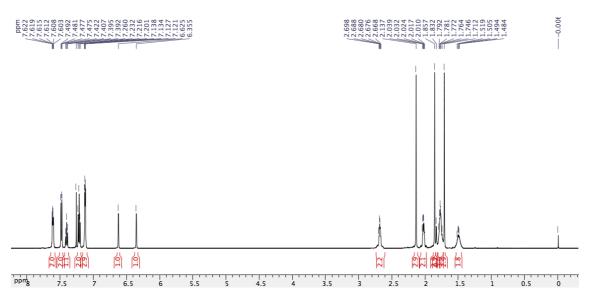


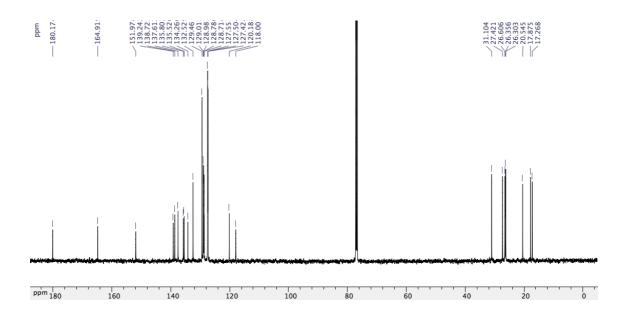
7-Benzoyl-1-hydroxybicyclo[3.2.1]octan-8-one (8) (minor)



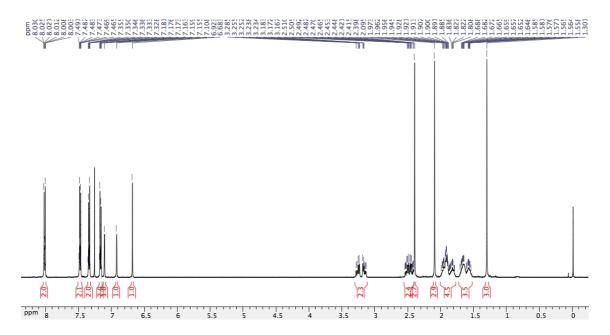

7-Benzoyl-1-hydroxybicyclo[3.2.1]octan-8-one (8)

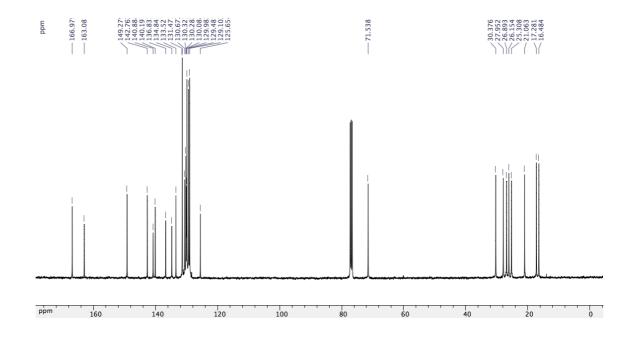


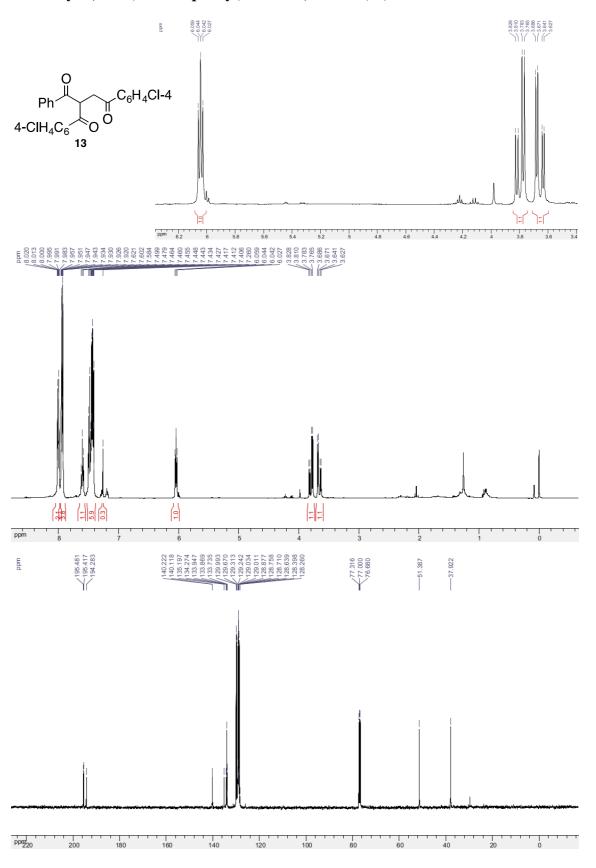

7-Benzoyl-1-hydroxybicyclo[3.2.1]octan-8-one (8) (major)



(E)-1-(3-Mesityl-3,4,5,6,7,8-hexahydro-2H-cyclohepta[d]thiazol-2-ylidene)-2-oxo-2-phenylethyl benzoate (10)






$2-(((4-chlorobenzoyl)oxy)(4-chlorophenyl)methyl)-3-mesityl-5,6,7,8-tetrahydro-4H\\-cyclohepta[d]thiazol-3-ium perchlorate (12)$

$$\begin{array}{c} \text{4-CIH}_4\text{C}_6 \\ \text{O} \\ \text{O} \\ \text{Mes-N} \\ \text{S} \\ \text{CIO}_4 \\ \\ \text{12} \\ \end{array}$$

2-Benzoyl-1,4-bis(4-chlorophenyl)butane-1,4-dione (13)

