Supporting Information for

Syntheses, structures, and stabilities of aliphatic and aromatic fluorous iodine(I) and iodine(III) compounds: the role of iodine Lewis basicity

Tathagata Mukherjee^{1§}, Soumik Biswas¹, Andreas Ehnbom¹, Subrata K. Ghosh¹, Ibrahim El-Zoghbi², Nattamai Bhuvanesh¹, Hassan S. Bazzi*² and John A. Gladysz*¹

Address: ¹Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas, 77842-3012, USA, and ²Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar

*Corresponding author

Email: Hassan S. Bazzi - bazzi@tamu.edu; John A. Gladysz - gladysz@mail.chem.tamu.edu §Present address: Dr. Tathagata Mukherjee, Intel Corporation, Hillsboro, Oregon.

Experimental section continued

General. Reactions and workups were carried out in air unless noted or Schlenk ware is specified. NMR spectra were recorded on standard FT spectrometers and referenced as follows (δ in ppm): 1 H, residual internal CHCl₃ (7.26), CHDCl₂ (5.32), or acetone- d_5 (2.05); 13 C{ 1 H}, internal CDCl₃ (77.0), CD₂Cl₂ (53.8), acetone- d_6 (29.9), or C₆F₆ (140.0); 19 F{ 1 H}, internal C₆-F₆ (-164.9) or 1,3,5-(CF₃)₂C₆H₃Br (-63.6). IR spectra were recorded using a Shimadzu IRAffinity-1 spectrometer with a Pike MIRacle ATR system (diamond/ZnSe crystal). Microanalyses were performed by Atlantic Microlab.

Solvents were treated as follows: hexanes, Et_2O , and CH_2Cl_2 , dried and degassed using a Glass Contour solvent purification system; $CF_3C_6H_5$ (Sigma Aldrich, 99%), handled under N_2 ; CH_3CN , distilled from CaH_2 ; MeOH (BDH, 99.8%); ethylacetate (BDH, ACS grade), acetone (BDH, ACS grade), petroleum ether (BDH, ACS grade), perfluorohexane (FC-72; SynQuest Laboratories), perfluoroheptane (FC-77; SynQuest Laboratories), $CF_3C_6F_{11}$ (SynQuest Laboratories), C_6F_6 (TCI, >99%), and all deuterated solvents (Cambridge Isotope Laboratories), used as received (some samples of acetone- d_6 were wet).

Chemicals were used as follows: anhydrous pyridine (Sigma Aldrich sure/sealed, 99.8%), handled under N_2 ; aqueous NaOCl (Ricca Chemical Company, ca. 2.5% w/w), stored in a refrigerator; Tf_2O (Sigma Aldrich, \geq 99%), stored in a glove box; fluorous iodides or alcohols ($R_{fn}I$, $R_{fn}CH_2OH$, $R_{fOx}CH_2OH$; SynQuest Laboratories, 97-99%), trifluoroacetic acid (Alfa Aesar, 99%), CH_3CO_2H (BDH, ACS grade), conc. HCl (12 N, Macron/ACS grade), H_2SO_4 (36 N, BDH/ACS grade), fuming H_2SO_4 (Alfa Aesar), N-iodosuccinimide (NIS; Alfa Aesar, 97%), NaI (EMD, ACS grade), H_5IO_6 (Alfa Aesar, 99%), Ph_2SiMe_2 (>97%, TCI) and silica (SiliaFlash® F60, 230-400 mesh), used as purchased.

R_{f11}CH₂OTf. A Schlenk flask was flame dried, allowed to cool, charged with R_{f11}CH₂-OH (5.10 g, 8.52 mmol) and anhydrous CF₃C₆H₅ (50 mL) under a N₂ flow, capped, and placed in an ice bath. Then pyridine (1.0 mL, 1.0 g, 13 mmol) and (after 30 min) Tf₂O (3.0 mL, 5.3 g, 14 mmol) were added dropwise by syringe with stirring. The ice bath was allowed to warm to room temperature. After 16 h, H₂O (60 mL) was added. After 30 min, the organic phase was

separated and dried (MgSO₄). The solvent was removed by rotary evaporation. The residue was dissolved in petroleum ether/ethyl acetate (4:1 v/v). The solution was filtered through a silica pad (3 × 5 cm) and the solvent was removed by rotary evaporation to give $R_{f11}CH_2OTf$ as a white solid (3.82 g, 5.21 mmol, 61%), mp 77.2-79.9 °C (capillary). Anal. Calcd for $C_{13}H_2F_{26}O_3S$: C 21.33, H 0.28, F 67.46, S 4.38. Found C 21.44, H 0.31, F 67.21, S 4.15.

NMR (δ in ppm): ¹H (acetone- d_6 , 500 MHz) 5.55 (t, ³ $J_{\rm HF}$ = 13 Hz, 2H, CH₂); ¹⁹F{¹H} (acetone- d_6 , 470 MHz) -75.5 (s, 3F, SO₂CF₃), -81.7 (t, ⁴ $J_{\rm FF}$ = 10 Hz [s1-s3], 3F, CF₃), -120.2 (m, 2F, CF₂), -122.2 (m, 12F, 6CF₂), -123.2 (m, 4F, 2CF₂), -126.7 (m, 2F, CF₂); ¹³C{¹H} (acetone- d_6 , 125 MHz, partial) 70.0 (t, ² $J_{\rm CF}$ = 28 Hz, CH₂). IR (powder film, cm⁻¹): 2924 (w), 2855 (w), 1418 (m), 1202 (s), 1140 (s), 1103 (w), 1023 (m), 854 (m), 822 (m).

 $R_{f13}CH_2OTf$. $R_{f13}CH_2OH$ (6.50 g, 9.29 mmol), anhydrous $CF_3C_6H_5$ (50 mL), C_6F_6 (10 mL), pyridine (1.2 mL, 1.1 g, 14 mmol), and (after 2 h) Tf_2O (3.5 mL, 5.8 g, 15 mmol) were combined in a procedure analogous to that for $R_{f11}CH_2OTf$. A similar workup (24 h prior to H_2O addition; drying with Na_2SO_4) gave $R_{f13}CH_2OTf$ as a white solid (4.64 g, 5.57 mmol, 60%) mp 105.3-106.3 °C (capillary). Anal. Calcd for $C_{15}H_2F_{30}O_3S$: C 21.65, H 0.24, S 3.85. Found C 21.71, H 0.18, S 3.71.

NMR (δ in ppm): 1 H (acetone- d_{6} , 500 MHz) 5.55 (t, $^{3}J_{HF}$ = 13 Hz, 2H, CH₂); 19 F{ 1 H} (acetone- d_{6} , 470 MHz) -75.5 (s, 3F, SO₂CF₃), -81.6 (t, $^{4}J_{FF}$ = 10 Hz [s1-s3], 3F, CF₃), -120.2 (m, 2F, CF₂), -122.2 (m, 16F, 8CF₂), -123.3 (m, 4F, 2CF₂), -126.8 (m, 2F, CF₂); 13 C{ 1 H} (C₆F₆, 125 MHz, partial) 68.6 (t, $^{2}J_{CF}$ = 27 Hz, CH₂). IR (powder film, cm⁻¹): 3000 (w), 2960 (w), 1418 (m), 1204 (s), 1142 (s), 1081 (w), 1028 (m), 893 (w), 824 (m).

