Supporting Information

for

Accessing simply-substituted 4-hydroxytetrahydroisoquinolines via Pomeranz-Fritsch-Bobbitt reaction with non-activated and moderatelyactivated systems

Marco Mottinelli ${ }^{1, \pi}$, Mathew P. Leese ${ }^{1}$ and Barry V. L. Potter ${ }^{* 1,2}$

Address: ${ }^{1}$ Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, BA2 7AY Bath, UK and ${ }^{2}$ Drug Discovery \& Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
"Present affiliation: Department of Medicinal Chemistry, School of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, Florida, 32611, USA

Email: Barry V. L. Potter* - barry.potter@pharm.ox.ac.uk
*Corresponding author

Synthetic and purification methodologies and spectroscopic data

General method for the double reductive amination reaction: $\mathrm{NaBH}(\mathrm{OAc})_{3}(3.3 \mathrm{~g}, 15$ mmol) was added to a stirring solution of benzaldehyde ($1.0 \mathrm{~mL}, 10 \mathrm{mmol}$) and aniline (1.1 $\mathrm{mL}, 12 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(60 \mathrm{~mL})$ and the mixture was stirred at rt for one hour. 2,2Dimethoxyacetaldehyde (30 mmol) was then introduced into the reaction mixture followed by $\mathrm{NaBH}(\mathrm{OAc})_{3}(3.3 \mathrm{~g}, 15.0 \mathrm{mmol})$ and the resultant mixture was stirred at rt for further 8 h . The mixture was then quenched with saturated aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(60 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CHCl}_{3}(2 \times 30 \mathrm{~mL})$. The combined organics were dried with MgSO_{4}, filtered and evaporated to give the crude compound 9a as a pale yellow oil (3.87 g).

N -(2,2-Dimethoxyethyl)-N-(4-methoxybenzyl)aniline (9b)

The crude compound was purified by column chromatography (from 0\% to 10\% EtOAc in pet. ether) to give the product as a yellowish oil ($2.09 \mathrm{~g}, 69 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 3.41\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CHOCH}_{3}\right), 3.56\left(2 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 4.60-$ $4.65\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}, \operatorname{ArCH}_{2}\right), 6.61-6.73(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.76(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \operatorname{ArH})$, $6.85(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \operatorname{ArH}), 7.14(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \operatorname{ArH})$ and $7.20(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}$, ArH) ppm. ${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 53.7\left(\mathrm{NCH}_{2} \mathrm{CH}\right)$, $54.3\left(\mathrm{ArOCH}_{3}\right), 54.6$ $\left(\mathrm{CH}\left(\mathrm{O}_{\mathrm{CH}}^{3}\right)_{2}\right), 55.4(\mathrm{ArCH} 2), 103.4\left(\mathrm{CH}(\mathrm{OR})_{2}\right), 112.4(\mathrm{ArCH}), 114.1(\mathrm{ArCH}), 116.6(\mathrm{ArCH})$, $127.8(\mathrm{ArCH}), 129.3(\mathrm{ArCH}), 130.7\left(\mathrm{ArCCH}_{2}\right), 148.7(\mathrm{ArCN})$ and $158.6\left(\mathrm{ArCOCH}_{3}\right) \mathrm{ppm}$. LC/MS (ES+) $\mathrm{t}_{\mathrm{r}}=2.46 \mathrm{~min}(70 \%), \mathrm{m} / \mathrm{z} 302.2\left(\mathrm{M}^{+}+\mathrm{H}\right) ; \mathrm{HRMS}(\mathrm{ES}+)$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{3}$ $\left(\mathrm{M}^{+}+\mathrm{H}\right) 302.1751$, found 302.1761 .

N -(4-Chlorobenzyl)- N -(2,2-dimethoxyethyl)aniline (9c)

The crude compound was purified by column chromatography (eluent: pet. ether) to give a colorless oil ($2.73 \mathrm{~g}, 88 \%$) which showed: ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 3.40(6 \mathrm{H}, \mathrm{s})(2 \mathrm{x}$ $\left.\mathrm{OCH}_{3}\right), 3.55(2 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz})\left(\mathrm{CHCH}_{2}\right), 4.61(1 \mathrm{H}, \mathrm{t}, J=5.0 \mathrm{~Hz})(\mathrm{OCH}), 4.62(2 \mathrm{H}, \mathrm{s})$
$\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 6.70(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz})(2 \times \mathrm{ArCH}$, aniline), $6.71(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz})(\mathrm{ArCH}$, aniline), $7.14(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz})(2 \times \mathrm{ArCH}$, benzyl), $7.19(2 \mathrm{H}, \mathrm{dd}, J=7.3,8.9 \mathrm{~Hz})(2 \mathrm{x}$ ArCH, aniline) and $7.26(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz})\left(2 \times \mathrm{ArCH}\right.$, benzyl) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 53.9\left(\mathrm{CHCH}_{2}\right), 54.5\left(\mathrm{ArCH}_{2}\right), 54.7\left(2 \times \mathrm{OCH}_{3}\right), 103.4(\mathrm{OCH}), 112.4(2 \times \mathrm{ArCH}$, aniline), 117.0 (ArCH , aniline), 128.0 (ArCH , benzyl), 128.8 (ArCH , benzyl), 129.5 (ArCH , aniline), $132.5(\mathrm{ArCCl})$, $137.5\left(\mathrm{ArCCH}_{2}\right)$ and $148.4(\mathrm{ArCN}) \mathrm{ppm} . \mathrm{LC} / \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{t}_{\mathrm{r}}=3.18 \mathrm{~min}$ (97 \%), m/z $306.2\left(\mathrm{M}^{+}\right)$; (RP, Isocratic, $90 \% \mathrm{MeOH}$). HRMS (ES+) calcd. for $\mathrm{C}_{17} \mathrm{H}_{20}{ }^{35} \mathrm{CINO}_{2}$ $\left(\mathrm{M}^{+}+\mathrm{H}\right) 306.1255$, found 306.1245 ; calcd. for $\mathrm{C}_{17} \mathrm{H}_{20}{ }^{37} \mathrm{CINO}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right) 308.1226$, found 308.1245.

4-(((2,2-Dimethoxyethyl)(phenyl)amino)methyl)phenol (9d)

The crude compound was purified by column chromatography (eluent: from 0% to 30% of EtOAc in pet. ether) to give the product as a colorless oil ($2.5 \mathrm{~g}, 90 \%$) which showed: ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl $)_{3}$) $3.40\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.54\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 4.58(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArCH}_{2}\right), 4.61\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{CH}(\mathrm{OR})_{2}\right), 5.01(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 6.70(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{ArH})$, $6.74(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \operatorname{ArH}) 6.74(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \operatorname{ArH}), 7.06(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \operatorname{ArH})$ and $7.19(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.2,8.7 \mathrm{~Hz}, \mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 53.6\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}\right)$, $54.3\left(\mathrm{ArCH}_{2}\right), 54.7\left(\mathrm{CH}_{3}\right), 103.5\left(\mathrm{CH}(\mathrm{OR})_{2}\right), 112.4(\mathrm{ArCH}), 115.5(\mathrm{ArCH}), 116.7(\mathrm{ArCH})$, $128.0(\mathrm{ArCH}), 129.4\left(\mathrm{ArCCH}_{2}\right), 148.7(\mathrm{ArCN})$ and $154.5(\mathrm{ArCOH}) \mathrm{ppm} . \mathrm{LC} / \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{t}_{\mathrm{r}}=$ $2.91 \mathrm{~min}(65 \%), \mathrm{m} / \mathrm{z} 287.5\left(\mathrm{M}^{+}\right)$; (RP, Isocratic, $80 \% \mathrm{MeOH}$). HRMS (ES+) calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{3}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 288.1600, found 288.1595; calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NNaO}_{3}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ 310.1419, found 310.1421.

N -(3-Bromobenzyl)-N-(2,2-dimethoxyethyl)aniline (9e)

The crude compound was purified by column chromatography (eluent: 0\% to 10% EtOAc in pet. ether) to give the product as a colorless oil ($1.9 \mathrm{~g}, 54 \%$) which showed: ${ }^{1} \mathrm{H}$ NMR
(400 MHz, CDCl ${ }_{3}$) $\delta 3.48\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CHOCH}_{3}\right), 3.65\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{NC} \underline{H}_{2} \mathrm{CH}\right), 3.84(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArOCH}_{3}\right), 4.66-4.75\left(3 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}, \mathrm{CH}(\mathrm{OR})_{2}\right), 6.67-6.92(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.21-7.35$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 53.9\left(\mathrm{NCH}_{2} \mathrm{CH}\right), 54.6\left(\mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}\right), 54.9$ $\left(\mathrm{ArOCH}_{3}\right), 55.3\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 103.4\left(\mathrm{CH}(\mathrm{OR})_{2}\right), 112.0(\mathrm{ArCH}), 112.3(\mathrm{ArCH}), 112.4(\mathrm{ArCH})$, $116.7(\mathrm{ArCH}), 118.9(\mathrm{ArCH}), 129.3(\mathrm{ArCH}), 129.7(\mathrm{ArCH}), 140.8\left(\mathrm{ArCCH}_{2}\right), 148.6(\mathrm{ArCN})$ and $160.0\left(\mathrm{ArCOCH}_{3}\right) \mathrm{ppm} . \mathrm{LC} / \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{t}_{\mathrm{r}}=2.51 \mathrm{~min}(98 \%), \mathrm{m} / \mathrm{z} 302.2\left(\mathrm{M}^{+}+\mathrm{H}\right) ;(\mathrm{RP}$, Isocratic, $90 \% \mathrm{MeOH}$). HRMS (ES +) calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{3}\left(\mathrm{M}^{+}+\mathrm{H}\right) 302.1751$, found 302.1739 .

