## **Supporting Information**

for

# A semisynthesis of 3'-O-ethyl-5,6-dihydrospinosyn J based on the spinosyn A aglycone

Kai Zhang<sup>1</sup>, Shenglan Liu<sup>1</sup>, Anjun Liu<sup>1</sup>, Hongxin Chai<sup>1</sup>, Jiarong Li<sup>\*1</sup> and Lamusi A<sup>\*2</sup>

Address: <sup>1</sup>School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, China and <sup>2</sup>Institute of Grassland Research of CAAS, No. 120 Wulanchabu East Street, Saihan District, Hohhot, China

Email: Jiarong Li - jrli@bit.edu.cn; Lamusi A - alms721@163.com

\*Corresponding author

## **Experimental and analytical data**

# **Experimental**

## Synthesis of 1-allylrhamnose (1)

Acetyl chloride (0.96 g, 12.23 mmol) was slowly added to allyl alcohol (0.76 g, 13.12 mmol) at 0 °C, and warmed to room temperature. After 1 h, *L*-rhamnose (0.98 g, 5.97 mmol) was added to the solution. After about 24 h, NaHCO<sub>3</sub> was added to the solution to make the pH slightly alkaline, then the mixture was extracted with ethyl

acetate thrice. The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (200–300 mesh) to afford pure 1, yield 87%. TLC (ethyl acetate/ petroleum ether = 1:1,V:V);  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 1.28 (d, J = 6.0 Hz, 3H, C<sub>5</sub>-CH<sub>3</sub>), 3.46 (m, 1H, C<sub>4</sub>-H), 3.64 (m, 1H, C<sub>3</sub>-H), 3.75 (m, 1H, C<sub>5</sub>-H), 3.95 (m, 2H, C<sub>1</sub>-O-CH<sub>2</sub>-), 3.97 (m, 1H, C<sub>2</sub>-H), 4.29 (s, 3H, 3×OH), 4.77 (d, J = 6.0 Hz, 1H, C<sub>1</sub>-H), 5.16 and 5.30 (m, 2H, -CH=CH<sub>2</sub>), 5.88 (m, 1H, -CH=CH<sub>2</sub>);  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ : 17.6, 88.0, 88.3, 71.0, 71.7, 72.7, 99.0, 117.5, 133.7; MS (ESI) m/z (%): 203.1 (M<sup>-</sup>, 100).

### Synthesis of allyl-3-*O*-ethylrhamnose (2)

Compound 1 (1.76 g, 8.63 mmol) and dibutyltin oxide (2.36 g, 9.48 mmol) were successively added to 50 ml toluene, and heated to reflux with stirring for about 4 h. The solvent was distilled off under reduced pressure, and the mixture was dried in vacuum for 1 h. Then DMF (20 ml), CsF (2.61 g, 17.18 mmol) and bromoethane (1.86 g, 17.07 mmol) were added to the mixture under argon gas. After stirring at room temperature for 24 h, the solvent was distilled off under reduced pressure, and the residue was dissolved in dichloromethane. The precipitate was filtered off, and the filtrate was washed with saturated brine and 5% aqueous NaHCO<sub>3</sub> solution. Then the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (200–300 mesh) to afford pure 2, yield 72%. TLC(ethyl acetate/petroleum ether 1:1, V:V); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ: 1.08 (m, 3H, C<sub>5</sub>-CH<sub>3</sub>), 1.18 (m, 3H, C<sub>3</sub>-OC-CH<sub>3</sub>),

3.46 (m, 2H, C<sub>3</sub>-O-CH<sub>2</sub>-), 3.64 (m, 1H, C<sub>3</sub>-CH), 3.75 (m, 1H, C<sub>5</sub>-H), 3.93 (m, 1H, C<sub>2</sub>-CH), 3.96 (m, 1H, C<sub>4</sub>-H), 4.14 (m, 2H, C<sub>1</sub>-O-CH<sub>2</sub>-), 4.29 (m, 2H, 2 $\times$ OH), 4.77 (s, 1H, C1-H), 5.09 and 5.18 (2m, 2H, CH=CH<sub>2</sub>), 5.78 (m, 1H, CH=CH<sub>2</sub>); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ : 15.6, 17.8, 65.0, 67.8, 67.9, 68.0, 71.5, 79.8, 98.6, 117.6, 133.9; MS (ESI) m/z (%): 255.1 (M+Na, 100).

## Synthesis of allyl 3-O-ethyl-2,4-di-O-methylrhamnoside (3)

Compound **2** (0.62 g, 2.67 mmol) was dissolved in 10 ml DMF, then NaH (0.10 g, 3.21 mmol) was slowly added at 0 °C. After 15 min, CH<sub>3</sub>I (1.01 g, 6.41 mmol) was added to the solution at room temperature. After 4 h of stirring, 5 ml ammonium hydroxide solution was added, and the mixture was extracted with ethyl acetate thrice. The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (200–300 mesh) to afford pure **3**, yield 79%. TLC (ethyl acetate/petroleum ether 1:10, V:V);  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 1.18 (m, 6H, C<sub>5</sub>-CH<sub>3</sub>, C<sub>3</sub>-OC-CH<sub>3</sub>), 3.10 (m, 1H, C<sub>4</sub>-H), 3.39 (m, 9H, C<sub>2</sub>-OCH<sub>3</sub>, C<sub>3</sub>-OCH<sub>3</sub>, C<sub>3</sub>-OCH<sub>2</sub>-, C<sub>3</sub>-H), 3.71 (m, 2H, C<sub>1</sub>-OCH<sub>2</sub>-), 3.96 (m, 1H, C<sub>2</sub>-H), 4.16 (m, 1H, C<sub>5</sub>-H), 4.84 (s, 1H, C<sub>1</sub>-CH), 5.20 and 5.30 (2m, 2H, CH=CH<sub>2</sub>), 5.93 (m, 1H, CH=CH<sub>2</sub>);  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ : 15.7, 17.8, 59.2, 61.0, 65.6, 67.8, 67.9, 78.2, 79.7, 82.0, 96.2, 117.3, 133.9; MS (ESI) m/z (%): 283.2 (M+Na, 100).

