Supporting Information

for

Mechanically induced oxidation of alcohols to aldehydes and ketones in ambient air: Revisiting TEMPO-assisted oxidations

Andrea Porcheddu*1, Evelina Colacino1,2, Giancarlo Cravotto3, Francesco Delogu4, and Lidia De Luca5

Address: 1Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS 554 bivio per Sestu, 09028 Monserrato (Ca), Italy, 2Institut des Biomolécules Max Mousseron (IBMM) UMR5247 CNRS-UM-ENSCM, Université de Montpellier, Place Eugène Bataillon, cc1703, 34095 Montpellier Cedex 05, France, 3Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria, 9 - 10125 Turin, Italy, 4Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, via Marengo 3, 09123 Cagliari, Italy and 5Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari, Italy.

Emai: Andrea Porcheddu - porcheddu@unica.it

*Corresponding author

Experimental part and NMR spectra
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of contents</td>
<td>S2</td>
</tr>
<tr>
<td>1. General methods and materials</td>
<td>S3</td>
</tr>
<tr>
<td>2. General procedures for the oxidation of benzyl alcohols</td>
<td>S4</td>
</tr>
<tr>
<td>3. Summary of 1H and 13C NMR data for carbonyl compounds 2a–v</td>
<td>S5</td>
</tr>
<tr>
<td>4. 1H and 13C NMR spectra for carbonyl compounds 2a–v</td>
<td>S10</td>
</tr>
</tbody>
</table>
1. General methods and materials

Commercially available reagents were purchased from Acros, Aldrich, Strem Chemicals, Alfa-Aesar, TCI Europe and were used as received. The solvents were purchased from Aldrich or VWR International in sure/sealed bottles over molecular sieves. Flash column chromatography was performed with EcoChrome MP Silica gel 60A, particle size 0.040–0.063 mm (230–400 mesh). All reactions were monitored by thin-layer chromatography (TLC) performed on glass-backed silica gel 60 F254, 0.2 mm plates (Merck), and compounds were visualized under UV light (254 nm) or using cerium ammonium molybdate solution with subsequent heating. The eluents were technical grade and distilled prior to use. A Spex 8000M Mixer/Mill® apparatus was used for all reactions (875 rpm, 14.6 Hz). 1H and 13C liquid NMR spectra were recorded on Varian 400 and 500 MHz NMR spectrometers at 25 °C and are calibrated using tetramethylsilyl (TMS). Proton chemical shifts are expressed in parts per million (ppm, δ scale) and are referred to the residual hydrogen in the solvent (CHCl$_3$, 7.27 ppm or DMSO-d$_6$ 2.54 ppm). Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and/or multiple resonances, br s = broad singlet), coupling constant (J) in Hertz and integration. Carbon chemical shifts are expressed in parts per million (ppm, δ scale) and are referenced to the carbon resonances of the NMR solvent (CDCl$_3$, δ 77.0 ppm or δ DMSO-d$_6$ δ 39.5 ppm). Deuterated NMR solvents were obtained from Aldrich. High-resolution mass spectra (HRMS) were recorded using an Electrospray Ionisation (ESI) spectrometer. Analysis of reaction mixture was determined by GC–MS (GC Agilent 6850, MS Agilent 5973) and equipped with HP5 universal capillary column (30 m length and 0.20 mm diameter, 0.11 film thickness) and a flame ionization detector (FID). GC oven temperature was programmed from 80 °C to 250 °C at the rate of 10 °C/min. He gas was used as a carrier gas. Temperatures of injection port and FID were kept constant at 300 °C. Retention times of different compounds were determined by injecting the pure compound under identical conditions, respectively. Melting points were determined in an open capillary on a Büchi melting point apparatus and are uncorrected. All the experiments were carried out in duplicate to ensure reproducibility of the experimental data. Yields refer to pure isolated materials. Spectroscopic data were in agreement with those of the commercially available reference compounds.
2. General procedures for the oxidation of benzyl alcohols

