Supporting Information

for

Spectral and DFT studies of anion bound organic receptors: Time dependent studies and logic gate applications

Srikala Pangannaya^{1§}, Neethu Padinchare Purayil ^{1§}, Shweta Dabhi², Venu Mankad², Prafulla K. Jha³, Satyam Shinde⁴, Darshak R. Trivedi^{1*}

Address: ¹Supramolecular Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka (NITK), Surathkal, India, ²Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar 364001, India, ³Department of Physics, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, India and ⁴School of Technology, Pandit Deendayal Petroleum University, Gandhinagar 382007, Gujarat, India

Email: Darshak R. Trivedi - <u>darshak_rtrivedi@yahoo.co.in</u> [§]equally contributing authors [§]Tel.: +91-824 2473205; Fax: +91 824 247033 *Corresponding author

Copies of spectra, B-H plots, B-H equation and Mulliken charge distributions

Contents

Figure S1: FTIR spectrum of receptor R1 Figure S2: ¹H NMR spectrum of receptor R1 Figure S3: Mass spectrum of receptor R1 Figure S4: FTIR spectrum of receptor R2 Figure S5: ¹H NMR spectrum of receptor R2 Figure S6: Mass spectrum of receptor R2 Figure S7: UV–vis absorption spectra of R1 (4.5×10^{-5} M in DMSO) upon addition of 1 equiv of various anions as TBA salts Figure S8: UV–vis absorption spectra of R2 (4.5×10^{-5} M in DMSO) upon addition of 1 equiv of various anions as TBA salts Figure S9: UV–vis titration spectra of receptor R1 (4.5×10^{-5} M in DMSO) upon addition of 1 equiv of various anions as TBA salts

the addition of 0.1 equiv of NaF (1×10^{-2} M in distilled water). Inset plot represents the binding isotherm at 473 nm.

Figure S10: UV–vis titration spectra of receptor **R1** (4.5×10^{-5} M in DMSO/H₂O 9:1 (v/v)) with the addition of 0.1 equiv of NaAcO (1×10^{-2} M in distilled water). Inset plot represents the binding isotherm at 489 nm

Figure S11: B–H plot of receptor **R1**-F⁻ (as NaF) complex at a selected wavelength of 473 nm **Figure S12:** B–H plot of receptor **R1**-AcO⁻ (NaAcO) complex at a selected wavelength of 489 nm

Figure S13: UV–vis titration spectra of receptor **R2** (4.5×10^{-5} M in DMSO/H₂O 9:1 (v/v)) with the addition of 0.1 equiv of NaF (1×10^{-2} M in distilled water). Inset plot represents the binding isotherm at 556 nm

Figure S14: UV–vis titration spectra of receptor **R2** (4.5×10^{-5} M in DMSO/H₂O 9:1 (v/v)) with the addition of 0.1 equiv of NaAcO (1×10^{-2} M in distilled water). Inset plot represents the binding isotherm at 559 nm

Figure S15: B–H plot of receptor **R2**-F⁻ (NaF) complex at a selected wavelength of 556 nm **Figure S16:** B–H plot of receptor **R2**-AcO⁻ (NaAcO) complex at a selected wavelength of 559 nm

Figure S17: Time dependency plot of first order rate equation to determine the rate constant from UV–vis spectral change of **R1** in the presence of F^- ion at 492 nm

Figure S18: Time dependency plot of first order rate equation to determine the rate constant from UV–vis spectral change of R2 in the presence of F⁻ ion at 560 nm Figure S19: Color change of receptor R1 (4.5×10^{-5} M in DMSO) upon the addition of 1 equiv of a variety of cations (10^{-3} M in distilled water) Figure S20: UV–vis absorption spectra of R1 (4.5×10^{-5} M in DMSO) in the presence of different cations (1×10^{-3} M in distilled water) Table S1: Mulliken charge distribution of R1, R1+F⁻, R1+AcO⁻ and R2, R2+F⁻, R2+AcO⁻ Equation for calculation of binding constant Equation for calculation of detection limit References

Figure S2: ¹H NMR spectrum of receptor R1

¹H NMR (DMSO-d₆, 400 MHz, ppm): δ 14.8 (s,OH), 9.7 (s, Ar-H), 8.9 (s,CH=N), 8.0(d, Ar-H), 8.1 (d, Ar-H), 8.3 (s, Ar-H), 8.5 (d, Ar-H), 7.4 -7.8(s,3Ar-H),7.1(d,Ar-H)

Figure S3: Mass spectrum of receptor R1 Calculated: 273.09

Obtained: (M+ H⁺) 274.1

Figure S4: FTIR spectrum of receptor R2

FT-IR (cm⁻¹): (ring stretch) 1545, (C=N stretch) 1630, (C=N),(=C-H) 2978, 3364 (Ar CH), (-OH stretch) 3494,

Figure S5: ¹H NMR spectrum of receptor R2

¹H NMR (DMSO-d₆, 400 MHz, ppm): δ 14.78 (s,OH), 9.71 (s, Ar-H), 9.29 (s, Ar-H), 8.66 (s,CH=N), 8.30(d, Ar-H), 7.92 (d, Ar-H), 7.72 (d, Ar-H), 7.71 (s, Ar-H), 7.56 (s,Ar-H), 7.37(s,Ar-H), 6.78 (s, Ar-H)

.