#### Synthesis of 3-O-ethyl-2,4-di-O-methylrhamnose (4)

Compound **3** (0.27 g, 1.04 mmol) and Pd(PPh<sub>3</sub>)<sub>4</sub> (0.58 g, 0.51 mmol) were added to 5ml acetic acid under argon gas, and heated to 80 °C with stirring for 3 h. When the

reaction was complete (by TLC monitoring), the solvent was distilled off under reduced pressure, and the residue was purified by column chromatography on silica gel (200–300 mesh) to afford pure **4**, yield 81%. TLC (ethyl acetate/petroleum ether 1:3, V:V); 1H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 1.12-1.20 (m, 6H, C<sub>5</sub>-CH<sub>3</sub>, C<sub>3</sub>-OC-CH<sub>3</sub>), 3.40 (s, 3H, C<sub>4</sub>-OCH<sub>3</sub>), 3.62 (s, 3H, C<sub>2</sub>-OCH<sub>3</sub>), 3.92 (m, 2H, C2-H, C4-H), 4.07 (m, 2H, C<sub>3</sub>-OCH<sub>2</sub>-), 4.74 (s, 1H, OH), 5.07-5.20 (m, 2H, C3-H, C5-H), 5.80 (m, 1H, C<sub>1</sub>-H); 13C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ : 133.89, 117.62, 98.59, 79.77, 71.54, 68.04, 67.89, 64.99, 17.77, 15.62; MS (ESI) m/z (%): 243.2 (M+Na, 100).

## Synthesis of C9-OTBDMS-substituted aglycone 5

The aglycone (3.11 g, 7.71 mmol ) was added to 60 ml dry  $CH_2Cl_2$ , then 4-dimethylaminopyridine (4-DMAP, 1.83 g, 14.98 mmol) and *tert*-butyldimethylsilyl chloride (TBDMSCl, 1.39 g, 9.22 mmol) were successively added. After addition of all the reagents, the mixture was heated to reflux with stirring for 5 h. When the reaction was completed (by TLC monitoring), the solution was diluted with  $CH_2Cl_2$  and washed with saturated sodium bicarbonate solution thrice. The combined organic layers were dried over  $Na_2SO_4$  and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (200–300 mesh) to afford pure **5**, yield 73%. TLC (ethyl acetate/petroleum ether 1:5, V:V);  $^1$ H NMR(400 MHz, CDCl<sub>3</sub>)  $\delta$ : 0.03 (s, 6H, Si(CH<sub>3</sub>)<sub>2</sub>), 0.81 (t, 3H, C<sub>23</sub>-H), 0.87 (s, 9H, 3×CH<sub>3</sub>), 1.20 (d, 3H, C<sub>24</sub>-H), 1.25 (m, 1H, C<sub>11</sub>-H), 1.38-1.79(m, 12H, C<sub>8</sub>-H C<sub>10</sub>-H, C<sub>18</sub>-H, C<sub>19</sub>-H, C<sub>20</sub>-H, C<sub>22</sub>-H), 2.22 (H, m, C<sub>7</sub>-H). 2.39 (d, 1H, J= 13.4Hz, C<sub>2</sub>-H), 2.87 (m, 1H, C<sub>12</sub>-H), 2.99 (m, 1H, C<sub>16</sub>-H), 3.12 (d, 1H, J=13.4Hz, C<sub>2</sub>-H), 3.19 (m, 1H, C<sub>3</sub>-H), 3.43 (m, 1H,

 $C_4$ -H), 3.67 (m, 1H,  $C_{17}$ -H), 4.34 (m, 1H,  $C_9$ -H), 4.69 (s, 1H,  $C_{21}$ -H), 5.77(m, 1H,  $C_5$ -H), 5.85(m, 1H,  $C_6$ -H), 6.79 (s, 1H,  $C_{13}$ -H); <sup>13</sup>C NMR (100MHz, CDCl<sub>3</sub>)  $\delta$ : 4.51, 9.16, 15.9, 21.8, 26.1, 28.6, 30.2, 33.0, 34.2, 35.0, 40.8, 40.8, 41.4, 41.7, 46.4, 47.8, 48.2, 49.7, 72.7, 72.8, 77.1, 128.5, 130.1, 144.3, 148.2, 172.8, 202.7; MS (ESI) cal for  $C_{30}H_{48}O_5Si$  [M+Na]<sup>+</sup> 517.33428, found [M+Na]<sup>+</sup> 517.33417.

### Synthesis of C9-OTBDMS- and C17-OTIPS-substituted aglycone 6

Compound 5 (0.99 g, 1.92 mmol) was dissolved in 60 ml CH<sub>2</sub>Cl<sub>2</sub>, then 2,6-lutidine(0.42 g, 4.01 mmol) and triisopropylsilyl trifluoromethanesulfonate (TIPSOTf, 0.66 g, 2.16 mmol) were successively added at -20 °C. After addition of all the reagents, the mixture was kept at 0 °C and stirred for about 3 h. Then the mixture was diluted with CH2Cl2 and washed with saturated sodium bicarbonate solution thrice. The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (200–300 mesh) to afford pure 6, yield 85%. TLC (ethyl acetate/petroleum ether 1:10, V:V); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ :; 1.04 (s, 18H, Si-C-CH<sub>3</sub>), 1.25 (m, 3H, Si-CH-), 0.03 (s, 6H, Si(CH<sub>3</sub>)<sub>2</sub>), 0.81 (t, 3H, C<sub>23</sub>-H), 0.87 (s, 9H, CH<sub>3</sub>), 1.24 (m, 3H,  $C_{24}$ -H), 1.19 (m, 1H,  $C_{11}$ -H), (1.37-1.83, 2.21) (m, 2H×6,  $C_{8}$ -H,  $C_{10}$ -H,  $C_{18}$ -H,  $C_{19}$ -H,  $C_{20}$ -H,  $C_{22}$ -H), 2.24 (m, 1H,  $C_{7}$ -H). 2.42 (d, 1H, J = 10.1Hz,  $C_2$ -H), 2.88 (m, 1H,  $C_{12}$ -H), 3.02 (m, 1H,  $C_{16}$ -H), 3.08 (d, 1H, J=10.1Hz,  $C_2$ -H), 3.22 1H,  $C_{21}$ -H), 5.76(m, 1H,  $C_{5}$ -H), 5.84(m, 1H,  $C_{6}$ -H), 6.87(1H, s,  $C_{13}$ -H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ ; -4.65, 9.47, 13.0, 18.2, 18.5, 26.0, 19.5, 28.0, 31.3, 34.9, 36.8, 40.9,

40.9 41.2 41.6, 46.9, 47.8, 48.8, 49.8, 72.8, 74.7, 76.0, 128.9, 130.0, 143.5, 148.2, 172.7, 203.6; MS (ESI) call for C<sub>39</sub>H<sub>68</sub>O<sub>5</sub>Si<sub>2</sub> [M+H]<sup>+</sup> 673.46780, found [M+H]<sup>+</sup> 673.46775.

