Supporting Information

for

Interactions between photoacidic 3-hydroxy-naphtho[1,2-b]quinolizinium and cucurbit[7]uril: Influence on acidity in the ground and excited state

Jonas Becher, Daria V. Berdnikova, Darinka Dzubiel, Heiko Ihmels* and Phil M. Pithan

Address: Department of Chemistry and Biology, University of Siegen and Center of Micro- and Nanochemistry and Engineering, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany

Email: Heiko Ihmels - ihmels@chemie.uni-siegen.de

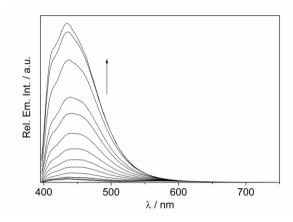
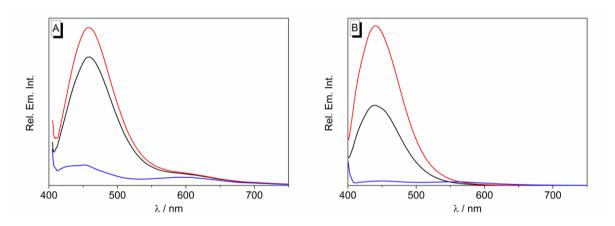
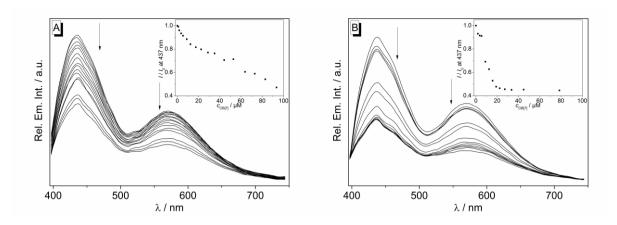
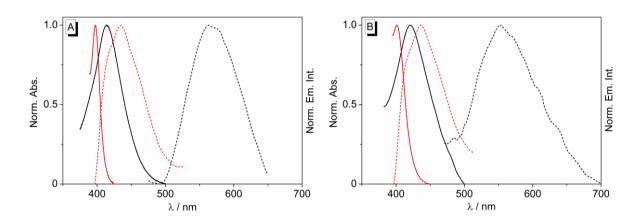

NMR spectra of compounds 2 and 5; fluorimetric titrations of 2 with acid and CB[7]; determination of 0-0 transition energies; analysis of binding isotherms from photometric titrations of 2 with CB[7]

Table of contents


1	Additional spectroscopic data	. S2
2	¹ H NMR and ¹³ C NMR spectra of derivatives 2 and 5	S5

^{*} Corresponding author


1 Additional spectroscopic data


Figure S1: Spectrofluorimetric titration of **2** ($c = 10 \,\mu\text{M}$ in H₂O) with aq HClO₄ (70%); $\lambda_{\text{ex}} = 380 \,\text{nm}$. The arrow indicates the changes of the spectrum upon successive addition of HClO₄.

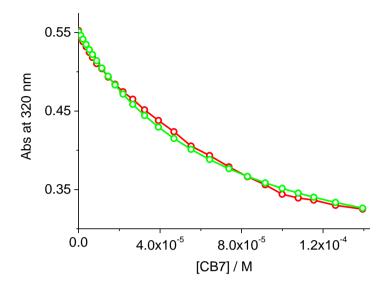

Figure S2: Emission spectra of **2** (c_L = 10 μ M) in MeOH (A, λ_{ex} = 400 nm) and MeCN (B, λ_{ex} = 398 nm). Black lines: without addition, red: upon addition of CF₃COOH, blue: upon addition of DBU.

Figure S3: Spectrofluorimetric titration ($\lambda_{\rm ex}$ = 380 nm) of CB[7] (c = 453 μ M) to naphthoquinolizinium **2** (c = 15 μ M) in BPE buffer (with 10% v/v DMSO) at pH 5 (A) und pH 7 (A). Arrows indicate the development of bands with increasing concentration of CB[7]. Insets: Plot of relative emission, II_0 , at λ = 437 nm versus concentration of CB[7].