 $R_{f15}CH_2OTf$. A Schlenk flask was flame dried, allowed to cool, charged with $R_{f15}CH_2-OH$ (10.0 g, 12.5 mmol) and anhydrous $CF_3C_6H_5$ (50 mL) under a N_2 flow, and capped. Then pyridine (1.50 mL, 1.47 g, 18.6 mmol) and (after 1 d) Tf_2O (4.50 mL, 7.61 g, 27.0 mmol) were added dropwise by syringe with stirring. After 1 d, H_2O (180 mL) was added. The mixture was filtered (filtrate = A). The filter cake was washed with acetone (10 mL) and this filtrate was discarded. The remaining filter cake was transferred to a round bottom flask and taken up in CF_3C_6 -

 H_5 (75 mL) with stirring. After 30 min, this mixture was filtered. This filtrate was combined with the original filtrate (A) and dried (Na₂SO₄). The solvent was removed by rotary evaporation, and hexanes/ethyl acetate (4:1 v/v, 500 mL) was added. The flask was placed in a 50 °C oil bath. The mixture was stirred until the solid completely dissolved. The solution was kept at -35 °C until a precipitate formed. After 8-9 h, the solid was collected by filtration and washed with cold hexanes to give $R_{f15}CH_2OTf$ as a white solid (2.61 g, 2.80 mmol, 22%), mp 127.4-128.2 °C (capillary). Anal. Calcd for $C_{17}H_2F_{34}O_3S$: C 21.90, H 0.22, F 69.29, S 3.44. Found C 21.01, H 0.13, F 66.62, S 3.52 [s4].

NMR (δ in ppm): 1 H (acetone- d_{6} , 500 MHz) 5.48 (t, ${}^{3}J_{HF} = 13$ Hz, 2H, CH₂); 19 F { 1 H} (acetone- d_{6} , 470 MHz) -75.5 (s, 3F, SO₂CF₃), -81.6 (t, ${}^{4}J_{FF} = 10$ Hz [s1-s3], 3F, CF₃), -120.2 (m, 2F, CF₂), -122.1 (m, 20F, 10CF₂), -123.2 (m, 4F, 2CF₂), -126.7 (m, 2F, CF₂); 13 C { 1 H} (acetone- d_{6} /C₆F₆, 125 MHz, partial) 68.6 (t, ${}^{2}J_{CF} = 28$ Hz, CH₂). IR (powder film, cm⁻¹): 2922 (w), 2855 (w), 1418 (m), 1204 (s), 1144 (s), 1099 (w), 1028 (m), 872 (w), 825 (m).

 $R_{f11}CH_2I$. A round bottom flask was charged with $R_{f11}CH_2OTf$ (3.01 g, 4.11 mmol), NaI (10.2 g, 68.0 mmol), and acetone (30 mL), and fitted with a condenser. The flask was placed in a 75 °C oil bath and the mixture was stirred. After 1 d, the bath was removed and the mixture was allowed to cool. The solvent was removed by rotary evaporation. Then Et_2O (50 mL) and H_2O (40 mL) were added with stirring. After 5 min, the dark brown organic phase was separated, washed with saturated aqueous $Na_2S_2O_3$ until it became colorless, and dried (Na_2SO_4). The solvent was removed by rotary evaporation and the residue was dissolved in hexanes/ethyl acetate (20:1 v/v). The solution was kept at -35 °C until a precipitate formed. The solid was collected by filtration and washed with cold hexanes to give $R_{f11}CH_2I$ as a white solid (2.00 g, 2.82 mmol, 69%), mp (capillary): 97.8-98.2 °C. Anal. Calcd for $C_{12}H_2F_{23}I$: C 20.30, H 0.28, F 61.54, I 17.87. Found: C 20.20, H 0.16, F 61.29, I 17.68.

NMR (δ in ppm, acetone- d_6): ¹H (500 MHz) 4.06 (t, ³ $J_{\rm HF}$ = 19 Hz, 2H, CH₂); ¹⁹F{¹H} (470 MHz) -81.6 (t, ⁴ $J_{\rm FF}$ = 10 Hz [s1-s3], 3F, CF₃), -107.0 (m, 2F, CF₂), -122.2 (m, 14F, 7CF₂), -123.2 (m, 2F, CF₂), -126.7 (m, 2F, CF₂); ¹³C{¹H} (125 MHz. partial) -3.8 (t, ² $J_{\rm CF}$ =

25 Hz, CH₂). IR (powder film, cm⁻¹): 2986 (w), 2874 (w), 1422 (w), 1373 (w), 1348 (w), 1234 (s), 1200 (s), 1140 (s), 1040 (m), 858 (m).

 $R_{f13}CH_2I$. A sample of $R_{f13}CH_2OTf$ (0.335 g, 0.403 mmol), NaI (3.59 g, 23.9 mmol), and acetone (8 mL) were combined in a procedure analogous to that for $R_{f11}CH_2I$. A similar workup (Et₂O/30 mL and H₂O/20 mL; after the addition of hexanes/ethyl acetate, the flask was placed in a 50 °C oil bath and the mixture stirred until the solid completely dissolved) gave R_{f13} -CH₂I as a white solid (0.190 g, 0.235 mmol, 58%), mp 124.4-124.9 °C (capillary). Anal. Calcd for $C_{14}H_2F_{27}I$: C 20.76, H 0.25, F 63.33, I 15.67. Found C 20.81, H 0.20, F 63.33, I 15.48.

NMR (δ in ppm): ¹H (acetone- d_6 , 500 MHz) 4.06 (t, ³ J_{HF} = 19 Hz, 2H, CH₂); ¹⁹F{¹H} (acetone- d_6 , 470 MHz) -81.7 (t, ⁴ J_{FF} = 10 Hz [s1-s3], 3F, CF₃), -107.0 (m, 2F, CF₂), -122.2 (m, 18F, 9CF₂), -123.2 (m, 2F, CF₂), -126.7 (m, 2F, CF₂); ¹³C{¹H} (C₆F₆, 125 MHz, partial) -7.0 (t, ² J_{CF} = 26 Hz, CH₂). IR (powder film, cm⁻¹): 1422 (w), 1375 (w), 1354 (w), 1201 (s), 1144 (s), 1045 (m), 812 (m).