N -(2,2-Dimethoxyethyl)-N-(3-methoxybenzyl)aniline (9f)

The crude product was purified by column chromatography (from 0% to 10% EtOAc in pet. ether $40-60{ }^{\circ} \mathrm{C}$) to give the product as a pale yellow oil ($3.56 \mathrm{~g}, 79 \%$) which showed: ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 3.48\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CHOCH}_{3}\right), 3.65\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}\right), 3.84$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 4.66-4.75\left(3 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}, \mathrm{CH}(\mathrm{OR})_{2}\right), 6.67-6.92(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.21-$ $7.35(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 53.86\left(\mathrm{NCH}_{2} \mathrm{CH}\right), 54.60$ $\left(\mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}\right), 54.93\left(\mathrm{ArOCH}_{3}\right), 55.27\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 103.38\left(\mathrm{CH}(\mathrm{OR})_{2}\right), 112.0(\mathrm{ArCH}), 112.3$ (ArCH), $112.4(\mathrm{ArCH}), 116.7(\mathrm{ArCH}), 118.9(\mathrm{ArCH}), 129.3(\mathrm{ArCH}), 129.7(\mathrm{ArCH}), 140.8$ $\left(\mathrm{ArCCH}_{2}\right), 148.6(\mathrm{ArCN})$ and $160.0\left(\mathrm{ArCOCH}_{3}\right) \mathrm{ppm} . \mathrm{LC} / \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{t}_{\mathrm{r}}=2.51 \mathrm{~min}(98 \%)$, $\mathrm{m} / \mathrm{z} 302.2\left(\mathrm{M}^{+}+\mathrm{H}\right)$; (RP, Isocratic, $\left.90 \% \mathrm{MeOH}\right)$. HRMS (ES +) calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{3}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 302.1751, found 302.1739.

4-Chloro- N -(2,2-dimethoxyethyl)-N-(3-methoxybenzyl)aniline (9g)

The crude compound was purified by column chromatography (eluent: from 0% to 20% EtOAc in pet. ether) to give the product as a pale yellow oil ($9.08 \mathrm{~g}, 90 \%$) which showed: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.40\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}\right), 3.54\left(2 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right)$, $3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 4.58\left(1 \mathrm{H}, \mathrm{t}, J=5.1 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 4.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 6.63(2 \mathrm{H}, \mathrm{d}$,
$J=9.2 \mathrm{~Hz}$, ArH, aniline $), 6.71-6.74(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$, benzyl), $6.74-6.80(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$, benzyl), $7.10(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{ArH}$, aniline) and $7.22(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}$, benzyl) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 54.2\left(\mathrm{CHCH}_{2}\right)$, $54.7\left(\mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}\right)$, $55.1\left(\mathrm{ArCH}_{2} \mathrm{~N}\right)$, 55.3 $\left(\mathrm{ArOCH}_{3}\right)$, $103.3\left(\underline{\mathrm{C} H}\left(\mathrm{OCH}_{3}\right)_{2}\right)$, $112.0(\mathrm{ArCH}$, benzyl), $112.4(\mathrm{ArCH}$, benzyl), 113.6 (ArCH, aniline), 118.8 (ArCH, benzyl), 121.6 (ArCCI), 129.1 (ArCH, aniline), 129.8 (ArCH, benzyl), $140.2\left(\mathrm{ArCCH}_{2}\right), 147.2(\mathrm{ArCN})$ and $160.1(\mathrm{ArCO}) \mathrm{ppm} . \mathrm{LC} / \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{t}_{\mathrm{r}}=2.91 \mathrm{~min}$ (98 \%), m/z $336.0\left(\mathrm{M}^{+}+\mathrm{H}\right)$; (RP, Isocratic, $\left.90 \% \mathrm{MeOH}\right)$. HRMS (ES ${ }^{+}$) calcd. $\mathrm{C}_{18} \mathrm{H}_{23}{ }^{35} \mathrm{CINO}_{3}$ $\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 336.1361, found 336.1353 ; calcd. $\mathrm{C}_{18} \mathrm{H}_{23}{ }^{37} \mathrm{CINO}_{3}\left(\mathrm{M}^{+}+\mathrm{H}\right) 338.1331$, found 338.1353

4-(((2,2-Dimethoxyethyl)(p-tolyl)amino)methyl)phenol (9i)

The crude compound was purified by column chromatography (eluent: from 0% to 30% EtOAc in pet. ether) to give the product as a colorless oil ($2.83 \mathrm{~g}, 94 \%$) which showed: ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl ${ }_{3}$) $\delta 2.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 3.40\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}\right), 3.51(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.=5.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 4.54\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2}\right), 4.59\left(1 \mathrm{H}, \mathrm{t}, J=5.1 \mathrm{~Hz}, \mathrm{CH}(\mathrm{OR})_{2}\right), 5.10(1 \mathrm{H}$, bs, $\mathrm{OH}), 6.66(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 6.74(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}), 7.00(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}$, ArH) and $7.06(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.1\left(\mathrm{ArCH}_{3}\right)$, $53.7\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}\right), 54.4\left(\mathrm{ArCH}_{2}\right), 54.5\left(\mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}\right), 103.4\left(\underline{\mathrm{C}}(\mathrm{OR})_{2}\right), 112.5(\mathrm{ArCH}), 115.3$ (ArCH), $125.7\left(\mathrm{ArCCH}_{3}\right), 127.9(\mathrm{ArCH}), 129.7(\mathrm{ArCH}), 130.8\left(\mathrm{ArCCH}_{2}\right), 146.5(\mathrm{ArCN})$ and $154.4(\mathrm{ArCOH}) \mathrm{ppm} . \mathrm{LC} / \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{t}_{\mathrm{r}}=1.92 \mathrm{~min}(>99 \%), \mathrm{m} / \mathrm{z} 301.5\left(\mathrm{M}^{+}\right)$; (RP, Isocratic, $90 \% \mathrm{MeOH})$. HRMS $(\mathrm{ES}+)$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{3}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 302.1751, found 302.1757.

4-(((2,2-dimethoxyethyl)(4-methoxyphenyl)amino)methyl)phenol (9j)

The crude compound was purified by column chromatography (eluent 0\% to 40\% EtOAc in pet. ether) to give the product as a colorless oil ($2.87 \mathrm{~g}, 90 \%$) which showed: ${ }^{1} \mathrm{H}$ NMR (500 $\left.\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.38\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}\left(\mathrm{OCH} \underline{H}_{3}\right)_{2}\right), 3.46\left(2 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right)\right), 3.74(3 \mathrm{H}, \mathrm{s}$,
$\left.\mathrm{ArOCH}_{3}\right), 4.48\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2}\right), 4.55\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{CH}(\mathrm{OR})_{2}\right), 5.12(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 6.71$ (2H, d, J = 9.1 Hz, ArH), $6.74(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 6.79(2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{ArH})$ and $7.07(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 54.4\left(\underline{\mathrm{CH}} \mathrm{H}_{2} \mathrm{CH}\right), 54.5$ $\left(\mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}\right), 55.3\left(\mathrm{ArCH}_{2}\right), 55.9\left(\mathrm{ArOCH}_{3}\right), 103.6\left(\mathrm{CH}(\mathrm{OR})_{2}\right), 114.6(\mathrm{ArCH}), 114.9$ (ArCH), $115.4(\mathrm{ArCH}), 128.3(\mathrm{ArCH}), 131.0\left(\mathrm{ArCCH}_{2}\right), 143.5(\mathrm{ArCN}), 151.7(\mathrm{ArCOCH} 3)$ and $154.6(\mathrm{ArCOH}) \mathrm{ppm} . \mathrm{LC} / \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{t}_{\mathrm{r}}=1.56 \mathrm{~min}(97 \%), \mathrm{m} / \mathrm{z} 317.5\left(\mathrm{M}^{+}\right)$; (RP, Isocratic, $90 \% \mathrm{MeOH})$. HRMS (ES+) calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{4}\left(\mathrm{M}^{+}+\mathrm{H}\right) 318.1700$, found 318.1698.

4-(((4-Chlorophenyl)(2,2-dimethoxyethyl)amino)methyl)phenol (9k)

The crude compound was purified by column chromatography (eluent: from 0\% to 30\% EtOAc in pet. ether) to give the product as a colorless oil ($2.12 \mathrm{~g}, 66 \%$) which showed: ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 3.39\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.51\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 4.54(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArCH}_{2}\right), 4.56\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{CH}(\mathrm{OR})_{2}\right), 5.02(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 6.64(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}$, ArH), $6.76(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 7.03(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{ArH})$ and $7.10(2 \mathrm{H}, \mathrm{d}, J=9.1$ $\mathrm{Hz}, \mathrm{ArH})$ ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 53.8\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}\right)$, $54.4\left(\mathrm{ArCH}_{2}\right)$, $54.6\left(\mathrm{CH}_{3}\right)$, $103.2\left(\mathrm{CH}(\mathrm{OR})_{2}\right), 113.6(\mathrm{ArCH}), 115.4(\mathrm{ArCH}), 121.4(\mathrm{ArCCl}), 127.8(\mathrm{ArCH}), 128.9$ (ArCH), $129.1\left(\mathrm{ArCCH}_{2}\right), 147.2(\mathrm{ArCN})$ and $154.5(\mathrm{ArCOH}) \mathrm{ppm} . \mathrm{LC} / \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{t}_{\mathrm{r}}=4.19 \mathrm{~min}$ (74 \%), m/z $321.6\left(\mathrm{M}^{+}\right)$; (RP, Isocratic, $80 \% \mathrm{MeOH}$). HRMS (ES+) calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{CINO}_{3}$ $\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 322.1210, found 322.1201; calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{CINNaO}_{3}\left(\mathrm{M}^{+}+\mathrm{Na}\right) 344.1029$, found 344.1043.