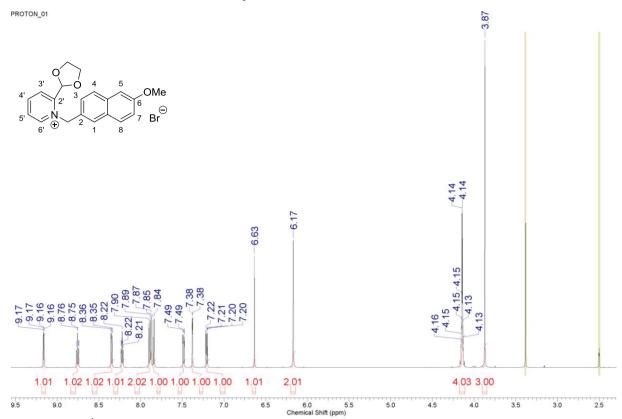


Figure S4: Normalized absorption (continuous lines) and emission bands (dashed lines) of naphthoquinolizinium **2** ($c = 15 \,\mu\text{M}$) in the absence (A) and in the presence (B) of CB[7] ($c_{\text{CB[7]}} = 100 \,\mu\text{M}$); red: major band under acidic conditions, black: major band under alkaline conditions.

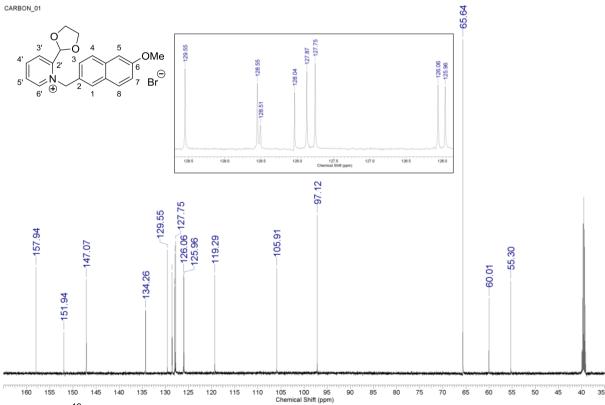
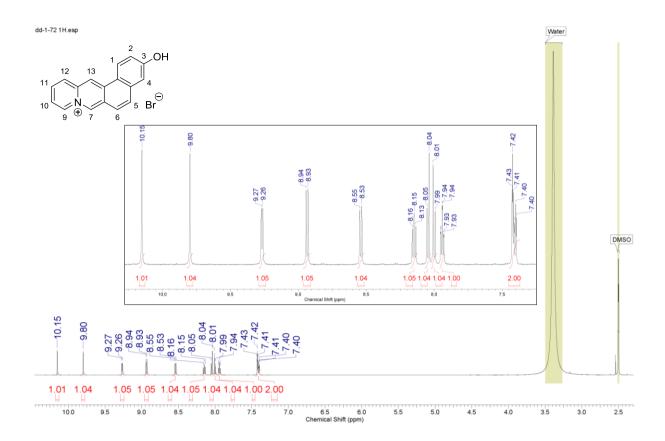


Figure S5: Binding isotherms, i.e. plot of absorption of **2** at $\lambda = 320$ nm versus $c_{CB[7]}$ obtained from photometric titration of **2** with CB[7] at pH 5; red = experimental data, green: fit to the theoretical model.


2 ¹H NMR and ¹³C NMR spectra of derivatives 2 and 5

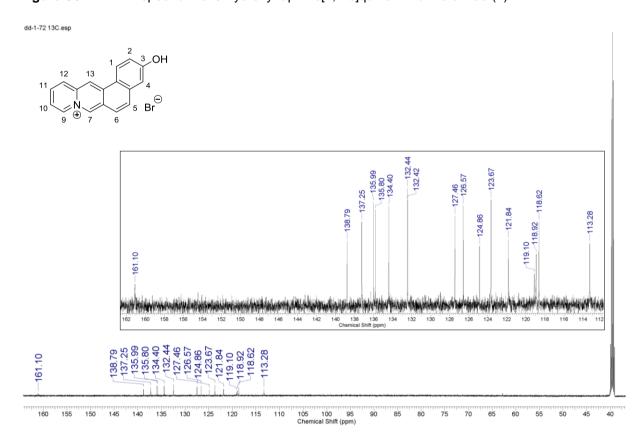

Figure S6: ¹H NMR spectrum of 2-(1,3-dioxolan-2-yl)-1-[(6-methoxynaphth-2-yl)methyl]pyridinium bromide (5).

Figure S7: ¹³C NMR spectrum of 2-(1,3-dioxolan-2-yl)-1-[(6-methoxynaphth-2-yl)methyl]pyridinium bromide (**5**).

Figure S8: ¹H NMR spectrum of 3-hydroxynaphtho[1,2-*b*]quinolizinium bromide (2).

Figure S9: ¹³C NMR spectrum of 3-hydroxynaphtho[1,2-*b*]quinolizinium bromide (**2**).