 $R_{f15}CH_2I$. A sample of $R_{f15}CH_2OTf$ (0.282 g, 0.303 mmol), NaI (1.45 g, 9.67 mmol), and acetone (5 mL) were combined in a procedure analogous to that for $R_{f11}CH_2I$. A similar workup ($Et_2O/20$ mL and $H_2O/15$ mL) gave $R_{f15}CH_2I$ as a white solid (0.166 g, 0.182 mmol, 60%), mp 146.0-146.5 °C (capillary). Anal. Calcd for $C_{16}H_2F_{31}I$: C 21.12, H 0.22, F 64.72. Found: C 21.42, H 0.23, F 64.44.

NMR (δ in ppm): ¹H (acetone- d_6 , 500 MHz) 4.06 (t, ³ J_{HF} = 18 Hz, 2H, CH₂); ¹⁹F{¹H} (acetone- d_6 , 470 MHz) -81.6 (t, ⁴ J_{FF} = 10 Hz [s1-s3], 3F, CF₃), -107.0 (m, 2F, CF₂), -122.1 (m, 22F, 11CF₂), -123.2 (m, 2F, CF₂), -126.7 (m, 2F, CF₂); ¹³C{¹H} (C₆F₆, 125 MHz, partial) -7.0 (t, ² J_{CF} = 26 Hz, CH₂). IR (powder film, cm⁻¹): 2922 (w), 2853 (w), 1420 (w), 1377 (w), 1335 (w), 1204 (s), 1148 (s), 1049 (m), 870 (w).

 $R_{f11}CH_2ICl_2$. A round bottom flask was charged with $R_{f11}CH_2I$ (1.01 g, 1.42 mmol), C_6F_6 (1.4 mL), and CH_3CN (14 mL) with stirring. Aqueous NaOCl (2.5% w/w, 21 mL) and then conc. HCl (10 mL) were slowly added. After 2 h, a pale yellow precipitate began to form. After 5 h, the mixture was filtered. The filter cake was washed with hexane (10 mL) and air dried (4-5 h)

to give $R_{f11}CH_2ICl_2$ as pale yellow powder (0.90 g, 1.15 mmol, 81%), mp 122.1-125.4 °C (capillary). Anal. Calcd for $C_{12}H_2F_{23}Cl_2I$: C 18.46, H 0.26, F 55.96, Cl 9.08. Found C 16.76, H 1.16, F 50.15, Cl 7.98 [s4].

NMR (δ in ppm, acetone- d_6): ¹H (500 MHz) 5.44 (t, ³ J_{HF} = 17 Hz, 2H, CH₂); ¹⁹F{¹H} (470 MHz, partial) –106.7 (m, 2F, CF₂). IR (powder film, cm⁻¹): 3030 (w), 2970 (w), 1392 (w), 1373 (w), 1348 (w), 1315 (w), 1202 (s), 1148 (s), 1046 (m), 860 (m).

 $R_{f13}CH_2ICl_2$. A sample of $R_{f13}CH_2I$ (0.147 g, 0.178 mmol), C_6F_6 (5 mL), CH_3CN (3.5 mL), aqueous NaOCl (2.5% w/w, 3 mL), and conc. HCl (2 mL) were combined in a procedure analogous to that for $R_{f11}CH_2ICl_2$. An identical workup gave $R_{f13}CH_2ICl_2$ as a pale yellow powder (0.052 g, 0.059 mmol, 33%), mp 164.1-166.2 °C (capillary).

NMR (δ in ppm, acetone- d_6): ¹H (500 MHz) 5.43 (t, ³ J_{HF} = 17 Hz, 2H, CH₂); ¹⁹F {¹H} (470 MHz, partial) -106.7 (m, 2F, CF₂). IR (powder film, cm⁻¹): 3038 (w), 2970 (w), 1391 (w), 1377 (w), 1356 (w), 1325 (w), 1202 (s), 1146 (s), 1057 (m), 810 (m).

 $R_{fO2}CH_2OTf$. A Schlenk flask was flame dried, allowed to cool, charged with $R_{fO2}CH_2-OH$ (4.66 g, 7.18 mmol) and anhydrous $CF_3C_6H_5$ (40 mL) under a N_2 flow, capped, and placed in an ice bath. Then pyridine (0.90 mL, 0.88 g, 11.1 mmol) and (after 30 min) Tf_2O (2.60 mL, 4.46 g, 15.8 mmol) were added dropwise by syringe with stirring. The ice bath was allowed to warm to room temperature. After 15 h, H_2O (50 mL) was added. After 30 min, the organic phase was separated and the organic phase was dried (Na_2SO_4). The solvent was removed by rotary evaporation. The residue was dissolved in hexane/ethyl acetate (4:1 v/v). The solution was filtered through a silica pad (3 × 5 cm). The solvent was removed by rotary evaporation to give $R_{fO2}-CH_2OTf$ as a colorless oil (5.18 g, 6.64 mmol, 92%). Anal. Calcd for $C_{13}H_2F_{26}O_6S$: C 20.01, H 0.26, F 63.31, S 4.11. Found C 20.28, H 0.17, F 63.36, S 3.95.

NMR (δ in ppm, acetone- d_6): ¹H (500 MHz) 5.57 (d, ³ J_{HF} = 11 Hz, 2H, CH₂); ¹⁹F {¹H} (470 MHz) -75.6 to -75.7 (m [s5], 3F, SO₂CF₃), -80.4 to -83.2 (m, 18F), -130.5 (m, 2F), -135.9 to -136.5 (m, 1F), -145.3 to -145.9 (m, 2F); ¹³C{¹H} (125 MHz, partial) 69.8 (d, ² J_{CF} = 33 Hz, CH₂). IR (oil film, cm⁻¹): 2990 (w), 1437 (m), 1306 (m), 1229 (s), 1200 (s), 1140 (s), 991

(s), 745 (m).

 $R_{fO3}CH_2OTf$. A sample of $R_{fO3}CH_2OH$ (4.89 g, 5.97 mmol), anhydrous $CF_3C_6H_5$ (30 mL), pyridine (0.75 mL, 0.73 g, 9.17 mmol), and Tf_2O (2.20 mL, 3.71 g, 13.1 mmol) were combined in a procedure analogous to that for $R_{fO2}CH_2OTf$. An identical workup gave $R_{fO3}CH_2OTf$ as a colorless oil (5.24 g, 5.54 mmol, 93%). Anal. Calcd for $C_{16}H_2F_{32}O_7S$: C 20.31, H 0.21, F 64.25, S 3.39. Found: C 20.90, H 0.15, F 65.82, S 2.46 [s4].

NMR (δ in ppm, acetone- d_6): ¹H (500 MHz) 5.57 (d, ³ J_{HF} = 11 Hz, 2H, CH₂); ¹⁹F {¹H} (470 MHz) -75.6 to -75.7 (m [s5], 3F, SO₂CF₃), -80.3 to -83.1 (m, 22F), -130.5 (m, 2F), -135.9 to -136.6 (m, 1F), -145.0 to -145.9 (m, 4F); ¹³C {¹H} (125 MHz, partial) 69.8 (d, ² J_{CF} = 32 Hz, CH₂). IR (oil film, cm⁻¹): 2990 (w), 1802 (w), 1439 (m), 1302 (m), 1306 (s), 1198 (s), 1126 (s), 982 (s), 746 (m).