Figure S6: Mass spectrum of receptor R2 Calculated: 293.08 Obtained: (M+ H⁺) 294.15

Figure S7: UV–vis absorption spectra of **R1** (4.5×10^{-5} M in DMSO) upon addition of 1 equiv of various anions as TBA salts

Figure S8: UV–vis absorption spectra of **R2** (4.5×10^{-5} M in DMSO) upon addition of 1 equiv of various anions as TBA salts

Figure S9: UV–vis titration spectra of receptor **R1** (4.5×10^{-5} M in DMSO/H₂O 9:1 (v/v)) with the addition of 0.1 equiv of NaF (1×10^{-2} M in distilled water). Inset plot represents the binding isotherm at 473 nm.

Figure S10: UV–vis titration spectra of receptor **R1** (4.5×10^{-5} M in DMSO/H₂O 9:1 (v/v)) with the addition of 0.1 equiv of NaAcO (1×10^{-2} M in distilled water). Inset plot represents the binding isotherm at 489 nm

Figure S11: B–H plot of receptor R1-F⁻ (as NaF) complex at a selected wavelength of 473 nm

Figure S12: B–H plot of receptor **R1**-AcO⁻ (NaAcO) complex at a selected wavelength of 489 nm

Figure S13: UV–vis titration spectra of receptor **R2** (4.5×10^{-5} M in DMSO/H₂O 9:1 (v/v)) with the addition of 0.1 equiv of NaF (1×10^{-2} M in distilled water). Inset plot represents the binding isotherm at 556 nm

Figure S14: UV–vis titration spectra of receptor **R2** (4.5×10^{-5} M in DMSO/H₂O 9:1 (v/v)) with the addition of 0.1 equiv of NaAcO (1×10^{-2} M in distilled water). Inset plot represents the binding isotherm at 559 nm

Figure S15: B–H plot of receptor **R2**-F⁻ (NaF) complex at a selected wavelength of 556 nm

Figure S16: B–H plot of receptor **R2**-AcO⁻ (NaAcO) complex at a selected wavelength of 559 nm

Figure S17: Time dependency plot of first order rate equation to determine the rate constant from UV–vis spectral change of **R1** in the presence of F^- ion at 492 nm

Figure S18: Time dependency plot of first order rate equation to determine the rate constant from UV–vis spectral change of **R2** in the presence of F^- ion at 560 nm

Figure S19: Color change of receptor **R1** (4.5×10^{-5} M in DMSO) upon the addition of 1 equiv of a variety of cations (10^{-3} M in distilled water)

Figure S20: UV–vis absorption spectra of **R1** (4.5×10^{-5} M in DMSO) in the presence of different cations (1×10^{-3} M in distilled water)

Receptor 1			Receptor 1 + F ⁻				Receptor 1 + AcO ⁻			
No	Atom	Charge	No	Atom	Charge		No	Atom	Charge	
1	С	0.586062	1	С	-0.08016		1	С	-0.04695	
2	С	-0.46591	2	С	-0.3762		2	С	-0.55086	
3	N	-0.00382	3	N	-0.0318		3	N	-0.00661	
4	С	0.882446	4	С	0.957446		4	С	0.944994	
5	С	-0.10687	5	С	0.002467		5	С	0.110502	
6	С	0.169448	6	С	0.138339		6	С	0.001159	

Table S1: Mulliken charge distribution of R1, R1+F⁻, R1+AcO⁻ and R2, R2+F⁻, R2+AcO⁻

7	Ν	0.145243	7	N	0.092191	7	N	0.114041
8	С	0.002938	8	С	0.109565	8	С	0.094488
9	С	0.782404	9	С	0.460322	9	С	0.290122
10	С	-0.01642	10	С	0.258786	10	С	0.367299
11	С	0.283046	11	С	0.325158	11	С	0.380053
12	С	0.077189	12	С	-0.09579	12	С	-0.12567
13	С	-0.5382	13	С	-0.35094	13	С	-0.20553
14	С	-1.29525	14	С	-0.73343	14	С	-0.7703
15	С	-0.36336	15	С	-0.4643	15	С	-0.46756
16	С	0.018342	16	С	-0.17499	16	С	-0.24191
17	С	-0.46703	17	С	-0.38956	17	С	-0.38981
18	С	-0.18171	18	С	-0.35688	18	С	-0.37646
19	0	-0.18186	19	0	-0.45334	19	0	-0.56776
20	С	-1.33956	20	С	-1.34836	20	С	-1.29279
21	N	-0.27929	21	N	-0.29718	21	N	-0.30091
22	Н	0.241903	22	Н	0.26785	22	Н	0.333495
23	Η	0.272001	23	Н	0.250134	23	Н	0.248221
24	Η	0.218337	24	Н	0.216735	24	Н	0.214093
25	Н	0.120017	25	Н	0.117467	25	Н	0.208498
26	Η	0.184085	26	Н	0.173854	26	Н	0.171792
27	Η	0.219509	27	Н	0.192138	27	Н	0.182683
28	Н	0.171757	28	Н	0.174451	28	Н	0.16713
29	Н	0.199305	29	Н	0.1896	29	Н	0.190969
30	Η	0.190831	30	Н	0.179371	30	Н	0.178957
31	Н	0.176882	31	Н	0.159121	31	Н	0.158342
32	Н	0.297526	32	Н	0.247477	32	Н	0.576031
			33	F	-0.35956	33	С	0.267252
						34	0	-0.3634
						35	0	-0.37542
						36	С	-0.64543