## Synthesis of C17-OTIPS-substituted aglycone 7

Compound 6 (0.71 g, 1.04 mmol) was added to a solvent mixture of 20 ml THF, 40 ml HOAc and 25 ml H<sub>2</sub>O, and then the mixture was heated to 70 °C with stirring for about 24 h. Then THF was evaporated under reduced pressure. The mixture was diluted with H<sub>2</sub>O, washed with saturated sodium bicarbonate solution and extracted with EtOAc thrice. The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (200–300 mesh) to afford pure 7, yield 71%. TLC (ethyl acetate/petroleum ether 1:5, V:V); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ: 1.00 (s, 18H, CH<sub>3</sub>), 1.25 (t, 3H, *J*=8.6Hz, CH), 0.81 (t, 3H, *J=7.5Hz*, C<sub>23</sub>-H), 0.94 (m, 3H, C<sub>24</sub>-H), 1.23 (m, 1H, C<sub>11</sub>-H), (1.42-1.88, 2.36) (m, 12H, C<sub>8</sub>-H, C<sub>10</sub>-H, C<sub>18</sub>-H, C<sub>19</sub>-H, C<sub>20</sub>-H, C<sub>22</sub>-H), 2.26 (m, 1H,  $C_7$ -H). 2.41 (d, 1H, J= 5.0Hz, one of  $C_2$ -H), 2.92 (m, 1H,  $C_{12}$ -H), 3.04 (m, 1H,  $C_{16}$ -H), 3.08 (d, 1H, J=5.0Hz, one of  $C_2$ -H), 3.23 (m, 1H,  $C_3$ -H), 3.50 (m, 1H,  $C_4$ -H), 4.03 (m, 1H,  $C_{17}$ -H), 4.46 (m, 1H,  $C_{9}$ -H), 4.65 (s, 1H,  $C_{21}$ -H), 5.81(m, 1H,  $C_{5}$ -H), 5.87(m, 1H,  $C_6$ -H), 6.88 (s, 1H,  $C_{13}$ -H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ :13.0, 18.4, 9.6, 18.6, 19.5, 28.1, 31.3, 34.8, 36.8, 40.1, 40.8, 41.2, 41.7, 47.2, 47.8, 48.9, 49.7, 72.5, 74.7, 75.9, 129.3, 129.6, 143.6, 147.8, 172.7, 203.6; MS (ESI) cal for  $C_{33}H_{54}O_5Si$  $[M+H]^{+}$  559.38133, found  $[M+H]^{+}$  559.38164.

# Synthesis of (3-*O*-ethyl-2,4-di-*O*-methyl-L-rhamnopyranosyl)-2,2,2-trifluoro-*N*-phenylacetimidate (8)

Compound **4** (0.91 g, 4.09 mmol) was dissolved in 5ml acetone, and then 2,2,2-trifluoro-*N*-phenylethanimidoyl chloride (0.87 g, 4.19 mmol) and potassium carbonate (0.58 g, 4.19 mmol) were successively added. After stirring at room temperature for about 18 h, the mixture was evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (200–300 mesh) to afford pure **8**, yield 87%. TLC (ethyl acetate/petroleum ether 4:1, V:V); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 1.31 (m, 3H, CH<sub>3</sub>), 1.35 (m, 3H, CH<sub>3</sub>), 3.15 (m, 1H, CH), 3.22 (m, 1H, CH), 3.50 (s, 3H, CH<sub>3</sub>), 3.59 (s, 3H, CH<sub>3</sub>), 3.61 (m, 2H, CH<sub>2</sub>), 3.69 (m, 1H, CH), 3.75 (m, 1H, CH), 5.25 (s, 1H, CH); 6.88(m, 1H, CH), 7.14 (s, 1H, CH), 7.33 (m, 1H, CH), 7.44 (s, 1H, CH); 7.59 (s, 1H, CH); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ : 15.6, 17.8, 59.2, 61.1, 67.8, 70.7, 79.7, 82.0, 96.2, 117.3, 119.5, 120.4, 125.4, 129.2, 129.4,133.9, 143.6; MS (ESI) cal for C<sub>18</sub>H<sub>24</sub>F<sub>3</sub>NO<sub>5</sub> [M+Na]<sup>+</sup> 414.14988, found [M+Na]<sup>+</sup> 414.15034.

# Synthesis of C17-OTIPS-substituted 3'-*O*-ethyl-5,6-dihydrospinosyn J analogue 9

Compound **8** (0.16 g, 0.29 mmol) and **7** (0.12 g, 0.31 mmol) were added to 5ml CH<sub>2</sub>Cl<sub>2</sub>, and then one drop of TMSOTF (about 0.05 ml) was added at -78 °C. With stirring for 0.5 h, the solution turned red, and was then quenched with sodium chloride solution. The mixture was extracted with EtOAc thrice, and the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated under reduced pressure.

The residue was purified by column chromatography on silica gel (200–300 mesh) to afford pure  $\bf 9$ , yield 76%. TLC (ethyl acetate/petroleum ether 1:4, V:V);  $^1$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 0.83 (t, 3H, J=7.5Hz,  $C_{23}$ -H), 0.92 (m, 1H,  $C_{11}$ -H), 1.23(d, 3H, J=6.4 Hz,  $C_{24}$ -H), (1.37-1.93, 2.27) (2Hx6,  $C_8$ -H,  $C_{10}$ -H,  $C_{18}$ -H,  $C_{19}$ -H,  $C_{20}$ -H,  $C_{22}$ -H), 2.40 and 3.10 (m, 2H,  $C_2$ -H), 2.17 (m, H,  $C_7$ -H), 2.88 (m, 2H,  $C_{12}$ -H), 3.03 (s, 1H,  $C_{16}$ -OH), 3.22 (m H,  $C_{12}$ -H), 3.45 (m, H,  $C_4$ -H), 4.06 (m, 1H,  $C_{17}$ -H), 4.32 (m, 1H,  $C_9$ -H), 4.67 (m, 1H,  $C_{21}$ -H), 5.84(m, 1H,  $C_5$ -H), 5.86(m, 1H,  $C_6$ -H), 6.85 (s, 1H,  $C_{13}$ -H); 1.28 (d, 3H, J= 6.5 Hz,  $C_5$ -CH<sub>3</sub>), 1.30 (m, 2H, O-CH<sub>2</sub>-), 3.14 (m, 1H,  $C_4$ -H), 3.47 (m, 1H,  $C_3$ -H), 3.50 (s, 3H,  $C_2$ -OCH<sub>3</sub>), 3.50 (s, 3H,  $C_5$ -OC-CH<sub>3</sub>), 3.73 (m, 1H,  $C_2$ -H), 3.70 (m, 1H,  $C_5$ -H), 3.57 (s, 3H,  $C_4$ -OCH<sub>3</sub>), 4.85 (s, 1H,  $C_1$ -H), 1.09 (s, 18H, Si-C-CH<sub>3</sub>), 1.25 (m, 3H, Si-CH-);  $^{13}$ C NMR (100 MHz, CDCl3)  $\delta$ : 9.6, 13.0, 15.9, 17.9, 18.4, 18.6, 19.5, 28.1, 31.4, 34.9, 36.5, 36.8, 37.7, 41.2, 41.6, 46.6, 47.8, 48.4, 49.6, 59.4, 61.2, 66.7, 68.1, 74.7, 76.0, 77.4, 78.4, 82.2, 82.3, 95.8, 129.3, 129.6, 143.6, 147.8, 172.7, 203.6; MS (ESI) cal for  $C_{43}$ H<sub>72</sub>O<sub>9</sub>Si [M+Na]<sup>+</sup> 783.48378, found [M+Na]<sup>+</sup> 783.48396.