N -(3,4-Dimethoxybenzyl)-N-(2,2-dimethoxyethyl)-4-methoxyaniline (91)

The crude compound was purified by column chromatography (eluent: from 0\% to 40\% EtOAc in pet. ether) to give the product as an orange oil ($6.58 \mathrm{~g}, 91 \%$) which showed: ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 3.37(6 \mathrm{H}, \mathrm{s}), 3.45(2 \mathrm{H}, \mathrm{t}, J=4.7 \mathrm{~Hz}), 3.73(3 \mathrm{H}, \mathrm{s}), 3.81(3 \mathrm{H}, \mathrm{s})$,
$3.84(3 \mathrm{H}, \mathrm{s}), 4.48(2 \mathrm{H}, \mathrm{s}), 4.56(1 \mathrm{H}, \mathrm{bs})$ and $6.69-6.82(7 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$. HRMS (ES ${ }^{+}$) calcd. $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{5}\left(\mathrm{M}^{+}+\mathrm{H}\right) 362.1962$, found 362.1976.

N-(2,2-Dimethoxyethyl)-4-methoxy-N-(3,4,5-trimethoxybenzyl)aniline (9m)

The crude compound was purified by column chromatography (eluent: from 0\% to 50\% EtOAc in pet. ether) to give the product as an orange oil (7.71 g, 98\%) which showed: ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 3.37(6 \mathrm{H}, \mathrm{s}), 3.47(2 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 3.74(3 \mathrm{H}, \mathrm{s}), 3.78(6 \mathrm{H}, \mathrm{s})$, $3.81(3 \mathrm{H}, \mathrm{s}), 4.47(2 \mathrm{H}, \mathrm{s}), 4.56(1 \mathrm{H}, \mathrm{t}, J=5.1 \mathrm{~Hz}), 6.46(2 \mathrm{H}, \mathrm{s}), 6.72(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz})$ and $6.79(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz})$ ppm. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{6}\left(\mathrm{M}^{+}+\mathrm{H}\right) 392.2068$, found 392.2081.

4-Chloro- N -(2,2-dimethoxyethyl)-N-(2-methoxybenzyl)aniline (9n)

The crude compound was purified by column chromatography (from 0\% to 30\% EtOAc in pet. ether) to give the product as a yellow oil ($4.84 \mathrm{~g}, 96 \%$) which showed: ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.40\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}\right), 3.54\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{NCH} \underline{H}_{2} \mathrm{CH}\right), 3.86(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArOCH}_{3}\right), 4.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 4.62\left(1 \mathrm{H}, \mathrm{t}, J=5.1 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}\right), 6.66(2 \mathrm{H}, \mathrm{d}, J=9.1$ $\mathrm{Hz}, \mathrm{ArCH}$, aniline), $6.84(1 \mathrm{H}, \mathrm{td}, J=1.3,7.2 \mathrm{~Hz}, \mathrm{ArCH}$, benzyl), $6.88(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}$, ArCH, benzyl), 6.98 (1H, d, J = 7.2 Hz, ArCH, benzyl), 7.10 ($2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \operatorname{ArCH}$, aniline) and $7.22\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=1.3,8.2 \mathrm{~Hz}, \mathrm{ArCH}\right.$, benzyl) ppm. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 50.6\left(\mathrm{ArCH}_{2}\right), 54.2\left(\mathrm{NCH}_{2} \mathrm{CH}\right)$, $54.7\left(\mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}\right)$, $55.1\left(\mathrm{ArOCH}_{3}\right)$, $103.1\left(\underline{\mathrm{CH}}\left(\mathrm{OCH}_{3}\right)_{2}\right)$, 110.0 (ArCH , benzyl), 113.7 ($2 \times \mathrm{ArCH}$, aniline), 120.3 (ArCH , benzyl), 121.8 (ArCCl), $124.9\left(\mathrm{ArCCH}_{2}\right), 127.2(\mathrm{ArCH}$, benzyl), 127.9 (ArCH , benzyl), 128.9 ($2 \times \mathrm{ArCH}$, aniline), 146.7 (ArCN) and 157.1 (ArCO) ppm. HRMS (ES^{+}) calc. for $\mathrm{C}_{18} \mathrm{H}_{23}{ }^{35} \mathrm{CINO}_{3}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 336.1361, found 336.1355. Calc. for $\mathrm{C}_{18} \mathrm{H}_{23}{ }^{37} \mathrm{CINO}_{3}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 338.1331, found 338.1306.

N -Benzyl- N -(2,2-dimethoxyethyl)-3-methoxyaniline (90)

The crude compound was purified by column chromatography (eluent: from 0% to 10% EtOAc in pet. ether) to give a colorless oil ($2.21 \mathrm{~g}, 73 \%$) which showed: ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.40\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}\right), 3.55\left(2 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 3.74(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArOCH}_{3}\right), 4.62\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{CH}(\mathrm{OR})_{2}\right), 4.65\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2}\right), 6.28(1 \mathrm{H}, \mathrm{ddd}, J=0.6$, $2.5,8.2 \mathrm{~Hz}, \operatorname{ArH}), 6.30(1 \mathrm{H}, \mathrm{t}, J=2.5 \mathrm{~Hz}, \operatorname{ArH}), 6.36(1 \mathrm{H}, \mathrm{ddd}, J=0.6,2.5,8.2 \mathrm{~Hz}, \operatorname{ArH})$, $7.10(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{ArH}), 7.19-7.23(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.27-7.32(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 53.9\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}\right), 54.7\left(\mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}\right)$, $55.0\left(\mathrm{ArCH}_{2}\right), 55.2$ $\left(\mathrm{ArOCH}_{3}\right), 99.0(\mathrm{ArCH}), 101.5(\mathrm{ArCH}), 103.5\left(\mathrm{CH}(\mathrm{OR})_{2}\right), 105.5(\mathrm{ArCH}), 126.6(\mathrm{ArCH})$, $126.8(\mathrm{ArCH}), 128.7(\mathrm{ArCH}), 130.1(\mathrm{ArCH}), 138.8\left(\mathrm{ArCCH}_{2}\right), 150.2(\mathrm{ArCN})$ and 160.9 $\left(\mathrm{ArCOCH}_{3}\right) \mathrm{ppm} . \mathrm{LC} / \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{t}_{\mathrm{r}}=2.48 \mathrm{~min}(96 \%), \mathrm{m} / \mathrm{z} 301.5\left(\mathrm{M}^{+}\right) ;(\mathrm{RP}$, Isocratic, 90% $\mathrm{MeOH})$. HRMS (ES +) calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{3}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 302.1751, found 302.1738.

N-Benzyl- N-(2,2-dimethoxyethyl)-3,4,5-trimethoxyaniline (9p)

The crude compound was purified by column chromatography (eluent 0\% to 30\% EtOAc in pet. ether) to give the product as a colorless oil ($3.08 \mathrm{~g}, 85 \%$) which showed: ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.41\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}\right), 3.54\left(2 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 3.74(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArOCH}_{3}\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 4.59\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{CH}(\mathrm{OR})_{2}\right), 4.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2}\right)$, $5.97(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.21-7.24(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.28-7.33(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 54.66\left(\mathrm{CH}\left(\mathrm{O}_{3}\right)_{2}\right)$, $54.69\left(\underline{\mathrm{C}}_{2} \mathrm{CH}\right), 55.73\left(\mathrm{ArCH}_{2}\right), 56.07\left(\mathrm{ArOCH}_{3}\right)$, $61.21\left(\mathrm{ArOCH}_{3}\right), 91.0(\mathrm{ArCH}), 103.8\left(\mathrm{CH}(\mathrm{OR})_{2}\right), 126.8(\mathrm{ArCH}), 127.0(\mathrm{ArCH}), 128.7$ $(\operatorname{ArCH}), 129.9\left(\mathrm{ArCOCH}_{3}\right), 139.1\left(\mathrm{ArCCH}_{2}\right), 145.8(\mathrm{ArCN})$ and $153.8\left(\mathrm{ArCOCH}_{3}\right) \mathrm{ppm}$. LC/MS $\left(E S^{+}\right) \mathrm{t}_{\mathrm{r}}=1.93 \mathrm{~min}(89 \%), \mathrm{m} / \mathrm{z} 361.3\left(\mathrm{M}^{+}\right)$; $(\mathrm{RP}$, Isocratic, $90 \% \mathrm{MeOH})$. HRMS (ES +) calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{5}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 362.1962, found 362.1948.

General method for the PF cyclization with HClO_{4} (method A): Compound $9 \mathrm{aa}(3.0 \mathrm{~g}$, 11.1 mmol) was dissolved in $70 \% \mathrm{HClO}_{4}(33 \mathrm{~mL})$ and stirred for 1 h at rt . The mixture was then diluted with water $(30 \mathrm{~mL})$ and basified by carefully pouring the mixture over $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The aqueous layer was then extracted with EtOAc ($3 \times 30 \mathrm{~mL}$) and the combined organics were dried with MgSO_{4}, filtered and evaporated to give a brown foam (2.97 g).

General method for the PF cyclization with $\mathbf{H C l}(\operatorname{method} \mathbf{B}):$ Compound $9 \mathrm{f}(500 \mathrm{mg}$, $1.66 \mathrm{mmol})$ was dissolved in $6 \mathrm{M} \mathrm{HCl}(2 \mathrm{~mL})$ and stirred at rt for 1 h during which time the mixture turned red. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and then quenched by the slow addition of aq 3 M NaOH (10 mL) (a white suspension with a yellow precipitate formed). The mixture was then extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The organic layer was dried with MgSO_{4}, filtered and evaporated to give a yellow-brown oil (445 mg).