General procedure to prepare carbonyl compounds 2a–v. 2,2,6,6-Tetramethylpiperidine 1-oxyl (TEMPO, 9.4 mg, 0.06 mmol, 3 mol %), 2,2′-bipyridyl (9.4 mg, 0.06 mmol, 3 mol %), [Cu(CN)₄]OTf (22.6 mg, 0.06 mmol, 3 mol %) and 1-methylimidazole (NMI, 11.5 mg, 11.2 µL, 0.14 mmol, 7 mol%) were placed in a zirconia-milling beaker (45 mL) equipped with four balls (two balls × 5 mm Ø, two balls × 12 mm Ø) of the same material. The jar was sealed and ball-milled for 1 min. Then, benzyl alcohol (216.3 mg, 207 µL, 2.0 mmol), NaCl (1.0 g) together with other two zirconia balls (12 mm Ø) were added and the reaction mixture was subjected to grinding further for 10 minutes overall (two cycles of 5 minutes each). The first milling cycle was followed by a break of 2 min leaving in the meantime the uncovered jar in open air. The progress of the reaction was monitored by TLC analysis (heptane/AcOEt: 9/1 v/v) and GC–MS analysis on an aliquot of crude. Upon completion of the ball milling process, the jar was opened, the milling balls were removed and the resulting crude product (adsorbed on NaCl) was then easily transferred into a separating funnel filled with an aqueous 10% citric acid solution (20 mL). The aqueous phase was extracted with cyclopentyl methyl ether (or alternatively with AcOEt) (3 × 15 mL). The combined organic fractions were washed with H₂O (25 mL) and brine (25 mL), then dried over Na₂SO₄, and concentrated in vacuo to give benzaldehyde in high yield (195 mg, 92%) and good purity (>93% by GC analysis). Alternatively, after completion of the reaction, the resulting crude product (adsorbed on NaCl) can be also easily purified by a short column chromatography on silica gel using heptane/ethyl acetate (9/1 v/v) as the eluents to afford pure aldehyde 2b in high yield (202 mg, 95%) as a colourless liquid.
3. Summary of 1H and 13C NMR data for carbonyl compounds 2a–v

- 4-Nitrobenzaldehyde, 2a (284 mg, 94%), CAS Number 555-16-8.

1H NMR (500 MHz, DMSO-d_6) δ 10.17 (s, 1H), 8.42 (d, $J = 8.6$ Hz, 2H), 8.17 (d, $J = 8.6$ Hz, 2H). 13C NMR (126 MHz, DMSO-d_6) δ 192.3, 150.6, 140.0, 130.6, 124.3.

- Benzaldehyde, 2b (202 mg, 95%), CAS Number 100-52-7.

1H NMR (500 MHz, CDCl$_3$) δ 10.03 (s, 1H), 7.90 (d, $J = 6.7$ Hz, 2H), 7.67–7.61 (m, 1H), 7.58–7.50 (m, 2H). 13C NMR (126 MHz, CDCl$_3$) δ 192.4, 136.5, 134.5, 129.8, 129.1.

- 2-Methylbenzaldehyde, 2c (231 mg, 96%) CAS Number 529-20-4.

1H NMR (500 MHz, CDCl$_3$) δ 10.29 (s, 1H), 7.81 (d, $J = 7.6$ Hz, 1H), 7.49 (t, $J = 7.6$ Hz, 1H), 7.38 (t, $J = 7.6$ Hz, 1H), 7.29 (d, $J = 7.6$ Hz, 1H), 2.69 (s, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 195.3, 143.2, 136.8, 136.2, 134.6, 134.4, 128.9, 22.1.

- 3-Methylbenzaldehyde, 2d (228 mg, 95%), CAS Number 620-23-5.

1H NMR (500 MHz, CDCl$_3$) δ 10.01 (s, 1H), 7.72–7.69 (m, 2H), 7.50–7.41 (m, 2H), 2.46 (s, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 192.1, 138.5, 136.2, 134.9, 129.6, 128.5, 126.8, 20.8.