# Synthesis of 17-pseudoaglycone of 3'-*O*-ethyl-5,6-dihydrospinosyn J analogue

Compound **9** (0.21 g, 0.28 mmol) was added to a solvent mixture of 15 ml acetonitrile and 2.5 ml 40% hydrofluoric acid at 0 °C. After stirring for about 12 h, the mixture was diluted with H<sub>2</sub>O, washed with saturated sodium bicarbonate solution and extracted with EtOAc thrice. The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (200–300 mesh) to afford pure **10**, yield 74%.

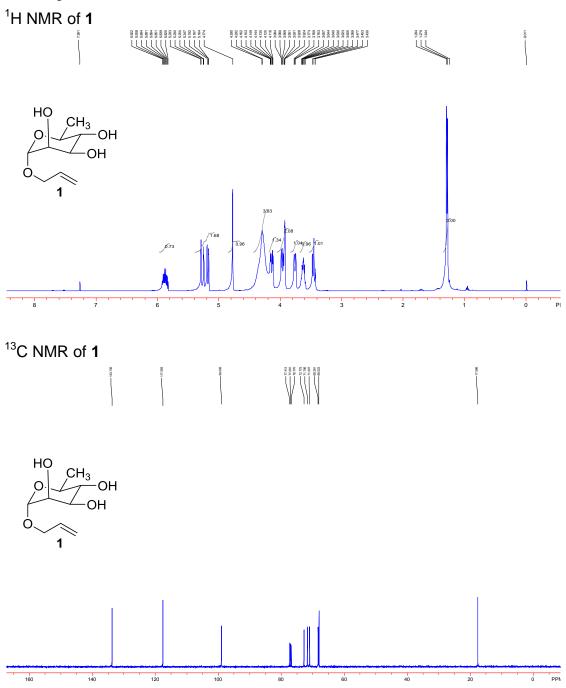
TLC (ethyl acetate/petroleum ether 1:1, V:V);  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 0.82 (t, 3H, C<sub>23</sub>-H), 0.92 (m, 1H, C<sub>11</sub>-H), 1.23 (d, 3H, J = 6.4 Hz, C<sub>24</sub>-H), 1.37-1.96 and 2.27 (m, 12H, C<sub>8</sub>-H, C<sub>10</sub>-H, C<sub>18</sub>-H, C<sub>19</sub>-H, C<sub>20</sub>-H, C<sub>22</sub>-H), 2.41 and 3.12 (m, 2H, C<sub>2</sub>-H), 2.17 (m, 1H, C<sub>7</sub>-H), 2.88 (m, 2H, C<sub>12</sub>-H), 3.03 (m, 1H, C<sub>16</sub>-H), 3.21 (m, 1H, C<sub>12</sub>-H), 3.46 (m, 1H, C<sub>4</sub>-H), 3.62 (m, 1H, C<sub>17</sub>-H), 4.32 (m, 1H, C<sub>9</sub>-H), 4.69 (m, 1H, C<sub>21</sub>-H), 5.81 (m, 1H, C<sub>6</sub>-H), 5.87 (m, 1H, C<sub>5</sub>-H), 6.78 (s, 1H, C<sub>13</sub>-H); 1.28 (d, 3H, J=6.5Hz, C<sub>5</sub>-CH<sub>3</sub>), 1.31 (m, 2H, C<sub>4</sub>-O-CH<sub>2</sub>-), 3.14 (m, 1H, C<sub>4</sub>-H), 3.48 (m, 1H, C<sub>3</sub>-H), 3.50 (s, 3H, C<sub>2</sub>-OCH<sub>3</sub>), 3.50 (s, 3H, C<sub>5</sub>-O-C-CH<sub>3</sub>), 3.73 (m, 1H, C<sub>2</sub>-H), 3.69 (m, 1H, C<sub>5</sub>'-H), 3.57 (s, 3H, C<sub>4</sub>-OCCH<sub>3</sub>), 4.83 (s, 1H, C<sub>1</sub>-H);  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ : 9.5, 15.9, 18.0, 18.6, 21.7, 28.5, 30.2, 34.2, 35.0, 36.4, 37.5, 41.3, 41.6, 461, 47.7, 48.2, 49.6, 59.4, 61.2, 66.7, 68.2, 72.8, 76.2, 77.1, 78.6, 79.8, 82.3, 95.9, 128.9, 129.5, 144.5, 147.6, 172.8, 202.9; MS (ESI) cal for C<sub>34</sub>H<sub>52</sub>O<sub>9</sub> [M+Na] 627.35035, found [M+Na] 627.35058.