2-Phenyl-1,2,3,4-tetrahydroisoquinolin-4-ol (10a)

The compound was synthesized according to method A. A sample of crude compound was purified by column chromatography (eluent: from 0% to 10% EtOAc in pet. ether) to give a yellow oil which showed: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.65(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 3.39(1 \mathrm{H}$, dd, $J=2.6,12.6 \mathrm{~Hz}, \mathrm{H}_{3}-\mathrm{THIQ}$), 3.86 ($1 \mathrm{H}, \mathrm{ddd}, J=1.1,3.8,12.6 \mathrm{~Hz}, \mathrm{H}_{3}-\mathrm{THIQ}$), $4.20(1 \mathrm{H}, \mathrm{d}$, $\left.J=15.4 \mathrm{~Hz}, \mathrm{H}_{1}-\mathrm{THIQ}\right), 4.49$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.4 \mathrm{~Hz}, \mathrm{H}_{1}-\mathrm{THIQ}$), 4.79 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{H}_{4}-\mathrm{THIQ}$), 6.94 ($1 \mathrm{H}, \mathrm{tt}, J=1.1,7.4 \mathrm{~Hz}$, ArH, phenyl), 7.09 ($2 \mathrm{H}, \mathrm{dd}, J=1.0,8.8 \mathrm{~Hz}$, ArH, phenyl), $7.17-$ $7.23(1 \mathrm{H}, \mathrm{m}), 7.29-7.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6}, \mathrm{H}_{7}-\mathrm{THIQ}\right), 7.34(2 \mathrm{H}, \mathrm{dd}, J=7.3,8.8 \mathrm{~Hz}, \mathrm{ArH}$, phenyl) and $7.47-7.51$ ($1 \mathrm{H}, \mathrm{m}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 51.4$ (C_{1}-THIQ), 55.6 ($\mathrm{C}_{3}-$ THIQ), 67.3 ($\mathrm{C}_{4}-\mathrm{THIQ}$), 116.6 (ArCH, phenyl), 120.2 (ArCH, phenyl), 126.5, 127.2, 128.2, 129.3, 129.4 (ArCH, phenyl), 136.7, 134.3 and 151.1 (ArCN) ppm. LC/MS (ES $\left.{ }^{+}\right) \mathrm{t}_{\mathrm{r}}=$ $1.75 \mathrm{~min}(66 \%), \mathrm{m} / \mathrm{z} 226.0\left(\mathrm{M}^{+}+\mathrm{H}\right)$; (RP, Isocratic, $90 \% \mathrm{MeOH}$). HRMS (ES ${ }^{+}$) calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 226.1226, found 226.1234.

6-Methoxy-2-phenyl-1,2,3,4-tetrahydroisoquinolin-4-ol (10b)

The compound was synthesized according to method A. A sample of crude compound was purified by column chromatography (eluent: from 0% to 30% EtOAc in pet. ether) to give a yellow oil which showed: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.54(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 3.37(1 \mathrm{H}$, dd, $\left.J=2.6,12.6 \mathrm{~Hz}, \mathrm{H}_{3}-\mathrm{THIQ}\right), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.84(4 \mathrm{H}, \mathrm{ddd}, J=1.1,3.8,12.6 \mathrm{~Hz}$, H_{3}-THIQ), 4.14 ($1 \mathrm{H}, \mathrm{d}, J=14.9 \mathrm{~Hz}, \mathrm{H}_{1}-\mathrm{THIQ}$), $4.43\left(1 \mathrm{H}, \mathrm{d}, J=14.9 \mathrm{~Hz}, \mathrm{H}_{1}-\mathrm{THIQ}\right), 4.74$ ($1 \mathrm{H}, \mathrm{bs}, \mathrm{H}_{4}-\mathrm{THIQ}$), $6.88\left(1 \mathrm{H}, \mathrm{dd}, J=2.7,8.4 \mathrm{~Hz}, \mathrm{H}_{7}-\mathrm{THIQ}\right), 6.91(1 \mathrm{H}, \mathrm{tt}, J=0.8,7.4 \mathrm{~Hz}$, ArH, phenyl), $7.01\left(1 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}, \mathrm{H}_{5}-\mathrm{THIQ}\right), 7.07(2 \mathrm{H}, \mathrm{dd}, J=0.8,8.7 \mathrm{~Hz}, \mathrm{ArH}$, phenyl), 7.10 ($1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}_{8}-\mathrm{THIQ}$) and $7.32(2 \mathrm{H}, \mathrm{dd}, J=7.3,8.7 \mathrm{~Hz}$, ArH, phenyl) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 50.9\left(\mathrm{C}_{1}-\mathrm{THIQ}\right), 55.5\left(\mathrm{ArOCH}_{3}\right), 55.5\left(\mathrm{C}_{3}\right.$-THIQ $), 67.6$ ($\mathrm{C}_{4}-\mathrm{THIQ}$), 113.1 ($\left.\mathrm{C}_{5}-\mathrm{THIQ}\right), 115.3\left(\mathrm{C}_{7}-\mathrm{THIQ}\right), 116.6$ (ArCH , phenyl), 120.2 (ArCH , phenyl), $126.4\left(\mathrm{C}_{1} \underline{\mathrm{C}}_{8}-\mathrm{THIQ}\right)$, 127.6 ($\mathrm{C}_{8}-\mathrm{THIQ}$), 129.4 (ArCH , phenyl), $137.8\left(\mathrm{C}_{4} \underline{\mathrm{C}}_{5}-\right.$ THIQ), $151.2(\operatorname{ArCN})$ and $158.7\left(\mathrm{C}_{6}-\mathrm{THIQ}\right) \mathrm{ppm} . \mathrm{LC} / \mathrm{MS}(E S+) \mathrm{t}_{\mathrm{r}}=1.77 \mathrm{~min}(56 \%)$, $\mathrm{m} / \mathrm{z} 255.9\left(\mathrm{M}^{+}+\mathrm{H}\right)$. HRMS (ES +) calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 256.1332, found 256.1326.

2-Phenyl-1,2,3,4-tetrahydroisoquinoline-4,6-diol (10d)

The compound was synthesized according to method A. The crude compound was obtained as a brown-yellow solid (2.15 g) which showed: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $3.42(1 \mathrm{H}, \mathrm{ddd}, J=0.6,2.9,12.7 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{ddd}, J=1.0,4.0,12.7 \mathrm{~Hz}), 4.17(1 \mathrm{H}, \mathrm{d}, J=$ $14.3 \mathrm{~Hz}), 4.46(1 \mathrm{H}, \mathrm{d}, J=14.2 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{s}), 6.84(1 \mathrm{H}, \mathrm{dd}, J=2.7,8.4 \mathrm{~Hz}), 6.92-7.05$ $(2 \mathrm{H}, \mathrm{m}), 7.08-7.13(3 \mathrm{H}, \mathrm{m})$ and $7.31-7.39(3 \mathrm{H}, \mathrm{m}) \mathrm{ppm} . \mathrm{LC} / \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{t}_{\mathrm{r}}=1.22 \mathrm{~min}$ (81\%), m/z $242.1\left(\mathrm{M}^{+}+\mathrm{H}\right)$; (RP, Isocratic, $\left.90 \% \mathrm{MeOH}\right)$.

7-Bromo-2-phenyl-1,2,3,4-tetrahydroisoquinolin-4-ol (10e)

The compound was synthesized according to method A. The crude compound was obtained as a pale yellow oil ($250 \mathrm{mg}, 48 \%$) which showed: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$3.19\left(1 \mathrm{H}, \mathrm{dd}, J=2.1,12.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 4.07\left(1 \mathrm{H}, \mathrm{ddd}, J=1.6,2.4,12.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 4.11$ $\left(1 \mathrm{H}, \mathrm{d}, J=15.2 \mathrm{~Hz}, \operatorname{ArCH}_{2}\right), 4.54\left(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 5.03(1 \mathrm{H}, \mathrm{t}, J=2.3 \mathrm{~Hz}$, CHOH), $6.95(1 \mathrm{H}, \mathrm{tt}, J=0.9,7.4 \mathrm{~Hz}, \mathrm{ArH}), 7.10(2 \mathrm{H}, \mathrm{dd}, J=0.9,8.7 \mathrm{~Hz}, \mathrm{ArH}), 7.16(1 \mathrm{H}, \mathrm{d}$, $J=2.0 \mathrm{~Hz}, \mathrm{ArH}), 7.17(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{ArH}), 7.34(2 \mathrm{H}, \mathrm{dd}, J=7.4,8.7 \mathrm{~Hz}, \mathrm{ArH})$ and $7.52(1 \mathrm{H}, \mathrm{dd}, J=2.0,7.2 \mathrm{~Hz}, \mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 51.5\left(\mathrm{ArCH}_{2}\right), 55.7$ $\left(\underline{C H}_{2} \mathrm{CH}\right), 66.7(\mathrm{CHOH}), 116.8(\mathrm{ArCH}), 117.0(\mathrm{ArCH}), 120.8(\mathrm{ArCH}), 125.8(\mathrm{ArCBr}), 126.0$ (ArCH), $129.4(\mathrm{ArCH}), 131.4(\mathrm{ArCH}), 135.6(\mathrm{ArCCH}), 137.1\left(\mathrm{ArCCH}_{2}\right)$ and $150.9(\mathrm{ArCN})$ ppm. LC/MS $\left(\mathrm{ES}^{+}\right) \mathrm{t}_{\mathrm{r}}=1.97 \mathrm{~min}(61 \%), \mathrm{m} / \mathrm{z} 303.4\left(\mathrm{M}^{+}+\mathrm{H}\right)\left({ }^{79} \mathrm{Br}\right), 305.4\left(\mathrm{M}^{+}+\mathrm{H}\right)\left({ }^{81} \mathrm{Br}\right) ;(\mathrm{RP}$, Isocratic, $90 \% \mathrm{MeOH})$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrNO}\left(\mathrm{M}^{+}+\mathrm{H}\right)\left({ }^{79} \mathrm{Br}\right) 304.0332$, found 304.0335; calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrNO}\left(\mathrm{M}^{+}+\mathrm{H}\right)\left({ }^{81} \mathrm{Br}\right)$ 306.0311, found 306.0323.