 $R_{fO4}CH_2OTf$. A sample of $R_{fO4}CH_2OH$ (4.92 g, 5.02 mmol), anhydrous $CF_3C_6H_5$ (50 mL), pyridine (0.620 mL, 0.609 g, 7.67 mmol) and Tf_2O (1.89 mL, 3.17 g, 11.2 mmol) were combined in a procedures analogous to that for $R_{fO2}CH_2OTf$. An identical workup gave $R_{fO4}-CH_2OTf$ as a colorless oil (4.80 g, 4.32 mmol, 84%). Anal. Calcd for $C_{19}H_2F_{38}O_8S$: C 20.52, H 0.18, F 64.91, S 2.88. Found C 20.68, H 0.15, F 64.98, S 3.01.

NMR (δ in ppm, acetone- d_6): ¹H (500 MHz) 5.58 (d, ³ J_{HF} = 12 Hz, 2H, CH₂); ¹⁹F {¹H} (470 MHz) -75.6 to -75.7 (m [s5], 3F, SO₂CF₃), -80.3 to -83.1 (m, 28F), -130.4 (m, 2F), -136.3 (m, 1F), -145.0 to -145.8 (m, 4F); ¹³C {¹H} (125 MHz, partial) 69.8 (d, ² J_{CF} = 28 Hz, CH₂). IR (oil film, cm⁻¹): 2992 (w), 1802 (w), 1437 (m), 1306 (m), 1227 (s), 1198 (s), 1126 (s), 982 (s), 746 (m).

 $R_{fO5}CH_2OTf$. A sample of $R_{fO5}CH_2OH$ (1.90 g, 1.66 mmol), anhydrous $CF_3C_6H_5$ (10 mL), pyridine (0.21 mL, 0.21 g, 2.6 mmol) and Tf_2O (0.62 mL, 1.03 g, 3.66 mmol) were combined in a procedure analogous to that for $R_{fO2}CH_2OTf$. As identical workup gave $R_{fO5}CH_2OTf$ as a colorless oil (1.91 g, 1.49 mmol, 90%). Anal. Calcd for $C_{22}H_2F_{44}O_9S$: C 20.67, H 0.16, F 65.40, S 2.51. Found C 20.86, H 0.14, F 65.13, S 2.34.

NMR (δ in ppm, acetone- d_6): ¹H (500 MHz) 5.57 (d, ³ J_{HF} = 12 Hz, 2H, CH₂); ¹⁹F{¹H}

(470 MHz) -75.6 to -75.7 (m [s5], 3F, SO₂CF₃), -80.3 to -83.1 (m, 32F), -130.4 (m, 2F), -136.0 to -136.5 (m, 1F), -145.0 to -145.9 (m, 4F); $^{13}C\{^{1}H\}$ (125 MHz, partial) 69.8 (d, $^{2}J_{CF} = 30$ Hz, CH₂). IR (oil film, cm⁻¹): 2916 (w), 1439 (m), 1304 (m), 1227 (s), 1200 (s), 1125 (s), 982 (s), 745 (m).

 $R_{fO2}CH_2I$. A round bottom flask was charged with $R_{fO2}CH_2OTf$ (4.56 g, 5.84 mmol), NaI (14.02 g, 93.52 mmol), and acetone (40 mL), and fitted with a condenser. The flask was placed in a 70 °C oil bath and the mixture was stirred. After 1 h, the bath was removed. After 9 h, the solvent was removed by rotary evaporation. Then Et_2O (70 mL) was added with stirring. After 15 min, the mixture was filtered. The filtrate was washed with H_2O (50 mL) and saturated aqueous $Na_2S_2O_3$ until it became colorless, and dried (Na_2SO_4). The solvent was removed by rotary evaporation and the residue was dissolved in pentane/ethyl acetate (20:1 v/v). The solution was filtered through a silica pad (3 × 8 cm). The solvent was removed by rotary evaporation to give $R_{fO2}CH_2I$ as a colorless liquid (3.66 g, 4.73. mmol, 81%).

NMR (δ in ppm, acetone- d_6): ¹H (500 MHz) 3.93-4.17 (m, 2H, CH₂); ¹³C{¹H} (125 MHz, partial) –4.2 (m, CH₂).

 $R_{fO4}CH_2I$. A round bottom flask was charged with $R_{fO4}CH_2OTf$ (3.00 g, 2.69 mmol), NaI (6.20 g, 41.4 mmol), and acetone (10 mL), and fitted with a condenser. The flask was placed in a 75 °C oil bath and the mixture was stirred. After 1 h, the bath was removed and the mixture was allowed to cool. The solvent was removed by rotary evaporation. Then Et_2O (20 mL) and H_2O (15 mL) were added with stirring. After 5 min, the dark brown organic phase was separated, washed with saturated aqueous $Na_2S_2O_3$ until it became colorless, and dried (Na_2SO_4). The solvent was removed by rotary evaporation and the residue was dissolved in hexanes/ethyl acetate (20:1 v/v). The solution was filtered through a silica pad (3 × 5 cm). The solvent was removed by rotary evaporation to give $R_{fO4}CH_2I$ as a colorless liquid (2.67 g, 2.45 mmol, 91%). Anal. Calcd for $C_{18}H_2F_{35}IO_5$: C 19.83, H 0.18, F 61.00, I 11.64. Found C 20.10, H 0.18, F 61.25, I 11.36.

NMR (δ in ppm, acetone- d_6): ¹H (500 MHz) 4.00-4.15 (m, 2H, CH₂); ¹⁹F{¹H} (470 MHz) -78.7 to -85.1 (m, 28F), -122.9 to -123.5 (m, 1F), -130.4 (s, 2F), -144.8 to -145.8 (m,

4F); ${}^{13}C\{{}^{1}H\}$ (125 MHz, partial) -4.2 (apparent t, ${}^{2}J_{CF}$ = 22 Hz, CH₂ [s5,s6]). IR (oil film, cm⁻¹): 2976 (w), 1802 (w), 1304 (s), 1229 (s), 1200 (s), 1178 (s), 1142 (s), 1123 (s), 982 (s), 745 (m).

 $R_{fO5}CH_2I$. Acetone (10 mL), $R_{fO5}CH_2OTf$ (1.72 g, 1.35 mmol), and NaI (3.22 g, 21.5 mmol) were combined in a procedure analogous to that for $R_{fO2}CH_2I$. A similar reaction and workup (3 × 5 cm silica pad) gave $R_{fO5}CH_2I$ as a colorless liquid (1.44 g, 1.13 mmol, 84%).

NMR (δ in ppm, 4:1 v/v acetone- d_6/C_6F_6): ¹H (500 MHz) 3.84-4.19 (m, 2H, CH₂); ¹³C{¹H} (125 MHz, partial) -4.3 (m, CH₂).