- 4-Methylbenzaldehyde, 2e (233 mg, 97%), CAS Number 104-87-0.
\[^{1}H \text{NMR} \ (500 \text{ MHz, CDCl}_3) \delta \ 9.99 \ (s, \ 1H), \ 7.80 \ (d, \ J = 8.0 \text{ Hz, } 2H), \ 7.35 \ (d, \ J = 8.0 \text{ Hz, } 2H), \ 2.46 \ (s, \ 3H). \]

\[^{13}C \text{NMR} \ (126 \text{ MHz, CDCl}_3) \delta \ 194.5, \ 148.1, \ 136.9, \ 132.4, \ 132.3, \ 24.5. \]

- **[1,1'-Biphenyl]-4-carbaldehyde, 2f (357 mg, 98%), CAS Number 3218-36-8.**

\[^{1}H \text{NMR} \ (500 \text{ MHz, CDCl}_3) \delta \ 10.08 \ (s, \ 1H), \ 7.97 \ (d, \ J = 8.4 \text{ Hz, } 2H), \ 7.77 \ (d, \ J = 8.4 \text{ Hz, } 2H), \ 7.66 \ (d, \ J = 7.3 \text{ Hz, } 2H), \ 7.51 \ (t, \ J = 7.3 \text{ Hz, } 2H) \ 7.45 \ (t, \ J = 7.3 \text{ Hz, } 1H). \]

\[^{13}C \text{NMR} \ (126 \text{ MHz, CDCl}_3) \delta \ 192.1, \ 147.3, \ 139.9, \ 135.5, \ 130.5, \ 129.3, \ 128.8, \ 127.9, \ 127.6. \]

- **4-Methoxybenzaldehyde, 2g (264 mg, 97%), CAS Number 123-11-5.**

\[^{1}H \text{NMR} \ (500 \text{ MHz, CDCl}_3) \delta \ 9.89 \ (s, \ 1H), \ 7.84 \ (d, \ J = 8.6 \text{ Hz, } 2H), \ 7.86 \ (d, \ J = 8.6 \text{ Hz, } 2H), \ 7.53 \ (d, \ J = 8.4 \text{ Hz, } 2H). \]

\[^{13}C \text{NMR} \ (126 \text{ MHz, CDCl}_3) \delta \ 190.4, \ 138.6, \ 132.8, \ 129.7, \ 117.5, \ 107.2. \]

- **4-Formylbenzonitrile, 2h (249 mg, 95%), CAS Number 105-07-7.**

\[^{1}H \text{NMR} \ (500 \text{ MHz, CDCl}_3) \delta \ 10.11 \ (s, \ 1H), \ 8.01 \ (d, \ J = 8.6 \text{ Hz, } 2H), \ 7.97 \ (d, \ J = 8.6 \text{ Hz, } 2H), \ 3.89 \ (s, \ 3H). \]

\[^{13}C \text{NMR} \ (126 \text{ MHz, CDCl}_3) \delta \ 194.5, \ 148.1, \ 136.9, \ 132.4, \ 132.3, \ 24.5. \]

- **4-Chlorobenzaldehyde, 2i (270 mg, 96%), CAS Number 104-88-1.**

\[^{1}H \text{NMR} \ (500 \text{ MHz, CDCl}_3) \delta \ 10.00 \ (s, \ 1H), \ 7.84 \ (d, \ J = 8.4 \text{ Hz, } 2H), \ 7.53 \ (d, \ J = 8.4 \text{ Hz, } 2H). \]

\[^{13}C \text{NMR} \ (126 \text{ MHz, CDCl}_3) \delta \ 190.9, \ 141.1, \ 134.9, \ 131.0, \ 129.6. \]
• 4-Fluorobenzaldehyde, 2j (231 mg, 93%), CAS Number 459-57-4

\[^1H \text{NMR} \ (500 \text{ MHz, CDCl}_3 \ \delta \ 9.98 \text{ (s, 1H), 7.94-7.91 (m, 2H), 7.22 (t, } J = 8.4 \text{ Hz, 2H).} \]