7-Methoxy-2-phenyl-1,2,3,4-tetrahydroisoquinolin-4-ol (10f)

The compound was synthesized according to method A. The crude compound was purified with chromatography (eluent: from 0\% to 25% EtOAc in pet. ether) to give the product as a yellow oil ($302 \mathrm{mg}, 71 \%$) which showed: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.54$ ($1 \mathrm{H}, \mathrm{bs}$), $3.33(2 \mathrm{H}, \mathrm{dd}, J=2.3,12.6 \mathrm{~Hz}), 3.81(4 \mathrm{H}, \mathrm{s}), 3.87(2 \mathrm{H}, \mathrm{dd}, J=3.0,12.6 \mathrm{~Hz}), 4.14$ $(2 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}), 4.45(2 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}), 4.73(1 \mathrm{H}, \mathrm{s}), 6.69(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 6.84$ $(1 \mathrm{H}, \mathrm{dd}, J=2.3,8.4 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.07(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.32(2 \mathrm{H}, \mathrm{t}, J=$ $7.8 \mathrm{~Hz})$ and $7.39(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) \mathrm{ppm} . \mathrm{LC} / \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{t}_{\mathrm{r}}=1.71 \mathrm{~min}(75 \%), \mathrm{m} / \mathrm{z} 255.9$ $\left(\mathrm{M}^{+}+\mathrm{H}\right)$; (RP, Isocratic, $\left.90 \% \mathrm{MeOH}\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NNaO}_{2}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ 278.1151, found 278.1153 .

2-(4-Clorophenyl)-7-methoxy-1,2,3,4-tetrahydroisoquinolin-4-ol (10g)

The compound was synthesized according to method A. The crude compound was purified by column chromatography (eluent: from 0\% to 40% EtOAc in pet. ether) to give a dark yellow wax ($2.39 \mathrm{~g}, 31 \%$) which showed: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.36(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$
$=8.6 \mathrm{~Hz}, \mathrm{OH}), 3.32\left(2 \mathrm{H}, \mathrm{dd}, J=2.5,12.6 \mathrm{~Hz}, \mathrm{H}_{3}-\mathrm{THIQ}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.82(5 \mathrm{H}$, ddd, $\left.J=1.3,3.5,12.8 \mathrm{~Hz}, \mathrm{H}_{3}-\mathrm{THIQ}\right), 4.13\left(2 \mathrm{H}, \mathrm{d}, J=15.3 \mathrm{~Hz}, \mathrm{H}_{1}-\mathrm{THIQ}\right), 4.42(2 \mathrm{H}, \mathrm{d}, J=$ $\left.15.3 \mathrm{~Hz}, \mathrm{H}_{1}-\mathrm{THIQ}\right), 4.74\left(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}_{4}-\mathrm{THIQ}\right), 6.69\left(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}, \mathrm{H}_{8}-\mathrm{THIQ}\right), 6.85(1 \mathrm{H}$, dd, $\left.J=2.6,8.5 \mathrm{~Hz}, \mathrm{H}_{6}-\mathrm{THIQ}\right), 6.98(3 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{ArH}$, phenyl), $7.25(4 \mathrm{H}, \mathrm{d}, J=9.0$ $\mathrm{Hz}, \mathrm{ArH}$, phenyl $)$ and $7.39\left(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}_{5}-\mathrm{THIQ}\right)$ ppm. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $51.3\left(\mathrm{C}_{1}-\mathrm{THIQ}\right), 55.3\left(\mathrm{OCH}_{3}\right), 55.7\left(\mathrm{C}_{3}-\mathrm{THIQ}\right), 66.7\left(\mathrm{C}_{4}-\mathrm{THIQ}\right), 110.9\left(\mathrm{C}_{8}-\mathrm{THIQ}\right), 113.4$ ($\mathrm{C}_{6}-\mathrm{THIQ}$), 117.6 (ArCH , phenyl), 124.9 (ArCCl), $129.0\left(\mathrm{C}_{5} \mathrm{CC}_{6}-\mathrm{THIQ}\right)$, 129.1 (ArCH , phenyl), $130.5\left(\mathrm{C}_{5}-\mathrm{THIQ}\right), 135.3\left(\mathrm{C}_{1} \mathrm{CC}_{8}-\mathrm{THIQ}\right)$, 149.6 (ArCN) and 159.4 ($\left.\mathrm{C}_{7}-\mathrm{THIQ}\right) \mathrm{ppm}$. LC/MS $\left(E S^{+}\right) \mathrm{t}_{\mathrm{r}}=1.95 \mathrm{~min}(92 \%), \mathrm{m} / \mathrm{z} 290.0\left(\mathrm{M}^{+}+\mathrm{H}\right)$; $(\mathrm{RP}$, Isocratic, $90 \% \mathrm{MeOH})$. HRMS (ES ${ }^{+}$) calcd. for $\mathrm{C}_{16} \mathrm{H}_{17}{ }^{35} \mathrm{CINO}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 290.0942, found 290.0935; calcd. $\mathrm{C}_{16} \mathrm{H}_{17}{ }^{37} \mathrm{CINO}_{2}$ $\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 292.0913, found 292.0935 .

2-p-Tolyl-1,2,3,4-tetrahydroisoquinoline-4,6-diol (10i)

The compound was synthesized according to method A. The crude compound was obtained as a brown-yellow solid $(2.05 \mathrm{~g})$ which showed: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $3.31(1 \mathrm{H}, \mathrm{dd}, J=2.5,12.2 \mathrm{~Hz}), 3.76(1 \mathrm{H}, \mathrm{dd}, J=3.5,12.2 \mathrm{~Hz}), 4.07(1 \mathrm{H}, \mathrm{d}, J=14.9 \mathrm{~Hz})$, $4.36(1 \mathrm{H}, \mathrm{d}, J=14.9 \mathrm{~Hz}), 4.69(1 \mathrm{H}, \mathrm{s}), 6.64(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.71-6.83(2 \mathrm{H}, \mathrm{m})$ and 6.89-7.17 (4H, m) ppm. LC/MS (ES $\left.{ }^{+}\right) \mathrm{t}_{\mathrm{r}}=1.52 \mathrm{~min}(70 \%), \mathrm{m} / \mathrm{z} 256.1\left(\mathrm{M}^{+}+\mathrm{H}\right)$; (RP, Isocratic, $90 \% \mathrm{MeOH})$.

2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline-4,6-diol (10j)

The compound was synthesized according to method A. The crude compound was obtained as a brown-yellow solid (2.17 g) which showed: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $3.26(1 \mathrm{H}, \mathrm{dd}, J=2.5,12.4 \mathrm{~Hz}), 3.62(1 \mathrm{H}, \mathrm{ddd}, J=1.1,3.7,12.2 \mathrm{~Hz}), 3.78(3 \mathrm{H}, \mathrm{s}), 4.00$ $(1 \mathrm{H}, \mathrm{d}, J=14.6 \mathrm{~Hz}), 4.25(1 \mathrm{H}, \mathrm{d}, J=14.6 \mathrm{~Hz}), 4.66(1 \mathrm{H}, \mathrm{t}, J=3.0 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{dd}, J=$ 2.7, 8.3 Hz$), 6.87(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}), 6.99(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz})$ and
$7.02(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}) \mathrm{ppm} . \mathrm{LC} / \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{t}_{\mathrm{r}}=1.35 \mathrm{~min}(98 \%), \mathrm{m} / \mathrm{z} 271.8\left(\mathrm{M}^{+}+\mathrm{H}\right) ;(\mathrm{RP}$, Isocratic, $90 \% \mathrm{MeOH}$).

2-(4-Chlorophenyl)-1,2,3,4-tetrahydroisoquinoline-4,6-diol (10k)

The compound was synthesized according to method A. The crude compound was purified by column chromatography (eluent: $10 \% \mathrm{MeOH}$ in DCM) to give a yellow-brown solid (1.88g, 95\%) which showed: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.63\left(1 \mathrm{H}, \mathrm{bs}, \mathrm{C}_{4} \mathrm{OH}\right), 3.37$ ($1 \mathrm{H}, \mathrm{dd}, J=2.2,12.6 \mathrm{~Hz}, \mathrm{H}_{3}-\mathrm{THIQ}$), $3.76\left(1 \mathrm{H}, \mathrm{dd}, J=3.6,12.6 \mathrm{~Hz}, \mathrm{H}_{3}-\mathrm{THIQ}\right), 4.11(1 \mathrm{H}, \mathrm{d}$, $\left.J=14.8 \mathrm{~Hz}, \mathrm{H}_{1}-\mathrm{THIQ}\right), 4.38\left(1 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}, \mathrm{H}_{1}-\mathrm{THIQ}\right), 4.72\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{4}-\mathrm{THIQ}\right), 5.30$ (1H, bs, $\mathrm{C}_{6} \mathrm{OH}$), 6.81 (1H, dd, $\left.J=2.3,8.3 \mathrm{~Hz}, \mathrm{H}_{7}-\mathrm{THIQ}\right), 6.96\left(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{H}_{5}-\mathrm{THIQ}\right)$, $6.99\left(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \times \mathrm{ArCH}\right.$, phenyl), $7.05\left(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{H}_{7}-\mathrm{THIQ}\right)$ and $7.27(2 \mathrm{H}$, $\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \times \mathrm{ArCH}$, phenyl) ppm. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 50.8$ (C_{1}-THIQ), 55.3 (C_{3}-THIQ), 67.1 ($\mathrm{C}_{4}-\mathrm{THIQ}$), 115.1 ($\mathrm{C}_{5}-\mathrm{THIQ}$), 115.9 ($\mathrm{C}_{7}-\mathrm{THIQ}$), 117.6 (2 x ArCH, phenyl), 125.0 (ArCCl), 125.9 ($\mathrm{C}_{1} \mathrm{CC}_{8}-\mathrm{THIQ}$), 127.7 ($\mathrm{C}_{8}-\mathrm{THIQ}$), 129.1 (2 x ArCH, phenyl), 137.6 ($\left.\mathrm{C}_{4} \mathrm{CC}_{5}-\mathrm{THIQ}\right), 149.6(\mathrm{ArCN})$ and 154.6 ($\left.\mathrm{C}_{6}-\mathrm{THIQ}\right) \mathrm{ppm} . \mathrm{LC} / \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{t}_{\mathrm{r}}=1.65 \min (72 \%)$, $\mathrm{m} / \mathrm{z} 276.1\left(\mathrm{M}^{+}+\mathrm{H}\right)$; (RP, Isocratic, $90 \% \mathrm{MeOH}$). HRMS (ES $)$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{CINO}_{2}\left(\mathrm{M}^{-}-\mathrm{H}\right)$ 274.0640, found 274.0629. Mp $168-171^{\circ} \mathrm{C}$