1,3-R_{f6}C₆H₄I. A Schlenk tube was charged with copper (1.26 g, 20.0 mmol) and DMSO (30 mL) and placed in a 105 °C oil bath. The mixture was sparged with N₂ with stirring (30 min), and 1,3-diiodobenzene (6.60 g, 20.0 mmol) was added. After a second sparge, R_{f6}I (4.48 g, 10.0 mmol) was added in portions over 30 min under a N₂ flow with stirring. The tube was sealed and placed in a 110 °C oil bath. After 4 d, the mixture was cooled to room temperature and poured into H₂O (100 mL). Then Et₂O (100 mL) was added with stirring. After 1 h, the aqueous phase was separated and extracted with Et₂O (5 × 50 mL). The combined organic phases were dried (Na₂SO₄) and the solvent was removed by rotary evaporation. The residue was dissolved in CH₃CN (10 mL). The sample was extracted with perfluorohexane (5 × 5 mL). The fluorous layers were combined, concentrated to 2 mL, and extracted with acetone (5 × 3 mL). The solvent was removed from the extracts by oil pump vacuum to give 1,3-R_{f6}C₆H₄I as a colorless oil (3.16 g, 6.05 mmol, 60% based upon R_{f6}I). Anal. Calcd for C₁₂H₄F₁₃I: C 27.61, H 0.77, F 47.31. Found C 28.09, H 0.67, F 48.59 [s4]. The solvent was removed from the concentrated perfluorohexane extract by oil pump vacuum to give 1,3-(R_{f6})₂C₆H₄ as a light yellow oil (1.07 g, 1.51 mmol, 15%) [s7]. The ¹H NMR spectrum matched those in the literature [s7,s8].

NMR (δ in ppm, CD₂Cl₂): ¹H (500 MHz) 8.01 (s, 1H), 7.96 (d, ³ J_{HH} = 8 Hz, 1H), 7.61 (d, ³ J_{HH} = 8 Hz, 1H), 7.26 (t, ³ J_{HH} = 8 Hz, 1H); ¹⁹F{¹H} (470 MHz) -82.0 (t, ⁴ J_{FF} = 9 Hz [s1-s3], 3F, CF₃), -111.7 (t, ⁴ J_{FF} = 15 Hz [s1-s3], 2F, CF₂), -122.1 (m, 2F, CF₂), -122.3 (m, 2F, CF₂), -123.5 (m, 2F, CF₂), -127.0 (m, 2F, CF₂); ¹³C{¹H, ¹⁹F} (125 MHz) 141.9, 136.4, 130.8,

126.8, 118.0 (5 × s, C_6H_4), 116.1, 115.8, 112.0, 111.5, 111.1, 109.3 (5 × s, $5CF_2/CF_3$), 94.4 (s, CI).

1,3-R_{f6}C₆H₄ICl₂. A round bottom flask was charged 1,3-R_{f6}C₆H₄I (0.523 g, 1.00 mmol), C₆F₆ (1 mL), and CH₃CN (10 mL) with stirring. Aqueous NaOCl (2.5% w/w, 10 mL) followed by conc. HCl (10 mL) were slowly added. After 30 min, a pale yellow precipitate began to form. After 3 h, the mixture was filtered. The filter cake was washed with H₂O (5 mL) and hexane (10 mL) and air dried (2 d) to give 1,3-R_{f6}C₆H₄ICl₂ as a pale yellow powder (0.477 g, 0.804 mmol, 80%). Anal. Calcd for C₁₂H₄F₁₃Cl₂I: C 24.31, H 0.68, F 41.65. Found C 23.89, H 0.38, F 49.81 [s4].

NMR (δ in ppm, CDCl₃/C₆F₆): ¹H (500 MHz) 8.54-8.52 (m, 2H), 7.94 (d, ³ J_{HH} = 8 Hz, 1H), 7.79 (t, ³ J_{HH} = 8 Hz, 1H); ¹⁹F{¹H} (470 MHz) -82.3 (t, ⁴ J_{FF} = 9 Hz [s1-s3], 3F, CF₃), -112.0 (t, ⁴ J_{FF} = 15 Hz [s1-s3], 2F, CF₂), -124.4 (m, 4F, 2CF₂), -123.7 (m, 2F, CF₂), -127.3 (m, 2F, CF₂).

1,4-R_{f6}C₆H₄I. Copper (1.26 g, 20.0 mmol), DMSO (30 mL), 1,4-diiodobenzene (6.60 g, 20.0 mmol), and R_{f6}I (4.48 g, 10.0 mmol) were combined in a procedure analogous to that for 1,3-R_{f6}C₆H₄I. An identical workup gave 1,4-R_{f6}C₆H₄I as a colorless oil (2.58 g, 4.98 mmol, 50% based upon R_{f6}I). Anal. Calcd for C₁₂H₄F₁₃I: C 27.61, H 0.77, F 47.31. Found C 27.88, H 0.65, F 47.05. The solvent was removed from the concentrated perfluorohexane extract by oil pump vacuum to give 1,4-(R_{f6})₂C₆H₄ as a light yellow oil (1.42 g, 1.99 mmol, 20%). Anal. Calcd for C₁₈H₄F₂₆: C 30.27, H 0.56, F 69.16. Found C 30.07, H 0.42, F 68.90.

NMR (δ in ppm, CD₂Cl₂): ¹H (500 MHz) 7.90 (d, ³ J_{HH} = 9 Hz, 2H), 7.33 (d, ³ J_{HH} = 9 Hz, 2H); ¹⁹F{¹H} (470 MHz) -81.8 (t, ⁴ J_{FF} = 10 Hz [s1-s3], 3F, CF₃), -111.8 (t, ⁴ J_{FF} = 15 Hz [s1-s3], 2F, CF₂), -122.0 (m, 2F, CF₂), -122.5 (m, 2F, CF₂), -123.4 (m, 2F, CF₂), -126.9 (m, 2F, CF₂); ¹³C{¹H, ¹⁹F} (125 MHz) 137.4, 127.8, 127.6 (3 × s, C₆H₄), 116.6, 115.2, 110.6, 110.1, 109.7, 107.9 (5 × s, 5CF₂/CF₃), 98.4 (s, CI).

1,4-R_{f6}C₆H₄ICl₂. The iodide 1,4-R_{f6}C₆H₄I (0.527 g, 1.01 mmol), C₆F₆ (1 mL), CH₃CN (10 mL), NaOCl (2.5% w/w, 10 mL), and HCl (10 mL) were combined in a procedure analogous

to that for 1,3- $R_{f6}C_6H_4ICl_2$. An identical workup gave 1,4- $R_{f6}C_6H_4ICl_2$ as a pale yellow powder (0.518 g, 0.873 mmol, 86%).