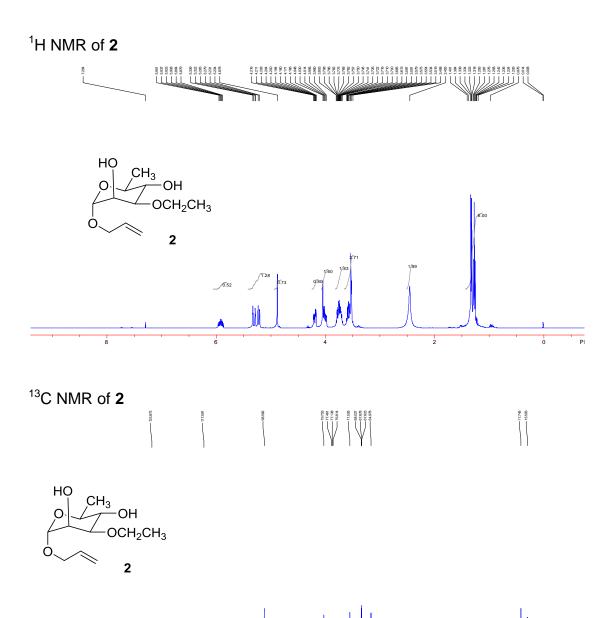
## Synthesis of forosamineyl trichoroacetimidate (11)

*D*-Forosamine (0.18 g, 1.13 mmol) was added to 10 ml  $CH_2Cl_2$ , and then trichloroacetonitrile (0.42 g, 2.91 mmol) and  $Cs_2CO_3$  (0.11g, 0.34mmol) were successively added at 0 °C. After stirring for 1 h, the mixture was diluted with  $CH_2Cl_2$  and washed with saturated sodium bicarbonate solution. The combined organic layers were dried over  $Na_2SO_4$ , and then evaporated under reduced pressure. The residue was used directly in the next reaction.

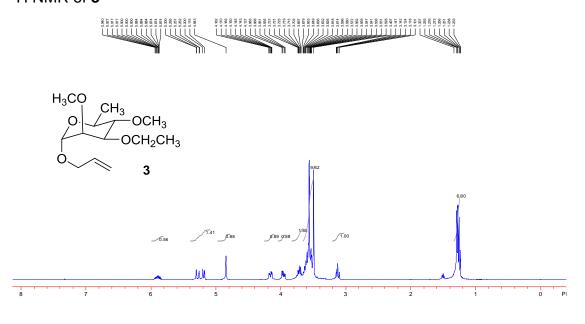
#### Synthesis of 3'-O-ethyl-5,6-dihydrospinosyn J analogue 12

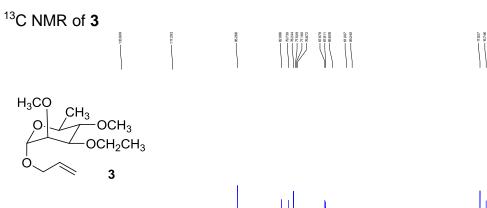
Compound **10** (0.12 g, 0.19 mmol) was added to 20 ml CH<sub>2</sub>Cl<sub>2</sub>, then **11** (0.09 g, 0.30 mmol) and 0.05 ml trifluoride etherate were added at room temperature. After stirring

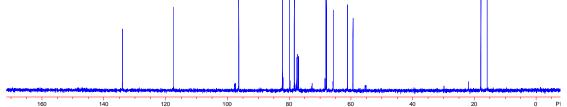

for 18 h, the mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> and washed with saturated sodium bicarbonate solution. The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (200-300 mesh) to afford pure 12, yield 69%. TLC (methanol/dichloromethane 1:5, V:V); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 6.70(s, 1H,  $C_{13}$ -H), 5.82(m, 1H,  $C_{6}$ -H), 5.74(m, 1H,  $C_{5}$ -H), 4.78(s,1H,  $C_{1'}$ -H), 4.60(m, 1H,  $C_{21}$ -H), 4.35(d, J=3.8Hz, 1H,  $C_{1}$ "-H), 4.24(m, 1H,  $C_{9}$ -H), 3.56(m, 1H,  $C_{2}$ "-H), 3.48-3.38(m, 13H, C<sub>17</sub>-H, C<sub>5</sub>-H, C<sub>4</sub>-H, C<sub>4</sub>-OCH<sub>3</sub>, C<sub>2</sub>-OCH<sub>3</sub>, C<sub>3</sub>-OCH<sub>2</sub>-, C<sub>3</sub>-H, C<sub>5</sub>-H), 3.22(m, 1H,  $C_{16}$ -H), 3.08-3.02(m, 2H, one of  $C_2$ -H,  $C_3$ -H), 2.94(m, 1H,  $C_4$ -H), 2.80(m, 1H,  $C_{12}$ -H), 2.34(m, 1H, one of  $C_2$ -H), 2.21-2.09(m, 10H,  $C_{10}$ -H,  $C_7$ -H,  $C_4$ "-H,  $N(CH_3)_2$ ), 1.91-1.66(m, 5H, one of  $C_{8}$ -H, one of  $C_{2}$ "-H, one of  $C_{3}$ "-H, one of  $C_{8}$ -H, one of  $C_{19}$ -H), 1.47-1.28(m, 10H,  $C_{18}$ -H, one of  $C_{20}$ -H,  $C_{22}$ -H, one of  $C_{2"}$ -H, one of  $C_{3"}$ -H,  $C_{3'}$ -OC-CH<sub>3</sub>), 1.21-1.17(m, 11H, one of  $C_{19}$ -H, one of  $C_{20}$ -H,  $C_{5'}$ -CH<sub>3</sub>,  $C_{16}$ -CH<sub>3</sub>), 0.85(m, 1H, C<sub>11</sub>-H), 0.75(t, J = 7.2Hz, 3H, C<sub>23</sub>-H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 202.76, 172.43, 147.40, 144.11, 129.26, 128.77, 103.40, 95.43, 82.22, 81.05, 80.53, 77.67, 76.61, 76.03, 73.61, 67.88, 64.84, 60.84, 60.26, 58.94, 57.63, 49.38, 47.62, 47.57, 46.00, 41.47, 41.12, 40.65, 37.34, 36.25, 34.27, 30.92, 30.06, 28.36, 21.59, 20.95, 18.90, 18.33, 17.75, 16.08, 14.15, 9.30; MS (MALDI) cal for C<sub>42</sub>H<sub>67</sub>NO<sub>10</sub> [M+Na]<sup>+</sup> 768.465718, found [M+Na]<sup>+</sup> 768.465844.