6,7-Dimethoxy-2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-4-ol (10I)

The compound was synthesized according to method A. The crude compound was purified by column chromatography (eluent: from 0% to $50 \% \mathrm{EtOAc}$ in pet. ether) to give the product as a white solid ($3.54 \mathrm{~g}, 62 \%$) which showed: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $2.67(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 3.23\left(1 \mathrm{H}, \mathrm{dd}, J=2.3,12.3 \mathrm{~Hz}, \mathrm{H}_{3}-\mathrm{THIQ}\right), 3.71(1 \mathrm{H}, \mathrm{dd}, J=3.1,12.3 \mathrm{~Hz}$, $\left.\mathrm{H}_{3}-\mathrm{THIQ}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right.$, phenyl), $3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{OCH}_{3}-\mathrm{THIQ}\right), 3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{7} \mathrm{OCH}_{3}-\right.$ THIQ), 4.01 ($1 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}, \mathrm{H}_{1}-\mathrm{THIQ}$), $4.27\left(1 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}, \mathrm{H}_{1}-\mathrm{THIQ}\right), 4.67(1 \mathrm{H}$, bs, $\left.\mathrm{H}_{4}-\mathrm{THIQ}\right), 6.62\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{8}-\mathrm{THIQ}\right), 6.89(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, 2 \times \mathrm{ArCH}$, phenyl), $6.96(1 \mathrm{H}$,
$\mathrm{s}, \mathrm{H}_{5}-\mathrm{THIQ}$) and $7.03\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}, 2 \times \mathrm{ArCH}\right.$, phenyl) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 52.7\left(\mathrm{C}_{1}-\mathrm{THIQ}\right), 55.6\left(\mathrm{OCH}_{3}\right.$, phenyl), $55.9\left(2 \times \mathrm{OCH}_{3}, \mathrm{THIQ}\right), 57.2\left(\mathrm{C}_{3}-\mathrm{THIQ}\right)$, 67.2 (C_{4}-THIQ), 108.6 (C_{8}-THIQ), 111.6 (C_{5}-THIQ), 114.5 ($2 \times \mathrm{ArCH}$, phenyl), 118.9 (2 x ArCH , phenyl), $126.8\left(\mathrm{C}_{1} \mathrm{CC}_{8}-\mathrm{THIQ}\right), 128.6\left(\mathrm{C}_{4} \mathrm{CC}_{5}-\mathrm{THIQ}\right), 145.3$ (ArCN), 148.1 ($\mathrm{C}_{7}-\mathrm{THIQ}$), $148.9\left(\mathrm{C}_{6}-\mathrm{THIQ}\right)$ and 154.2 (ArCO , phenyl) ppm. HRMS (ES^{+}) calcd. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{4}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 316.1543, found 316.1543 . Mp $136-137^{\circ} \mathrm{C}\left(\mathrm{DCM} / \mathrm{Et}_{2} \mathrm{O}\right)$.

5,6,7-Trimethoxy-2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-4-ol (10m)

The compound was synthesized according to method A. The crude compound was purified by column chromatography (eluent: from 0\% to 100\% EtOAc in pet. ether) to give the product as a dark brown solid ($5.49 \mathrm{~g}, 82 \%$) which showed: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 2.90(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 3.18\left(1 \mathrm{H}, \mathrm{dd}, J=2.7,12.4 \mathrm{~Hz}, \mathrm{H}_{3}-\mathrm{THIQ}\right), 3.70(1 \mathrm{H}, \mathrm{dd}, J=3.5,12.6$ $\left.\mathrm{Hz}, \mathrm{H}_{3}-\mathrm{THIQ}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right.$, phenyl), $3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{OCH}_{3}-\mathrm{THIQ}\right), 3.87(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}_{7} \mathrm{OCH}_{3}-\mathrm{THIQ}\right), 3.98\left(1 \mathrm{H}, \mathrm{d}, J=15.1 \mathrm{~Hz}, \mathrm{H}_{1}-\mathrm{THIQ}\right), 4.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{OCH}_{3}-\mathrm{THIQ}\right), 4.29(1 \mathrm{H}$, $\left.\mathrm{d}, J=15.0 \mathrm{~Hz}, \mathrm{H}_{1}-\mathrm{THIQ}\right), 4.98\left(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}_{4}-\mathrm{THIQ}\right), 6.45\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{8}-\mathrm{THIQ}\right), 6.88(2 \mathrm{H}, \mathrm{d}, J=$ $9.0 \mathrm{~Hz}, 2 \times \mathrm{ArCH}$, phenyl) and $7.04\left(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, 2 \times \mathrm{ArCH}\right.$, phenyl) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 53.2\left(\mathrm{C}_{1}-\mathrm{THIQ}\right)$, $55.6\left(\mathrm{OCH}_{3}\right.$, phenyl), $56.0\left(\mathrm{C}_{6} \mathrm{OCH}_{3}-\mathrm{THIQ}\right)$, 56.9 ($\left.\mathrm{C}_{3}-\mathrm{THIQ}\right), 60.9\left(\mathrm{C}_{7} \mathrm{OCH}_{3}-\mathrm{THIQ}\right), 61.5\left(\mathrm{C}_{5} \mathrm{OCH}_{3}-\mathrm{THIQ}\right), 62.7\left(\mathrm{C}_{4}-\mathrm{THIQ}\right), 104.6$ (C_{8}-THIQ), 114.5 ($2 \times \mathrm{ArCH}$, phenyl), 119.1 ($2 \times \mathrm{ArCH}$, phenyl), $123.0\left(\mathrm{C}_{1} \mathrm{CC}_{8}-\mathrm{THIQ}\right.$), $130.5\left(\mathrm{C}_{4} \mathrm{CC}_{5}-\right.$ THIQ), 140.6 (C_{7}-THIQ), 145.3 (ArCN), $152.2\left(\mathrm{C}_{5}-\mathrm{THIQ}\right), 153.5\left(\mathrm{C}_{6}\right.$-THIQ) and 154.3 (ArCO, phenyl) ppm. HRMS (ES ${ }^{+}$) calcd. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{5}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 346.1649, found 346.1638.

2-(3-Methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-4-ol (100)

The compound was synthesized according to method A. The crude compound was obtained as a yellow oil $(1.73 \mathrm{~g})$ which showed: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.46(1 \mathrm{H}$, bs), $3.40(1 \mathrm{H}, \mathrm{dd}, J=2.7,12.6 \mathrm{~Hz}), 3.83(3 \mathrm{H}, \mathrm{s}), 3.85(1 \mathrm{H}, \mathrm{ddd}, J=0.7,3.9,12.6 \mathrm{~Hz}), 4.21$
$(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}), 4.50(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}), 4.79(1 \mathrm{H}, \mathrm{s}), 6.47(1 \mathrm{H}, \mathrm{dd}, J=2.3,8.2 \mathrm{~Hz})$, $6.61(1 \mathrm{H}, \mathrm{t}, J=2.3 \mathrm{~Hz}), 6.69(1 \mathrm{H}, \mathrm{dd}, J=2.3,8.2 \mathrm{~Hz}), 7.17-7.20(1 \mathrm{H}, \mathrm{m}), 7.23(1 \mathrm{H}, \mathrm{t}, J$ $=8.2 \mathrm{~Hz}), 7.28-7.32(2 \mathrm{H}, \mathrm{m})$ and $7.45-7.53(1 \mathrm{H}, \mathrm{m}) \mathrm{ppm} . \mathrm{LC} / \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{t}_{\mathrm{r}}=1.78 \mathrm{~min}$ (87%), m/z $256.1\left(\mathrm{M}^{+}+\mathrm{H}\right)$; (RP, Isocratic, $\left.90 \% \mathrm{MeOH}\right)$.

1-(2-(Benzylamino)-4,6-dimethoxyphenyl)-2,2-dimethoxyethan-1-ol (11)

The crude compound was purified by chromatography (eluent 0\% to 40\% EtOAc in pet. ether) to give the product as a pale yellow oil ($1.94 \mathrm{~g}, 56 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $3.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CHOC} \underline{H}_{3}\right), 3.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CHOCH}_{3}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \operatorname{ArOCH}_{3}\right), 3.78(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArOCH}_{3}\right), 4.32\left(2 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.75\left(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}(\mathrm{OR})_{2}\right), 5.24(1 \mathrm{H}, \mathrm{d}$, $J=6.9 \mathrm{~Hz}, \operatorname{ArCH}), 5.88(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{ArH}), 5.94(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{ArH}), 7.23-7.26$ (1H, m, ArH) and $7.31-7.37(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 48.0$ $\left.\left(\mathrm{ArCH}_{2}\right), 54.9\left(\mathrm{ArOCH}_{3}\right), 55.0\left(\mathrm{CHO}_{\underline{C}}^{3}\right)_{3}\right), 55.7\left(\mathrm{ArOCH}_{3}\right), 55.9\left(\mathrm{CHOCH}_{3}\right), 68.2$ $(\mathrm{ArCHOH}), 88.2(\mathrm{ArCH}), 91.3(\mathrm{ArCH}), 103.7(\mathrm{ArCCH}), 105.2\left(\mathrm{CH}(\mathrm{OR})_{2}\right), 127.0(\mathrm{ArCH})$, $127.3(\mathrm{ArCH}), 128.6(\mathrm{ArCH}), 139.7\left(\mathrm{ArCCH}_{2}\right), 149.4(\mathrm{ArCN}), 159.3\left(\mathrm{ArCOCH}_{3}\right)$ and 161.1 $\left(\mathrm{ArCOCH}_{3}\right) \mathrm{ppm} . \mathrm{LC} / \mathrm{MS}(\mathrm{ES}+) \mathrm{t}_{\mathrm{r}}=1.27 \mathrm{~min}(95 \%), \mathrm{m} / \mathrm{z} 348.0\left(\mathrm{M}^{+}+\mathrm{H}\right) ; \mathrm{HRMS}(\mathrm{ES}+)$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{5}\left(\mathrm{M}^{+}+\mathrm{H}\right) 348.1805$, found 348.1793.