NMR (δ in ppm, CDCl₃/C₆F₆): ¹H (500 MHz) 8.46 (d, ³ J_{HH} = 8 Hz, 2H), 7.81 (d, ³ J_{HH} = 8 Hz, 2H); ¹⁹F{¹H} (470 MHz) -82.3 (t, ⁴ J_{FF} = 10 Hz [s1-s3], 3F, CF₃), -112.3 (t, ⁴ J_{FF} = 14 Hz [s1-s3], 2F, CF₂), -122.3 (m, 4F, 2CF₂), -123.7 (m, 2F, CF₂), -127.2 (m, 2F, CF₂).

1,3-R_{f10}C₆H₄I. Copper (1.26 g, 20.0 mmol), DMSO (30 mL), 1,3-diiodobenzene (6.40 g, 20.0 mmol), and R_{f10}I (6.48 g, 10.0 mmol) were combined in a procedure similar to that for 1,3-R_{f6}C₆H₄I (130 °C oil bath). The workup was identical until the organic phases were dried (Na₂SO₄). The solvent was removed by rotary evaporation, and the residue was dissolved in MeOH (40 mL) in a round bottom flask, which was capped. After 4 d, the precipitate was collected by filtration, washed with cold MeOH (1 mL), and dried by oil pump vacuum to give 1,3-R_{f10}-C₆H₄I as a white solid (3.62 g, 5.00 mmol, 50%). Anal. Calcd for C₁₆H₄F₂₁I: C 26.61, H 0.56, F 55.25. Found C 26.62, H 0.39, F 54.98.

NMR (δ in ppm, CDCl₃): ¹H (500 MHz) 7.93-7.92 (m, 2H), 7.56 (d, ³ J_{HH} = 8 Hz, 1H), 7.25 (t, ³ J_{HH} = 8 Hz, 1H); ¹⁹F{¹H} (470 MHz) -80.7 (t, ⁴ J_{FF} = 10 Hz [s1-s3], 3F, CF₃), -110.9 (t, ⁴ J_{FF} = 15 Hz [s1-s3], 2F, CF₂), -121.2 (m, 2F, CF₂), -121.6 to -121.9 (m, 10F, 5CF₂), -122.7 (m, 2F, CF₂), -126.1 (m, 2F, CF₂); ¹³C{¹H, ¹⁹F} (125 MHz, partial) 141.1, 135.6, 130.2, 128.5, 126.0 (5 × s, C₆H₄), 93.7 (s, CI).

1,3-R_{f10}C₆H₄ICl₂. The iodide 1,3-R_{f10}C₆H₄I (0.739 g, 1.02 mmol), C₆F₆ (1 mL), CH₃-CN (10 mL), NaOCl (2.5% w/w, 10 mL), and conc. HCl (10 mL) were combined in a procedure analogous to that for 1,3-R_{f6}C₆H₄ICl₂. An identical workup gave 1,3-R_{f10}C₆H₄ICl₂ as a pale yellow solid (0.724 g, 0.912 mmol, 89%). Anal. Calcd for C₁₆H₄F₂₁ICl₂: C 24.23, H 0.51, F 50.31. Found C 24.13, H 0.34, F 50.06. Further characterization or analysis was complicated by the extremely low solubility of this compound in common organic and fluorous solvents.

1,3,5- $(R_{f6})_2C_6H_3I$. A round bottom flask was charged with 1,3- $(R_{f6})_2C_6H_4$ (0.555 g, 0.775 mmol) [s7], fuming H_2SO_4 (0.7 mL), and trifluoroacetic acid (1.7 mL) with stirring. Then NIS (0.112 g, 0.500 mmol) was added. Identical quantities of NIS were added after 2 h and 4 h.

After 48 h, ice (30 g) was slowly added, followed by CH_2Cl_2 (100 mL). The biphasic mixture was stirred, and NaOH was added until the pH of the aqueous phase reached 7. The aqueous phase was separated and extracted with CH_2Cl_2 (3 × 50 mL). The combined organic phases were washed with 0.1 M aqueous $Na_2S_2O_3$ and dried (MgSO₄). The solvent was removed by rotary evaporation to give 1,3,5-(R_{f6})₂ C_6H_3I as a white solid (0.501 g, 0.596 mmol, 77%). Anal. Calcd for $C_{18}H_3F_{26}I$: C 25.74, H 0.36, F 58.80. Found C 25.66, H 0.24, F 58.53.

NMR (δ in ppm): ¹H (500 MHz, CDCl₃ or CD₂Cl₂/C₆F₆) 8.15 (s, 2H), 7.77 (s, 1H); ¹⁹F{¹H} (470 MHz, CD₂Cl₂/C₆F₆) -82.7 (t, ⁴J_{FF} = 10.5 Hz [s1-s3], 3F, CF₃), -113.2 (t, ⁴J_{FF} = 14.5 Hz [s1-s3], 2F, CF₂), -123.4 (m, 2F, CF₂), -123.6 (m, 2F, CF₂), -124.8 (m, 2F, CF₂), -128.1 (m, 2F, CF₂); ¹³C{¹H} (125 MHz, CD₂Cl₂/C₆F₆, partial) 132.2 (t, ²J_{CF} = 25.1 Hz, CHCCF₂), 130.1 (s, CCI), 125.6 (t, ³J_{CF} = 7.0 Hz, CF₂CCHCCF₂), 94.2 (s, CI).

1,3,5-(R_{f6})₂C₆H₃ICl₂. A Schlenk tube was charged with 1,3,5-(R_{f6})₂C₆H₃I (1.69 g, 2.00 mmol) and CF₃C₆H₅ (30 mL) and cooled to -30 °C. The solution was saturated with Cl₂ gas. After 24 h, two aliquots (1 mL each) were removed and analyzed by ¹H NMR. The spectra showed 77:23 ArICl₂/ArI mixtures. The solvent was removed from one aliquot by rotary evaporation to give a 75:25 ArICl₂/ArI mixture as a pale white solid (Figure 1-b). This solid was dissolved in CF₃C₆H₅ (2 mL) and the sample was kept at -35 °C. After 7 d, the solvent was removed by rotary evaporation to give a 65:35 ArICl₂/ArI mixture as a pale white solid (Figure 1-d). The solvent was removed from the second aliquot at -40 °C by oil pump vacuum to give a 35:65 ArICl₂/ArI mixture as a pale white solid (Figure 1-c).

NMR (δ in ppm, CDCl₃): ¹H (500 MHz) 8.69 (s, 2H), 7.98 (s, 1H).