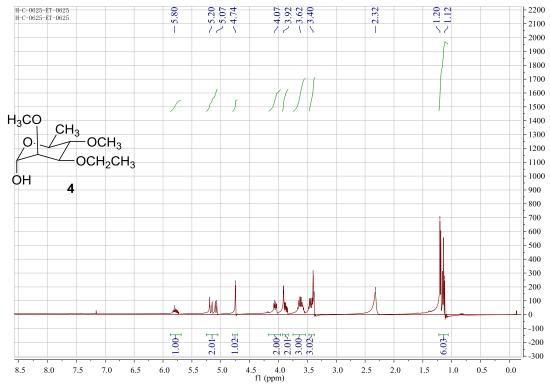

#### Synthesis of 3'-O-ethyl-5,6-dihydro spinosyn J

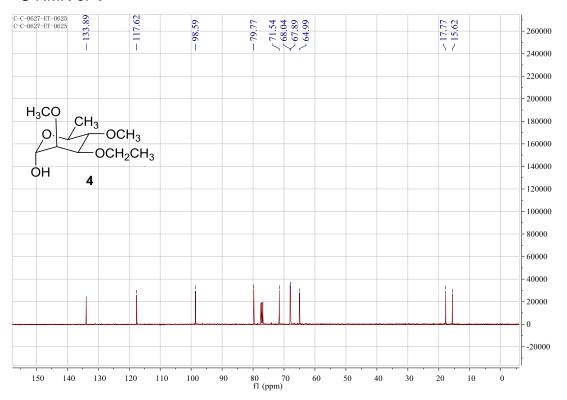
Compound **12** (0.09 g, 0.12 mmol) was dissolved in 20 ml methanol, and then 10% Pd/C (0.0186 g, 0.0175 mmol) was added. The mixture was stirred under hydrogen


at room temperature. After about 48 h of stirring, the mixture was filtered. The filtrate was evaporated under reduced pressure, and the residue was purified by column chromatography on silica gel (200-300 mesh) to afford pure 3'-O-ethyl-5,6-dihydro spinosyn J, yield 91%. TLC (methanol/dichloromethane 1:8, V:V); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 6.86(s, 1H, C<sub>13</sub>-H), 4.84(s,1H, C<sub>1'</sub>-H), 4.60(m, 1H, C<sub>21</sub>-H), 4.44(d, J=8.4Hz, 1H,  $C_{1}$ "-H), 4.21(m, 1H,  $C_{9}$ -H), 3.73(m, 1H,  $C_{2}$ "-H), 3.65(m, 1H,  $C_{5}$ "-H), 3.62(m, 1H,  $C_{17}$ -H), 3.57-3.48(m, 11H,  $C_{5'}$ -H,  $C_{4'}$ -OCH<sub>3</sub>,  $C_{2'}$ -OCH<sub>3</sub>,  $C_{3'}$ -OCH<sub>2</sub>-,  $C_{3'}$ -H),  $3.44(m, 1H, C_{16}-H), 3.42-3.40 (m, 2H, one of C_2-H, C_3-H), 3.11(m, 1H, C_4-H), 2.81(m, 1H, C_4-H), 2$ 1H,  $C_{12}$ -H), 2.35(m, 1H, one of  $C_2$ -H), 2.30-2.22(m, 10H,  $C_{10}$ -H,  $C_7$ -H,  $C_4$ "-H,  $N(CH_3)_2$ ), 1.98-1.81(m, 5H, one of  $C_8$ -H, one of  $C_{2"}$ -H, one of  $C_{3"}$ -H, one of  $C_8$ -H, one of  $C_{19}$ -H), 1.57-1.43(m, 12H,  $C_{18}$ -H, one of  $C_{20}$ -H,  $C_{22}$ -H, one of  $C_{2"}$ -H, one of  $C_{3"}$ -H,  $C_{3'}$ -OC-CH<sub>3</sub>, one of  $C_{5}$ -H, one of  $C_{6}$ -H), 1.28-1.16(m, 13H, one of  $C_{19}$ -H, one of  $C_{20}$ -H,  $C_{5'}$ -CH<sub>3</sub>,  $C_{16}$ -CH<sub>3</sub>, one of  $C_{5}$ -H, one of  $C_{6}$ -H,  $C_{5''}$ -CH<sub>3</sub>), 1.03(m, 1H,  $C_{11}$ -H), 0.82(t, J = 7.4Hz, 3H,  $C_{23}$ -H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  203.28, 172.48, 149.45, 145.07, 103.22, 95.73, 82.11, 80.28, 79.56, 78.48, 75.72, 75.55, 73.35, 68.14, 67.83, 65.44, 64.80, 60.84, 59.09, 49.98, 47.79, 46.44, 43.15, 40.92, 40.52, 39.47, 38.68, 37.94, 34.21, 32.94, 30.76, 29.91, 28.35, 26.94, 24.43, 21.83, 18.89, 18.69, 17.73, 15.92, 15.64, 9.25. MS (MALDI) cal for C<sub>42</sub>H<sub>69</sub>NO<sub>10</sub> [M+Na]<sup>+</sup> 770.481368, found [M+ Na]<sup>+</sup> 770.481264.