5-Bromo-2-phenyl-1,2,3,4-tetrahydroisoquinolin-4-ol (14e)

The compound was synthesized according to method A. The crude compound was obtained as a pale yellow oil ($50 \mathrm{mg}, 10 \%$) which showed: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $3.35\left(1 \mathrm{H}, \mathrm{dd}, J=2.7,12.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 3.77\left(1 \mathrm{H}, \mathrm{ddd}, J=1.0,3.9,12.7 \mathrm{~Hz}, \mathrm{C} \underline{H}_{2} \mathrm{CH}\right), 3.89$ $(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 4.13\left(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.37\left(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.72(1 \mathrm{H}$, $\mathrm{t}, J=3.3 \mathrm{~Hz}, \mathrm{C} \underline{\mathrm{HOH}}), 6.93(1 \mathrm{H}, \mathrm{tt}, J=0.9,7.2 \mathrm{~Hz}, \operatorname{ArH}), 7.03(2 \mathrm{H}, \mathrm{dd}, J=0.9,8.7 \mathrm{~Hz}$, ArH), $7.29-7.35(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.39(1 \mathrm{H}, \mathrm{dd}, J=2.0,8.2 \mathrm{~Hz}, \mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 51.0\left(\mathrm{ArCH}_{2}\right), 55.5\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}\right), 66.6(\mathrm{CHOH}), 116.7(\mathrm{ArCH}), 120.6(\mathrm{ArCH})$,
$121.9(\mathrm{ArCBr}), 129.3(\mathrm{ArCH}), 129.4(\mathrm{ArCH}), 130.3(\mathrm{ArCH}), 131.0(\mathrm{ArCH}), 135.7(\mathrm{ArCCH})$, $136.5\left(\mathrm{ArCCH}_{2}\right)$ and $150.7(\mathrm{ArCN}) \mathrm{ppm} . \mathrm{LC} / \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{t}_{\mathrm{r}}=2.20 \mathrm{~min}(86 \%), \mathrm{m} / \mathrm{z} 303.4$ $\left(\mathrm{M}^{+}+\mathrm{H}\right)\left({ }^{79} \mathrm{Br}\right), 305.4\left(\mathrm{M}^{+}+\mathrm{H}\right)\left({ }^{81} \mathrm{Br}\right)$; (RP, Isocratic, $\left.90 \% \mathrm{MeOH}\right)$. HRMS (ES +) calcd. for $\mathrm{C}_{15} \mathrm{H}_{15}{ }^{79} \mathrm{BrNO}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 304.0332, found 304.0321 ; calcd. for $\mathrm{C}_{15} \mathrm{H}_{15}{ }^{81} \mathrm{BrNO}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 306.0311 , found 306.0320 .

1-Benzyl-4,5,6-trimethoxy-1 H-indole (16p)

The compound was synthesized according to method A. The crude compound was purified by chromatography (eluent from 0% to 30% EtOAc in pet. ether) to yield the product as a pale yellow oil ($71 \mathrm{mg}, 22 \%$) which showed: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.23\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2}\right), 6.47(1 \mathrm{H}, \mathrm{s}$, ArH), $6.59(1 \mathrm{H}, \mathrm{dd}, J=0.8,3.2 \mathrm{~Hz}, \mathrm{ArH}), 6.94-6.97(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.11-7.15(2 \mathrm{H}, \mathrm{m}$, ArH) and 7.25-7.34 (3H, m, ArH) ppm. ${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 50.2\left(\mathrm{ArCH}_{2}\right), 56.3$ $\left(\mathrm{CH}_{3}\right), 60.7\left(\mathrm{CH}_{3}\right), 61.4\left(\mathrm{CH}_{3}\right), 88.2(\mathrm{ArCH}), 99.2(\mathrm{ArCH}), 115.6(\mathrm{ArCCH}), 126.2(\mathrm{ArCH})$, $126.8(\mathrm{ArCH}), 127.6(\mathrm{ArCH}), 128.7(\mathrm{ArCH}), 133.4(\mathrm{ArCN})$, $135.5\left(\mathrm{ArCOCH}_{3}\right), 137.3$ $\left(\mathrm{Ar}_{\mathrm{C} C H}^{2}\right), 145.9\left(\mathrm{Ar}_{2} \underline{\mathrm{OCH}}_{3}\right)$ and $151.0\left(\mathrm{ArCOCH}_{3}\right) \mathrm{ppm} . \mathrm{LC} / \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{t}_{\mathrm{r}}=1.02 \mathrm{~min}$ (76 \%), m/z $298.1\left(\mathrm{M}^{+}+\mathrm{H}\right)$; (RP, Isocratic, $90 \% \mathrm{MeOH}$); HRMS (ES +) calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{3}$ $\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 298.1438, found 298.1448 .

N-Benzyl-2,2-dimethoxy- N-phenethylethanamine (18)

2-Phenylethylamine ($1.3 \mathrm{~mL}, 10.0 \mathrm{mmol}$) and benzaldehyde ($1.0 \mathrm{~mL}, 10.0 \mathrm{mmol}$) were dissolved in $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ and treated with $\mathrm{NaBH}(\mathrm{OAc})_{3}(3.3 \mathrm{~g}, 15.0 \mathrm{mmol})$. After stirring for 2 h at rt, 2,2-dimethoxyacetaldehyde ($1.5 \mathrm{~mL}, 10.0 \mathrm{mmol}$) was introduced followed by $\mathrm{NaBH}(\mathrm{OAc})_{3}(3.30 \mathrm{~g}, 15.0 \mathrm{mmol})$. After stirring for 6 h , the mixture was quenched with a saturated aqueous solution of NaHCO_{3} and the aqueous layer was extracted with EtOAc $(2 \times 50 \mathrm{~mL})$. The combined organics were dried with MgSO_{4}, filtered and evaporated to
give a pale green oil $(2.52 \mathrm{~g})$ which showed: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.74(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.5.2 \mathrm{~Hz}, \mathrm{CHCH} \underline{H}_{2}\right), 2.83\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.34\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.77\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 4.43(1 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, \mathrm{ArH}), 7.15-7.23(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.24-7.37(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 33.6\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right)$, $53.9\left(\mathrm{CH}_{3}\right), 55.9\left(\mathrm{CH} \underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{~N}\right), 56.7\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}_{2} \mathrm{~N}\right)$, 59.4 $\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 104.2\left(\mathrm{CH}(\mathrm{OR})_{2}\right), 126.0(\mathrm{ArCH}), 127.0(\mathrm{ArCH}), 128.3(\mathrm{ArCH}), 128.4(\mathrm{ArCH})$, $129.0(\mathrm{ArCH}), 129.0(\mathrm{ArCH}), 139.7\left(\mathrm{ArCCH}_{2} \mathrm{~N}\right)$ and $140.7\left(\mathrm{ArCCH}_{2} \mathrm{CH}_{2}\right) \mathrm{ppm} . \mathrm{LC} / \mathrm{MS}\left(\mathrm{ES}^{+}\right)$ $t_{r}=1.08 \mathrm{~min}(98 \%), \mathrm{m} / \mathrm{z} 300.2\left(\mathrm{M}^{+}+\mathrm{H}\right)$; (RP, Isocratic, $\left.90 \% \mathrm{MeOH}\right)$. HRMS (ES+) calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right) 300.1958$, found 300.1967.

5,7,8,13-Tetrahydro-6,13-methanodibenzo[c,f]azonine (21)

The compound was synthesized according to method A. The crude compound was obtained as a yellow oil ($856 \mathrm{mg}, 83 \%$) which showed: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.35$ (1H, ddd, $\left.J=1.3,4.4,15.7 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.10(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=2.2,12.9,15.7 \mathrm{~Hz}$, $\operatorname{ArCH} \underline{H}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.31 (1 H , ddd, $J=2.2$, $12.9,15.0 \mathrm{~Hz}, \mathrm{ArCH}_{2} \underline{C H}_{2} \mathrm{~N}$), $3.46(1 \mathrm{H}$, ddd, $J=1.3$, 4.4, $\left.15.0 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.56\left(1 \mathrm{H}, \mathrm{dd}, J=0.8,13.9 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}\right), 3.67(1 \mathrm{H}, \mathrm{ddd}, J$ $\left.=1.0,5.2,13.9 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}\right), 3.88\left(1 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 4.09(1 \mathrm{H}, \mathrm{dd}, J=1.5,17.1$ $\left.\mathrm{Hz}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 4.61\left(1 \mathrm{H}, \mathrm{d}, J=17.3 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 6.96(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{ArH}), 7.03(1 \mathrm{H}$, $d, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 7.06-7.13(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.13-7.22(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.32(1 \mathrm{H}, \mathrm{dd}, J$ $=1.2,7.4 \mathrm{~Hz}, \mathrm{ArH}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.7\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 44.5\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}\right)$, $52.5\left(\mathrm{NCH}_{2} \mathrm{CH}\right), 53.6\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 56.2\left(\mathrm{ArCH}_{2} \underline{\mathrm{CH}}_{2} \mathrm{~N}\right), 125.1(\mathrm{ArCH}), 126.7(\mathrm{ArCH}), 126.8$ (ArCH), 126.9 (ArCH), 126.9 (ArCH), $129.0(\mathrm{ArCH}), 130.4(\mathrm{ArCH}), 130.9(\mathrm{ArCH}), 134.6$ $\left(\mathrm{ArCCH}_{2} \mathrm{~N}\right), 135.2(\mathrm{Ar} \underline{\mathrm{CCH}}), 140.8\left(\mathrm{ArCCH}_{2} \mathrm{CH}_{2}\right)$ and $145.0(\mathrm{Ar} \underline{\mathrm{CCH}}) \mathrm{ppm} . \mathrm{LC} / \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{t}_{\mathrm{r}}$ $=0.95 \mathrm{~min}(99 \%), \mathrm{m} / \mathrm{z} 236.0\left(\mathrm{M}^{+}+\mathrm{H}\right)$; (RP, Isocratic, $\left.90 \% \mathrm{MeOH}\right)$. HRMS (ES+) calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 236.1434, found 236.1441.