1,2,4-($R_{f8}CH_2CH_2$) $_2C_6H_3I$ [s9]. A Schlenk tube was charged with 1,3-($R_{f8}CH_2CH_2$) $_2-C_6H_4$ (0.600 g, 0.618 mmol) [s10], I_2 (0.627 g, 2.47 mmol), H_5IO_6 (0.283 g, 1.24 mmol), CO_2H (10 mL), CO_2H (10 mL), CO_2H (0.30 mL) and CO_2H (10 mL). The tube was placed in a 100 °C oil bath and the mixture was stirred overnight. Another charge of CO_2H (0.283 g, 1.24 mmol) was added. After 12 h, the mixture was allowed to cool to room temperature, and CO_2H (15 mL) was added. After 5 min, the purple organic phase was separated. A saturated aqueous CO_2H (15 mL) solutions.

tion was added dropwise with vigorous stirring until the color was discharged. The aqueous phase was extracted with CH_2Cl_2 (2 × 15 mL). The combined organic phases were dried (Mg-SO₄). The solvent was removed by rotary evaporation to give 1,2,4-($R_{f8}CH_2CH_2$)₂ C_6H_3I as a white solid (0.630 g, 0.574 mmol, 93%), mp 37-39 °C (capillary). Anal. Calcd for $C_{26}H_{11}F_{34}I$: C 28.49, H 1.01, F 58.92. Found: C 28.47, H 1.13, F 58.64.

NMR (δ in ppm, CDCl₃): ¹H (400 MHz) 7.78 (d, ³ J_{HH} = 8 Hz, 1H, CH_{Ar}), 7.12 (s, 1H, CH_{Ar}), 6.82 (d, ³ J_{HH} = 8 Hz, 1H, CH_{Ar}), 2.85-3.04 (m, 4H, 2CH₂CF₂), 2.35-2.38 (m, 4H, 2CH₂CF₂); ¹³C{¹H} (100 MHz) 140.29, 140.24, 140.17, 129.7, 128.7 (5 × s, C₆H₃), 117.9, 116.2 (2 × t, ² J_{CF} = 22 Hz, 2CF₂CF₃ [s11]), 112.8, 111.1, 110.8, 109.1, 108.3 (5 overlapping m, 7CF₂), 97.5 (s, CI), 32.7, 31.6 (2 × t, ² J_{CF} = 22 Hz, 2CH₂CF₂), 26.00, 25.99 (2 × s, 2CH₂CH₂CF₂); ¹⁹F{¹H} (376 MHz) -80.9 (t, ⁴ J_{FF} = 10 Hz [s1-s3], 6F, 2CF₃), -114.2 (m, 4F, 2CF₂), -121.5 (m, 8F, 4CF₂), -21.7 (m, 4F, 2CF₂), -122.5 (m, 4F, 2CF₂), -123.3 (m, 4F, 2CF₂), -125.9 (m, 4F, 2CF₂).

1,2,4-(R_{f8}CH₂CH₂)₂C₆H₃ICl₂ [s9]. A round bottom flask was charged with 1,2,4-(R_{f8}-CH₂CH₂)₂C₆H₃I (0.42 g, 0.38 mmol) and perfluoroheptane (5 mL). The suspension was mildly heated to give a colorless solution, and H₂O (5 mL) and aqueous NaOCl (2.5% w/w, 2 mL) were added with stirring to give a biphasic mixture. Then conc. HCl (1 mL) was slowly added with vigorous stirring. After 5 min, the white precipitate was isolated by filtration (glass frit) and dried by means of an air flow (0.5 h) to give a monohydrate of 1,2,4-(R_{f8}CH₂CH₂)₂C₆H₃ICl₂ as a white powder (0.400 g, 0.338 mmol, 89%), mp 53-54 °C (capillary). Anal. Calcd for C₂₆H₁₁F₃₄-ICl₂·H₂O: C 26.35, H 1.11. Found: C 26.27, H 1.13. The yield of a reaction carried out in C₆F₆ (5 mL) was similar.

NMR (δ in ppm, CDCl₃): ¹H (400 MHz) 8.23 (d, ³ J_{HH} = 8 Hz, 1H, CH_{Ar}), 7.36 (s, 1H, CH_{Ar}), 7.20 (d, ³ J_{HH} = 8 Hz, 1H, CH_{Ar}), 3.41, 3.04 (2 × m, 2 × 2H, 2CH₂CF₂), 2.65, 2.43 (2 × m, 2 × 2H, 2CH₂CH₂CF₂); ¹³C{¹H} (100 MHz, partial) 145.8, 139.9, 137.6, 130.9, 130.6, 130.4 (6 × s, C₆H₃), 32.4, 32.1 (2 × t, ² J_{CF} = 22 Hz, 2CH₂CF₂), 30.6, 26.4 (2 × s, 2CH₂CH₂CF₂); ¹⁹F{¹H} (376 MHz) -80.7 (t, ⁴ J_{FF} = 8 Hz [s1-s3], 6F, 2CF₃), -114.3 (m, 4F, 2CF₂), -121.6 (m,

8F, 4CF₂), -21.8 (m, 4F, 2CF₂), -122.7 (m, 4F, 2CF₂), -123.3 (m, 4F, 2CF₂), -126.1 (m, 4F, 2CF₂).

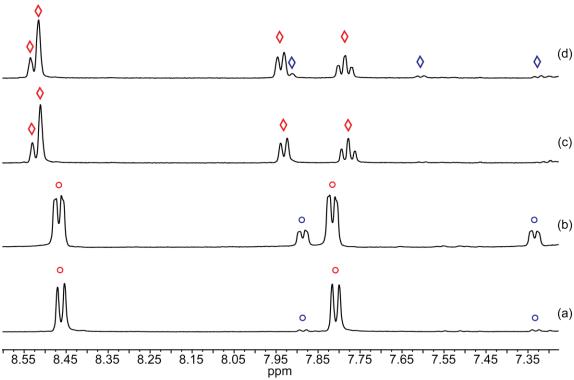
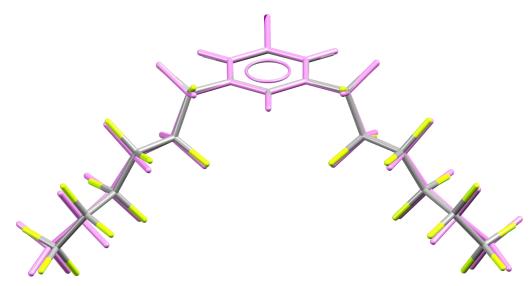



Figure S1. Partial 1H NMR spectra (sp 2 CH, 500 MHz, 1:1 v/v CDCl $_3/C_6F_6$, Ph $_2$ SiMe $_2$ internal standard) illustrating the stabilities of 1,4- and 1,3-R $_{f6}C_6H_4ICl_2$: (a) 1,4-R $_{f6}C_6H_4ICl_2$ shortly after dissolution (95:05 ArICl $_2/ArI$; red $^\circ$ = ArICl $_2$, blue $^\circ$ = ArI); (b) the preceding sample after 60 h; (c) 1,3-R $_{f6}C_6H_4ICl_2$ shortly after dissolution; (d) the preceding sample after 60 h (93:07 ArICl $_2/ArI$; red $^\diamond$ = ArICl $_2$, blue $^\diamond$ = ArI).