\[^{13}C \text{NMR} \ (126 \text{ MHz, CDCl}_3 \ \delta \ 190.6, 166.6 \ \text{ (d, } ^1J_{C-F} = 255 \text{ Hz), 133.1 \ \text{ (d, } ^4J_{C-F} = 3.0 \text{ Hz), 132.4 \ \text{ (d, } ^3J_{C-F} = 10 \text{ Hz), 116.5 \ \text{ (d, } ^2J_{C-F} = 23 \text{ Hz).} \]

• 2-Hydroxybenzaldehyde, 2k (239 mg, 98%), CAS Number 90-02-8.

\[^1H \text{NMR} \ (500 \text{ MHz, CDCl}_3 \ \delta \ 11.03 \ \text{ (bs, 1H), 9.93 \ (s, 1H), 7.61-7.52 \ (m, 2H), 7.06-6.99 \ (m, 2H).} \]

\[^{13}C \text{NMR} \ (126 \text{ MHz, CDCl}_3 \ \delta \ 199.2, 164.3, 139.6, 136.4, 123.3, 122.5, 120.2.} \]

• Furan-2-ylcarbaldehyde, 2l (173 mg, 90%, hexane/AcOEt 95/5), CAS Number 98-01-1.

\[^1H \text{NMR} \ (500 \text{ MHz, CDCl}_3 \ \delta \ 9.69 \text{ (s, 1H), 7.71 \ (d, } J = 1.6 \text{ Hz, 1H), 7.27 \ (d, } J = 3.5 \text{ Hz, 1H), 6.62 \ \text{ (dd, } ^1J = 3.5 \text{ Hz, } ^2J = 1.6 \text{ Hz, 1H).} \]

\[^{13}C \text{NMR} \ (126 \text{ MHz, CDCl}_3 \ \delta \ 178.0, 153.2, 148.2, 123.4 \ \text{ (112.7).} \]

• Trans-cinnamaldehyde, 2m (254 mg, 96%), CAS Number 14371-10-9.

\[^1H \text{NMR} \ (500 \text{ MHz, CDCl}_3 \ \delta \ 9.74 \text{ (d, } J = 7.7 \text{ Hz, 1H), 7.62-7.57 \ (m, 2H), 7.54-7.44 \ (m, 4H), 6.75 \ (dd, } J = 16.0, 7.7 \text{ Hz, 1H).} \]

\[^{13}C \text{NMR} \ (126 \text{ MHz, CDCl}_3 \ \delta \ 193.9, 152.9, 134.3, 131.5, 129.4, 128.9, 128.7.} \]

• 3-Phenylpropionaldehyde, 2n (101 mg, 39%), CAS Number 2579-22-8.
$^1\text{H NMR}$ (500 MHz, Chloroform-d) δ 9.44 (s, 1H), 7.62 ($d, J = 9.4$ Hz, 2H), 7.51 ($t, J = 7.7$ Hz, 1H), 7.42 ($t, J = 7.7$ Hz, 2H). $^{13}\text{C NMR}$ (126 MHz, CDCl$_3$) δ 176.8, 133.3, 131.3, 128.7, 119.4, 95.1, 88.4.

![Acetophenone](image)

- Acetophenone, 2o (228 mg, 95%), CAS Number 98-86-2.

$^1\text{H NMR}$ (500 MHz, CDCl$_3$) δ 8.01–7.95 (m, 2H), 7.62–7.55 (m, 1H), 7.52–7.45 (m, 2H), 2.63 (s, 3H). $^{13}\text{C NMR}$ (126 MHz, CDCl$_3$) δ 198.2, 137.3, 133.2, 128.7, 128.4, 26.7.

![Propiophenone](image)

- Propiophenone, 2p (260 mg, 97%), CAS Number 93-55-0.

