Supporting Information

for

Hydrolysis, polarity, and conformational impact of C-terminal partially fluorinated ethyl esters in peptide models

Vladimir Kubyshkin* and Nediljko Budisa*

Address: Biocatalysis group, Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, Berlin 10623, Germany

Email: Vladimir Kubyshkin - kubyshkin@win.tu-berlin.de; Nediljko Budisa - nediljko.budisa@tu-berlin.de

*Corresponding author

Amide equilibrium constants (Table S1) and copies of the NMR and CD spectra

Table of contents

Table S1 S2
Copies of the NMR spectra for compounds 1–5 S3–S25
1H NMR spectrum of compound 7 S26
NMR spectra of 3–5 with the europium shift reagent S27–S29
NMR spectra of the peptides S30–S36
Circular dichroism spectra for the peptides S37–S39
Hydrolysis of the peptides S40–S44
Remark: We use the notation ✔ (checkmark)-shape for description of the log P tendencies. On our opinion, this should be distinguished from more simple notation ‘V-shape’ due to the asymmetry of both the dip position and the edge highs.

Table S1: Amide equilibrium constants for compounds 1–5 as determined by 1H and 19F NMR at 298 K in different solvents.

<table>
<thead>
<tr>
<th>compound</th>
<th>$K_{\text{trans/cis}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D$_2$O</td>
</tr>
<tr>
<td></td>
<td>ε 80.1</td>
</tr>
<tr>
<td>1</td>
<td>4.95±0.05</td>
</tr>
<tr>
<td>2</td>
<td>4.60±0.08</td>
</tr>
<tr>
<td>3</td>
<td>4.74±0.04</td>
</tr>
<tr>
<td>4</td>
<td>4.95±0.05</td>
</tr>
<tr>
<td>5</td>
<td>5.48±0.14</td>
</tr>
</tbody>
</table>
Copies of the NMR spectra for compounds 1–5

1H NMR spectrum of 1 in deuterium oxide at 700 MHz

Current Data Parameters
NAME: \text{wI_FI2m-esters1}
EXPNO: 492
PROCNO: 1

F2 - Acquisition Parameters
Date: 20170707
Time: 10:33
INSTRUM: spect
PROBHD: 5 mm PATXI 1H/
PULPROG: zg
TD: 65536
SOLVENT: D$_2$O
NS: 1
DS: 0
SWH: 8033.333 Hz
FIDRES: 0.127157 Hz
AQ: 3.9221599 sec
RG: 33.06
DW: 60.000 usec
DE: 10.00 usec
TE: 299.0 K
D1: 2.00000000 sec
TD0: 1

====== CHANNEL f1 ======
SFO1: 700.1732985 Mhz
NUC1: 1H
P1: 10.50 usec
PLW1: 16.00000000 W

F2 - Processing parameters
SI: 32768
SF: 700.1700000 MHz
WOW: EM
SSB: 0
LB: 0.30 Hz
QE: 0
PC: 100.00
13C-1H NMR spectrum of 1 in deuterium oxide at 126 MHz
1H NMR spectrum of 1 in benzene-d_6 at 700 MHz
13C{1H} NMR spectrum of 1 in benzene-d$_6$ at 176 MHz
1H NMR spectrum of 2 in deuterium oxide at 700 MHz
$^{13}C\{^1H\}$ NMR spectrum of 2 in deuterium oxide at 176 MHz
1H NMR spectrum of 2 in benzene-d$_6$ at 700 MHz
13C{1H} NMR spectrum of 2 in benzene-d$_6$ at 176 MHz
'H and 19F NMR spectra of 3 in deuterium oxide at 500 MHz
13C[1]H NMR spectrum of 3 in deuterium oxide at 126 MHz
19F and 19F(1H) NMR spectra of 3 in deuterium oxide at 471 MHz
1H NMR spectrum of 3 in benzene-d$_6$ at 700 MHz
\(^{13}\)C\(\{^1\text{H}\}\) NMR spectrum of 3 in benzene-\(d_6\) at 176 MHz
'H and 1H{19F} NMR spectra of 4 in deuterium oxide at 500 MHz
19F and 19F(1H) NMR spectra of 4 in deuterium oxide at 471 MHz