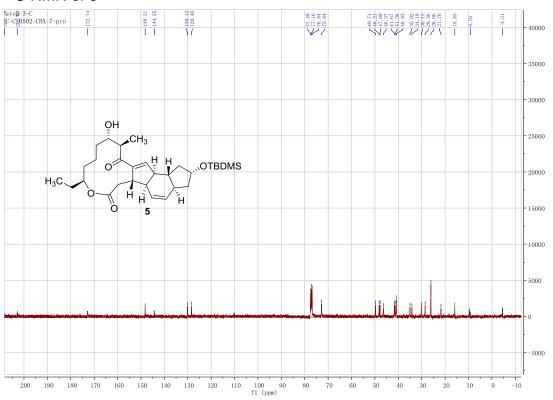

# Analytical data

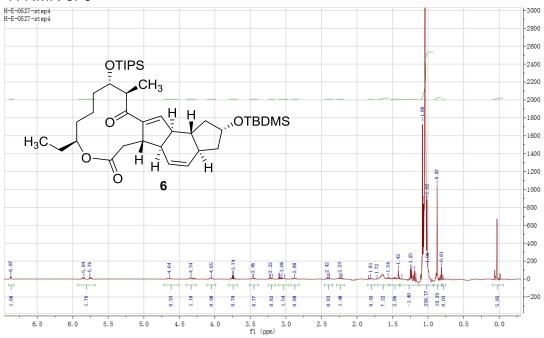


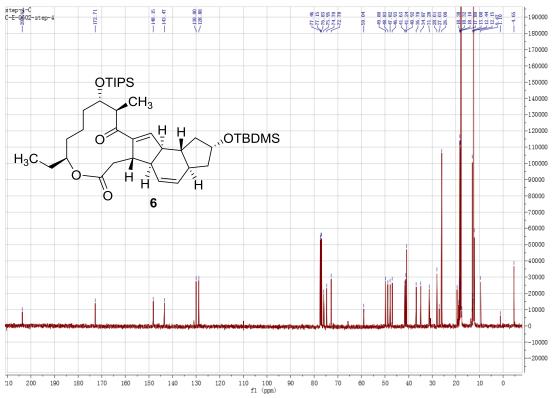



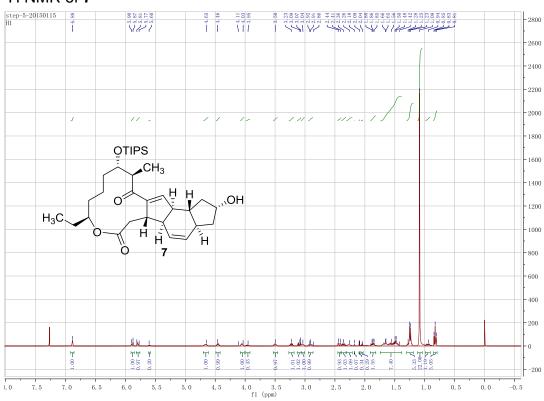



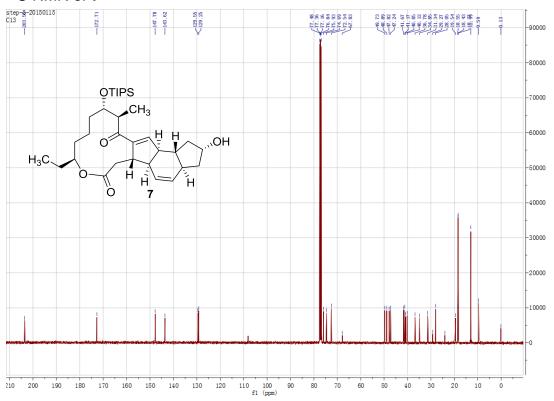


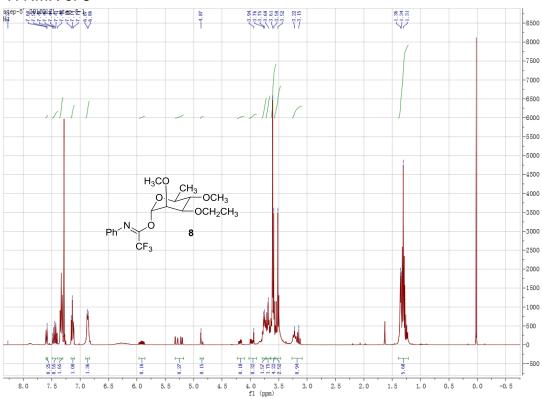



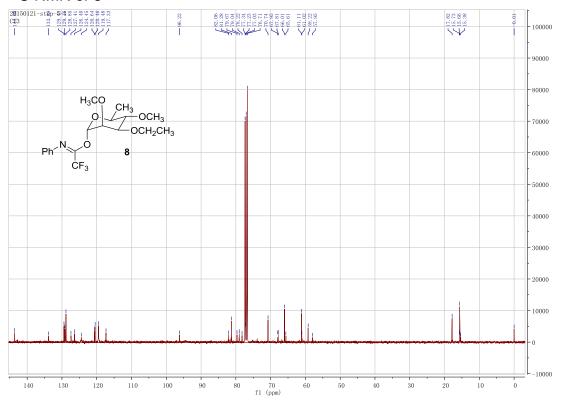



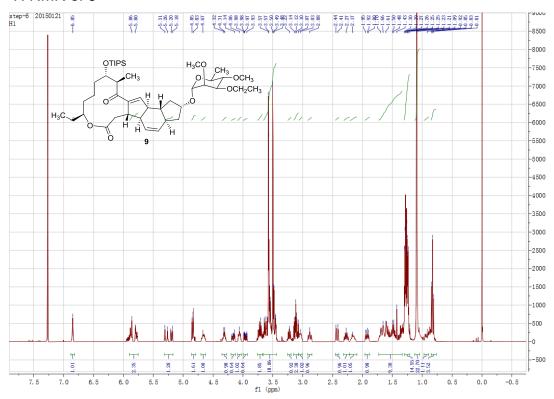



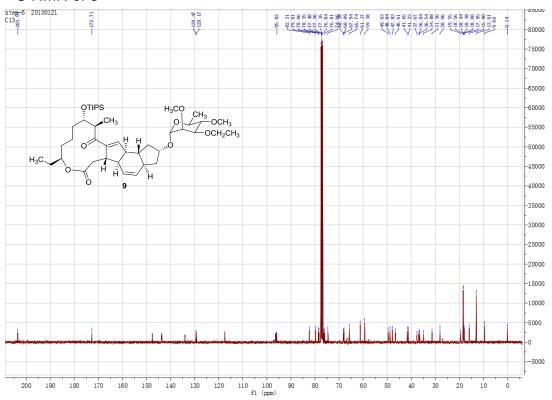



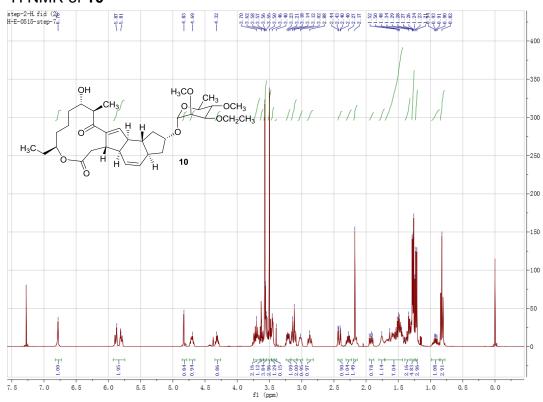


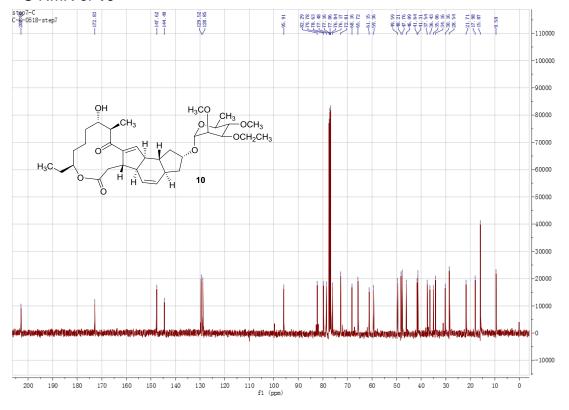