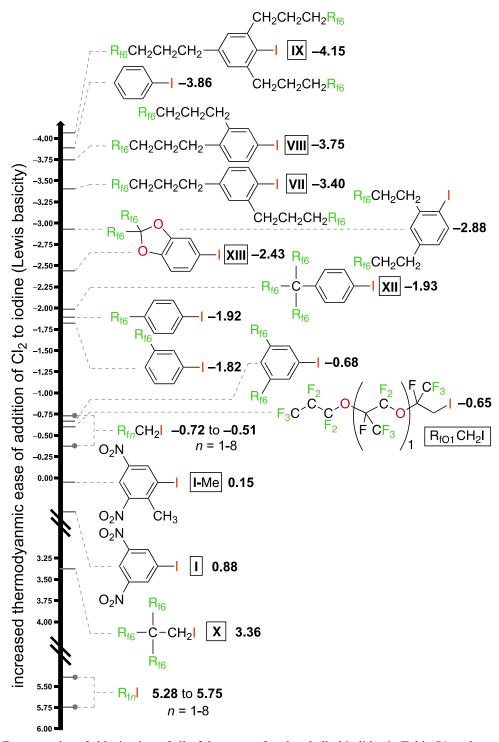

Figure S2. Overlay of the crystal structure of 1,3,5-(R_{f6})₂C₆H₃I (Figure 2) with the calculated geometry (DFT, magenta).

Table S1. Calculated gas phase free energies of chlorination for selected alkyl and aryl iodides.

$$RI\left(g\right) \overset{\textbf{or}}{\text{or}} ArI\left(g\right) + Cl_{2}\left(g\right) \overset{\textbf{or}}{\rightarrow} RICl_{2}\left(g\right) \overset{\textbf{or}}{\text{or}} ArICl_{2}\left(g\right)$$

Compound	ΔG, kcal/mol
R _{f1} I	5.43
$R_{f2}I$	5.75
$R_{\mathcal{B}}I$	5.57
R _{f4} I	5.36
R _{f5} I	5.31
R _{f6} I	5.30
R _{f7} I	5.29
R _{f8} I	5.28
R _{f1} CH ₂ I	-0.72
R _{f2} CH ₂ I	-0.55
R _B CH ₂ I	-0.51
R _{f4} CH ₂ I	-0.53 -0.53
R _{f5} CH ₂ I	-0.55
R _{f6} CH ₂ I	-0.54
R _{f7} CH ₂ I	-0.56
R _{f2} CH ₂ I	-0.59
CF ₃ CF ₂ CF ₂ O(CF(CF ₃)CF ₂ O) ₁ CF(CF ₃)CH ₂ I ^a	-0.65
CF ₃ CF ₂ CF ₂ O(CF(CF ₃)CF ₂ O) ₂ CF(CF ₃)CH ₂ I ^a	-0.71
CF ₃ CF ₂ CF ₂ O(CF(CF ₃)CF ₂ O) ₃ CF(CF ₃)CH ₂ I ^a	-0.84
1,2,3,5-CH ₃ (NO ₂) ₂ C ₆ H ₂ I ^b (I-Me)	0.15
$1,3,5-(NO_2)_2C_6H_3I(\mathbf{I})$	0.88
C_6H_5I	-3.86
1,3-R _{f6} C ₆ H ₄ I	-1.82
1,4-R _{f6} C ₆ H ₄ I	-1.92
$1,3,5-(R_{66})_2C_6H_3I$	-0.68
1,2,4-(R _{f6} CH ₂ CH ₂) ₂ C ₆ H ₃ I ^b	-2.88
$1,2,4-(R_{f6}CH_2CH_2CH_2)_2C_6H_3I^b$ (VII)	-3.40
1,3,4-(R _{f6} CH ₂ CH ₂ CH ₂) ₂ C ₆ H ₃ I ^b (VIII)	-3.75
$1,2,4,6-(R_{f6}CH_2CH_2CH_2)_3C_6H_3I^b$ (IX)	-4.15
$(R_{f6})_3 CCH_2 I$ (X with $n = 6$)	3.36
$1,4-(R_{f6})_3CC_6H_4I$ (XII with $n=6$)	-1.93
1,4-(R_{f8}) ₃ CC ₆ H ₄ I (XII with $n = 8$)	-1.59
1,3,4-($(R_{f6})_2C$) $O_2C_6H_3I^b$ (XIII with $n = 6$)	-2.43
<u>/=\</u>	
o∕√ <i>)</i> —ι	
R _{fn} — O VIII	
R _{fn} NIII	

^aComputations were conducted using the stereoisomer with S configurations at all carbon stereocenters. ^bThese formulae are potentially ambiguous. The iodine atom occupies the 1 position (and the methyl group in I-Me the 2 position).

Figure S3. Free energies of chlorination of all of the types of aryl and alkyl iodides in Table S1 to the corresponding iodine(III) dichlorides in the gas phase (kcal/mol), presented in a ladder format (each iodide is more Lewis basic than that shown below it).

References

- (s1) The triplets commonly observed for $CF_2CF_2C\underline{F}_3$ and $CF_2CF_2C\underline{F}_2X$ signals have been shown to be four bond and *not* three bond (vicinal) couplings [s2,s3].
 - (s2) White, H. F. Anal. Chem. 1966, 38, 625-626.
 - (s3) Foris, A. Magn. Reson. Chem. 2004, 42, 534-555.
- (s4) These microanalytical data feature one or more values outside of normally accepted ranges but are presented nonetheless as the best fit obtained to date, and/or to illustrate a point made in the text.
- (s5) The additional coupling or increased multiplicity associated with this signal as compared to the R_{fn} analog may be due to diastereomers reflecting the multiple carbon stereocenters.
 - (s6) This triplet may represent two overlapping doublets.
- (s7) Ghosh, S. K.; Ojeda, A. S.; Guerrero-Leal, J.; Bhuvanesh, N.; Gladysz, J. A. *Inorg. Chem.* **2013**, *52*, 9369-9378.
- (s8) van den Broeke, J.; Deelman, J. B.; van Koten, G. Tetrahedron Lett. 2001, 42, 8085-8087.
- (s9) This formula is potentially ambiguous. For all benzenoid compounds in the paper, any iodine substituent is assigned the 1-position.
- (s10) Su, H.-L.; Balogh, J.; Al-Hashimi, M.; Seapy, D. G.; Bazzi, H. S.; Gladysz, J. A. Org. Biomol. Chem. 2016, 10058-10069.
- (s11) These represent the two largest triplets associated with the quartet of triplets that can often be seen for the ¹³C{¹H} signal of the terminal carbon atom of CF₂CF₃ groups: Ribeiro, A. A. J. Fluor. Chem. **1997**, 83, 61-66 (see Figure 1 therein). The presence of two inequivalent (CF₂)₇CF₃ groups in this molecule renders assigning exact chemical shifts to the remaining (overlapping) triplets difficult. For spectra with related complications, see the supporting information of the following paper: Richter, B.; de Wolf, E.; van Koten, G.; Deelman, B.-J. J. Org. Chem. **2000**, 65, 3885-3893.