19F spectrum

19F(1H) spectrum
1H NMR spectrum of 4 in benzene-d_6 at 700 MHz
13C{1H} NMR spectrum of 4 in benzene-d$_6$ at 176 MHz
1H NMR spectrum of 5 in deuterium oxide at 700 MHz
13C(1H) NMR spectrum of 5 in deuterium oxide at 176 MHz
\(^{19}\)F and \(^{19}\)F\(^{(1)}\)H\} NMR spectra of 5 in deuterium oxide at 471 MHz
1H NMR spectrum of 5 in benzene-d$_6$ at 700 MHz
13C1H NMR spectrum of 5 in benzene-d$_6$ at 176 MHz
Spectra of 5 (in methanol-d$_4$, 700 MHz) obtained after esterification via chloranhydride (bottom) and in acidic trifluoroethanol (top)
1H NMR spectrum of compound 7

1H NMR spectrum of compound 7 in deuterium oxide at 700 MHz
NMR spectra of 3-5 with the europium shift reagent

19F(1H) NMR spectra (inverse-gated decoupling) of 3 in dichloromethane-d_2 upon addition of Eu$^{3+}$ shifting reagent (two enantiomers)

![NMR spectra diagram]

- 1 equiv. Eu$^{3+}$
- 1/2 equiv. Eu$^{3+}$
- 0 equiv. Eu$^{3+}$

ppm
$^{19}\text{F}[^1\text{H}]$ NMR spectra (inverse-gated decoupling) of 4 in dichloromethane-d_2 upon addition of Eu$^{3+}$ shifting reagent (single enantiomer)
19F(1H) NMR spectra (inverse-gated decoupling) of 5 in dichloromethane-d$_2$ upon addition of Eu$^{3+}$ shifting reagent (two enantiomers)
NMR spectra of the peptides

1H 90-pulse NMR spectra in deuterium oxide
1H 1D stimulated echo NMR spectra in deuterium oxide at 700 MHz
19F NMR spectra of the peptides in deuterium oxide at 471 MHz

10b 4 mM

9b 7 mM

8b 8 mM

-126.0 -126.5 -127.0 -127.5 -128.0 ppm
Circular dichroism spectra for the peptides

in methanol:

in aqueous buffer:
in methanol:

![Graph showing absorbance changes in methanol]

in aqueous buffer:

![Graph showing absorbance changes in aqueous buffer]
in methanol:

in aqueous buffer:
Hydrolysis of the peptides

Starting peptide concentrations 8b – 5 mM, 9b – 5 mM, 10b – 2.5 mM

peptide 8b, series # 1

19F{1H} spectra

- 14 days
- 13 days
- 10 days
- 7 days
- 5 days
- 4.5 days
- 3 days
- 0 days

peptide 8b
difluoroethanol

ppm
peptide 9b, series # 1

19F{1H} spectra
difluoroethanol

14 days

13 days

10 days

7 days

6 days

5 days

4.5 days

3 days

0 days

ppm -126.0 -126.5 -127.0 -127.5 -128.0
peptide 10b, series # 1

19F{1H} spectra

- 14 days
- 13 days
- 10 days
- 7 days
- 6 days
- 5 days
- 4.5 days
- 3 days
- 0 days

ppm
peptide 9b, series # 2

19F{1H} spectra

9 days

8 days

5 days

3 days

2 days

1 days

0.5 days

0 days

-126.0 -126.5 -127.0 -127.5 -128.0 ppm
peptide 10b, series # 2

19F{1H} spectra

9 days

8 days

5 days

3 days

2 days

1 days

0.5 days

0 days

-126.0
-126.5
-127.0
-127.5
-128.0
ppm

difluoroethanol

peptide 10b