2,2-Dimethoxy-N-(3-methoxybenzyl)-N-(4-methoxybenzyl)ethanamine (22)

m-Anisaldehyde ($1.2 \mathrm{~mL}, 10.0 \mathrm{mmol}$) and 2,2-dimethoxyethylamine ($1.1 \mathrm{~mL}, 10.0 \mathrm{mmol}$) were dissolved in CHCl_{3} (50 mL) and treated with $\mathrm{NaBH}(\mathrm{OAc})_{3}(3.3 \mathrm{~g}, 15.0 \mathrm{mmol})$. After stirring for 2 h at rt, p-anisaldehyde ($1.2 \mathrm{~mL}, 10.0 \mathrm{mmol}$) was introduced followed by $\mathrm{NaBH}(\mathrm{OAc})_{3}(3.30 \mathrm{~g}, 15.0 \mathrm{mmol})$. After stirring for 6 h at rt , the mixture was quenched with a saturated aqueous solution of NaHCO_{3} and the aqueous layer was extracted with EtOAc $(2 \times 50 \mathrm{~mL})$. The combined organics were dried with MgSO_{4}, filtered and evaporated to give a pale green oil (3.49 g). The crude compound was purified by column chromatography to give the product as a colorless oil ($2.78 \mathrm{~g}, 80 \%$) which showed: 1 H NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 2.63\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 3.27\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}\left(\mathrm{OCH}_{3}\right)\right)$, $3.56-$ $3.66\left(4 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 4.46(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}$, $\left.\mathrm{CH}(\mathrm{OR})_{2}\right), 6.78(1 \mathrm{H}, \mathrm{dd}, J=2.1,7.8 \mathrm{~Hz}, \mathrm{ArH}), 6.85(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}), 6.95(2 \mathrm{H}, \mathrm{d}, J$ $=7.8 \mathrm{~Hz}, \operatorname{ArH}), 6.97-6.98(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.22(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{ArH})$ and $7.28(2 \mathrm{H}, \mathrm{d}, J=$ 8.7 Hz, ArH) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 53.6 \mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}, 55.0\left(\underline{\mathrm{CH}}{ }_{2} \mathrm{CH}\right), 55.3$ $\left(\mathrm{ArOCH}_{3}\right), 55.4\left(\mathrm{ArOCH}_{3}\right), 58.5\left(\mathrm{ArCH}_{2}\right), 58.9\left(\mathrm{ArCH}_{2}\right), 104.0(\mathrm{ArCH}), 112.4(\mathrm{ArCH}), 113.7$ (ArCH), $114.5(\mathrm{ArCH}), 121.3(\mathrm{ArCH}), 129.2(\mathrm{ArCH}), 130.2(\mathrm{ArCH}), 131.6\left(\mathrm{ArCCH}_{2}\right), 141.6$ $\left(\operatorname{Ar} \underline{C} \mathrm{CH}_{2}\right), 158.8\left(\mathrm{Ar}_{\mathrm{COCH}}^{3}\right.$) and $159.7\left(\mathrm{Ar}_{\mathrm{COCH}}^{3}\right.$) ppm. LC/MS $\left(\mathrm{ES}^{+}\right) \mathrm{t}_{\mathrm{r}}=1.03 \mathrm{~min}$ (96\%), m/z $346.3\left(\mathrm{M}^{+}+\mathrm{H}\right)$; (RP, Isocratic, $90 \% \mathrm{MeOH}$). HRMS (ES +) calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{4}$ $\left(\mathrm{M}^{+}+\mathrm{H}\right) 346.2013$, found 346.2025 .

7-Methoxy-2-(4-methoxybenzyl)-1,2,3,4-tetrahydroisoquinolin-4-ol (24)

The compound was synthesized according to method A. The crude compound was purified by column chromatography (eluent: from 0\% to 100% EtOAc in pet. ether) to give the product as a yellow oil ($223 \mathrm{mg}, 34 \%$) which showed: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 2.61 ($\left.1 \mathrm{H}, \mathrm{dd}, J=2.6,11.6 \mathrm{~Hz} \mathrm{CHCH}_{2}\right), 2.81(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 3.05(1 \mathrm{H}, \mathrm{ddd}, J=1.2,3.1,11.6$ $\left.\mathrm{Hz}, \mathrm{CHCH}_{2}\right), 3.33\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.1 \mathrm{~Hz}, \operatorname{ArCH}_{2}(\mathrm{THIQ})\right), 3.66\left(2 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}, \operatorname{ArCH}_{2}\right.$
(benzylic)), $3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.76\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.1 \mathrm{~Hz}, \mathrm{ArCH}_{2}(\mathrm{THIQ})\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $4.56(1 \mathrm{H}, \mathrm{bs}), 6.53(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \operatorname{ArH}(\mathrm{THIQ})), 6.79(1 \mathrm{H}, \mathrm{dd}, J=2.5,8.4 \mathrm{~Hz}, \mathrm{ArH}$ (THIQ)), $6.88(3 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \operatorname{ArH}($ benzyl)), $7.28(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \operatorname{ArH}($ benzyl) $)$ and $7.32(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{ArH}(\mathrm{THIQ})) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.4\left(\mathrm{CH}_{3}\right), 55.4$ $\left(\mathrm{CH}_{3}\right), 56.0\left(\mathrm{ArCH}_{2}(\mathrm{THIQ})\right), 58.5\left(\mathrm{CHCH}_{2}\right), 62.1\left(\mathrm{ArCH}_{2}(\right.$ benzyl $\left.)\right), 66.9\left(\underline{\mathrm{CHCH}_{2}}\right), 110.8$ ($\operatorname{ArCH}(\mathrm{THIQ})), 113.3(\operatorname{ArCH}(\mathrm{THIQ})), 113.9(\operatorname{ArCH}($ benzyl $)), 129.5\left(\underline{\mathrm{C}} \mathrm{HCH}_{2}\right), 129.9$ $\left(\mathrm{ArCH}_{2}(\right.$ benzyl) $), 130.3\left(\operatorname{ArCH}(\right.$ benzyl) $), 130.7(\mathrm{ArCH}(\mathrm{THIQ})), 136.5\left(\mathrm{ArCH}_{2}(\mathrm{THIQ})\right)$, $159.0\left(\mathrm{CH}_{3}\right)$ and $159.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm} . \mathrm{LC} / \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{t}_{\mathrm{r}}=0.88 \mathrm{~min}(69 \%), \mathrm{m} / \mathrm{z} 300.0\left(\mathrm{M}^{+}+\mathrm{H}\right)$; (RP, Isocratic, $90 \% \mathrm{MeOH}$). HRMS (ES +) calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3}\left(\mathrm{M}^{+}+\mathrm{H}\right) 300.1594$, found 300.1587.

2,9-Dimethoxy-7,12-dihydro-5H-6,12-methanodibenzo[c,f]azocine (25)

The compound was synthesized according to method A. The crude compound was purified by column chromatography (eluent: from 0\% to 30\% EtOAc in pet. ether) to give the product as a brown gum ($181 \mathrm{mg}, 15 \%$) which showed: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $3.35\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 3.62(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $3.87\left(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 3.90\left(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 3.90(1 \mathrm{H}, \mathrm{d}, J=14.5$ $\left.\mathrm{Hz}, \mathrm{ArCH}_{2}\right), 4.52\left(1 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.55\left(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 6.52(1 \mathrm{H}$, d, $J=2.6 \mathrm{~Hz}, \mathrm{ArH}), 6.63(1 \mathrm{H}, \mathrm{dd}, J=2.6,8.4 \mathrm{~Hz}, \mathrm{ArH}), 6.66(1 \mathrm{H}, \mathrm{dd}, J=2.6,8.4 \mathrm{~Hz}, \mathrm{ArH})$, $6.75(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}, \operatorname{ArH}), 6.89(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \operatorname{ArH})$ and $7.15(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}$, ArH) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 35.9\left(\underline{\mathrm{C}_{\mathrm{HCH}}^{2}} \mathbf{)}\right.$, $49.4\left(\mathrm{CHCH}_{2}\right), 55.2\left(\mathrm{CH}_{3}\right), 55.3$ $\left(\mathrm{CH}_{3}\right), 56.9\left(\mathrm{ArCH}_{2}\right), 57.7\left(\mathrm{ArCH}_{2}\right), 110.8(\mathrm{ArCH}), 111.9(\mathrm{ArCH}), 112.4(\mathrm{ArCH}), 112.5$ (ArCH), $126.0\left(\mathrm{ArCCH}_{2}\right), 127.1(\mathrm{ArCH}), 128.4(\mathrm{ArCH}), 132.8(\mathrm{Ar} \underline{C C H}), 135.5\left(\mathrm{ArCCH}_{2}\right)$, $142.1(\mathrm{Ar} \underline{\mathrm{C} C H}), 157.8\left(\mathrm{Ar}_{\mathrm{C}}^{\mathrm{COCH}}{ }_{3}\right)$ and $157.9\left(\mathrm{Ar}_{\mathrm{COCH}}^{3} 3\right) \mathrm{ppm} . \mathrm{LC} / \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{t}_{\mathrm{r}}=0.90 \mathrm{~min}$ (94 \%), m/z $282.2\left(\mathrm{M}^{+}+\mathrm{H}\right)$; (RP, Isocratic, $\left.90 \% \mathrm{MeOH}\right)$. HRMS (ES +) calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2}$ $\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 282.1489, found 282.1482 .