$^1\text{H NMR}$ (500 MHz, CDCl$_3$) δ 8.02–7.96 (m, 2H), 7.61–7.54 (m, 1H), 7.51–7.44 (m, 2H), 3.03 (q, $J = 7.2$ Hz, 2H), 1.25 (t, $J = 7.2$ Hz, 3H). $^{13}\text{C NMR}$ (126 MHz, CDCl$_3$) δ 203.4, 139.6, 135.5, 131.2, 130.6, 34.4, 10.9.

![2-Methyl-1-phenylpropan-1-one](image)

- 2-Methyl-1-phenylpropan-1-one, 2q (276 mg, 93%), CAS Number 611-70-1.

$^1\text{H NMR}$ (500 MHz, CDCl$_3$) δ 7.96 ($d, J = 7.9$ Hz, 2H), 7.57–7.50 (m, 1H), 7.48–7.41 (m, 2H), 3.55 (hept, $J = 6.8$ Hz, 1H), 1.21 (d, $J = 6.8$ Hz, 6H). $^{13}\text{C NMR}$ (126 MHz, CDCl$_3$) δ 204.7, 136.5, 133.0, 128.8, 128.6, 35.6, 19.4.

![Benzophenone](image)

- Benzophenone, 2r (357 mg, 98%), CAS Number 119-61-9.

$^1\text{H NMR}$ (500 MHz, CDCl$_3$) δ 7.86–7.80 (m, 2H), 7.60 (td, $J = 7.8, 1.2$ Hz, 1H), 7.53–7.46 (m, 2H). $^{13}\text{C NMR}$ (126 MHz, CDCl$_3$) δ 197.0, 137.9, 132.7, 130.4, 128.6.
- 1-(m-Tolyl)ethanone, **2s** (258 mg, 96%), CAS Number **585-74-0**.

^{1}H NMR (500 MHz, CDCl\textsubscript{3}) δ 7.78–7.75 (m, 2H), 7.37–7.33 (m, 2H), 2.59 (s, 3H), 2.41 (s, 3H). \(^{13}C\) NMR (126 MHz, CDCl\textsubscript{3}) δ 198.4, 138.4, 137.2, 133.9, 128.9, 128.5, 125.6, 26.7, 21.4.

- 1-(4-Hydroxyphenyl)ethan-1-one, **2t** (250 mg, 92%), CAS Number **99-93-4**.

^{1}H NMR (500 MHz, CDCl\textsubscript{3}) δ 8.09 (s, 1H), 7.94 (d, \(J = 8.7\) Hz, 2H), 6.98 (d, \(J = 8.7\), 2H), 2.61 (s, 3H). \(^{13}C\) NMR (126 MHz, CDCl\textsubscript{3}) δ 199.0, 161.8, 131.4, 129.6, 115.6, 26.4.

- 1-(3-Nitrophenyl)ethanone, **2u** (297 mg, 90%), CAS Number **121-89-1**.

^{1}H NMR (500 MHz, CDCl\textsubscript{3}) δ 8.77 (d, \(J = 2.0\) Hz, 1H), 8.44–8.39 (m, 1H), 8.32–8.26 (m, 1H), 7.70 (t, \(J = 7.8\) Hz, 1H), 2.70 (s, 3H). \(^{13}C\) NMR (126 MHz, CDCl\textsubscript{3}) δ 195.9, 148.7, 138.6, 134.1, 130.2, 127.7, 123.5, 27.0.

- 1-(2-Chlorophenyl)ethanone, **2v** (281 mg, 91%), CAS Number **99-02-5**.

^{1}H NMR (500 MHz, CDCl\textsubscript{3}) δ 7.59–7.53 (m, 1H), 7.49–7.36 (m, 2H), 7.36–7.26 (m, 1H), 2.66 (s, 3H). \(^{13}C\) NMR (126 MHz, CDCl\textsubscript{3}) δ 200.7, 139.5, 132.3, 131.7, 131.0, 129.7, 127.3, 31.1.
4. 1H and 13C NMR spectra for carbonyl compounds 2a–v
S14