							37	Н	0.181752	
							38	Н	0.160974	
							39	Н	0.184525	
Receptor 2			Receptor 2 + F ⁻				Receptor 2 + AcO			
No	Atom	Charge	No	Atom	Charge		No	Atom	Charge	
1	C	-0.61387	1	С	-0.5317		1	С	-0.34884	
2	C	-0.3157	2	С	-0.35419		2	С	-0.41591	
3	С	-0.14527	3	С	-0.14634		3	С	-0.29949	
4	С	0.158578	4	С	0.05685		4	С	0.141298	
5	С	0.442141	5	С	0.507848		5	С	0.465076	
6	С	-0.83494	6	С	-0.71588		6	С	-0.6118	
7	С	-0.13285	7	С	-0.11485		7	С	-0.1322	
8	C	-0.38149	8	С	-0.23825		8	С	-0.38355	
9	С	0.089474	9	С	-0.34317		9	С	-0.19177	
10	C	0.431653	10	С	0.562489		10	С	0.522469	
11	С	-0.45084	11	С	-0.18038		11	С	-0.01441	
12	N	-0.0499	12	N	-0.11777		12	N	-0.02453	
13	0	-0.33913	13	0	-0.52996		13	0	-0.47443	
14	С	0.381355	14	С	0.175413		14	С	-0.49006	
15	С	-0.20391	15	С	-0.12475		15	С	0.113302	
16	С	0.408323	16	С	-0.08372		16	С	0.06431	
17	С	-1.12911	17	С	-0.52001		17	С	-0.49736	
18	С	0.288779	18	С	0.125396		18	С	0.146925	
19	N	-0.06037	19	N	-0.0803		19	N	-0.11914	
20	Ν	-0.12947	20	Ν	-0.19139		20	Ν	-0.18921	
21	0	-0.05318	21	0	-0.08202		21	0	-0.07702	
22	0	-0.07045	22	0	-0.10532		22	0	-0.10976	
23	Н	0.215043	23	Н	0.201		23	Н	0.198831	
24	Н	0.187772	24	Н	0.178177		24	Н	0.177281	
25	Н	0.170712	25	Н	0.160223		25	Н	0.162323	

26	Н	0.047996	26	Н	0.044009	26	Η	0.073293
27	Н	0.189	27	Н	0.173861	27	Н	0.174232
28	Н	0.203097	28	Н	0.186879	28	Н	0.176894
29	Н	0.338196	29	Н	0.241124	29	Н	0.15656
30	Н	0.569339	30	Н	0.44129	30	Н	0.593884
31	Н	0.210186	31	Н	0.257893	31	Н	0.238086
32	Н	0.292435	32	Н	0.266538	32	Н	0.264337
33	Н	0.286395	33	Н	0.274457	33	Н	0.273767
			34	F	-0.39347	34	С	0.026539
						35	0	-0.35414
						36	0	-0.25264
						37	С	-0.51303
						38	Н	0.184756
						39	Н	0.178162
						40	Η	0.166971

Calculation of binding constants:

Binding constant has been calculated using equation¹ (A1).

 $1/(A-A_0) = 1/(A_{max} - A_0) + 1/K [F^-]^n (A_{max} - A_0)$ ------(A1)

Where, A_0 , A, A_{max} are the absorption considered in the absence of F⁻, at an intermediate, and at a concentration of saturation. K is binding constant, [F⁻] is concentration of F⁻ ion and *n* is the stoichiometric ratio.

Calculation of detection limit:

The limit of detection was found using this equation.²

 $DL = C_L \times C_T$

 $C_L = Conc.$ of receptor; $C_T = Conc.$ of Titrant at which change observed.

References:

- 1. H. Benesi and H. Hildebrand, J. Am. Chem. Soc., 1948, 71, 2703–2707.
- 2. V. Bhalla, A. Gupta, M. Kumar., Chem. Commun., 2012, 48, 11862.