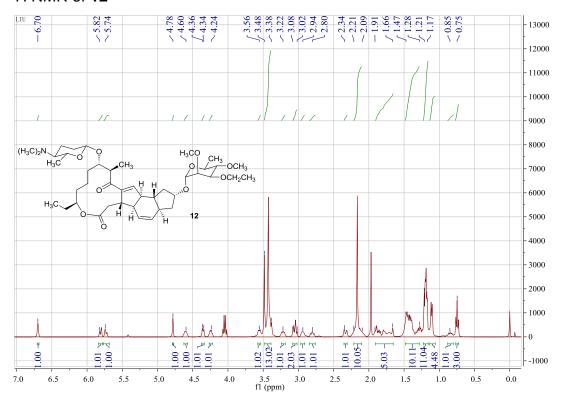



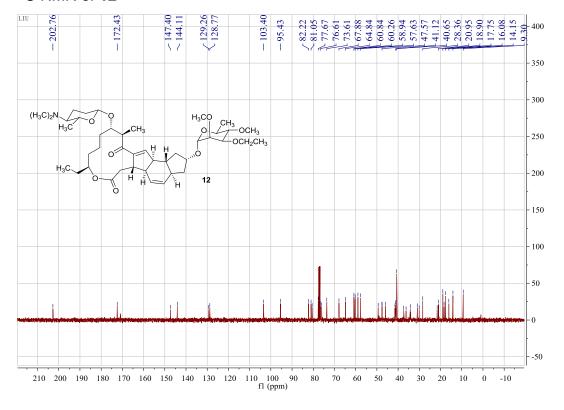



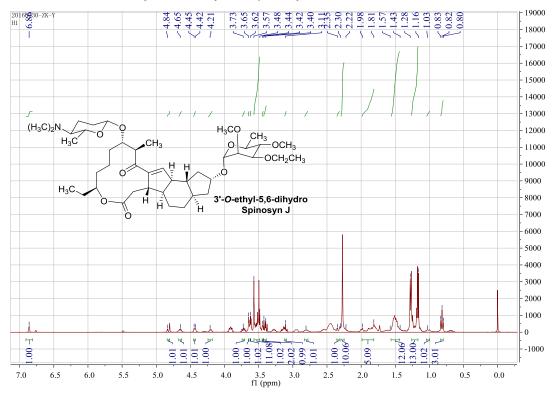



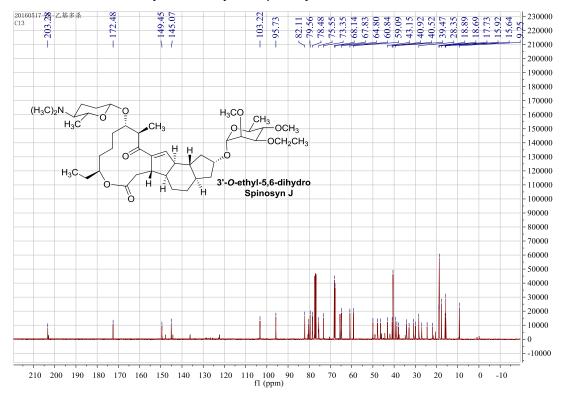



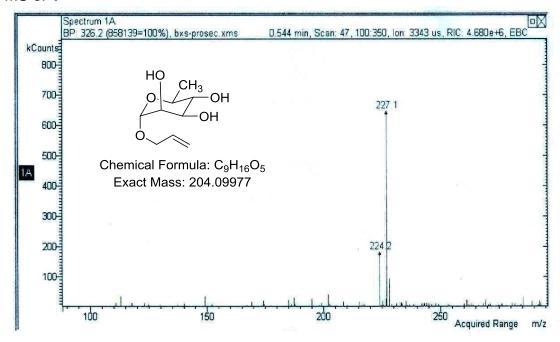


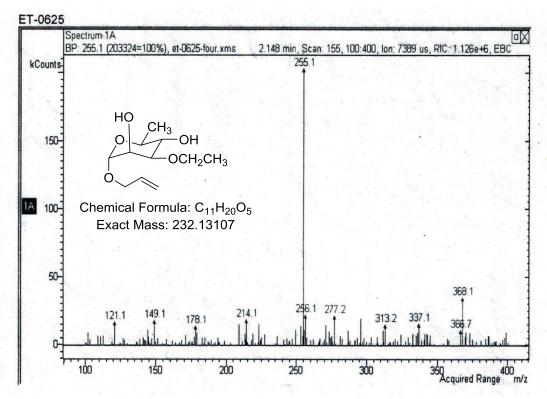


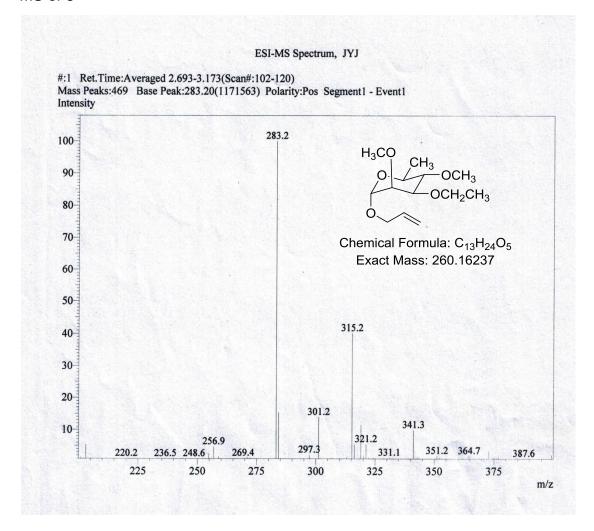


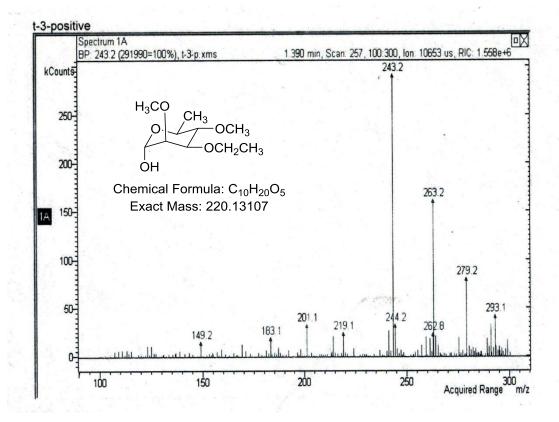


## <sup>1</sup>H NMR of 3'-O-ethyl-5, 6-dihydro spinosyn J




# $^{13}\text{C}$ NMR of 3'-O-ethyl-5, 6-dihydro spinosyn J

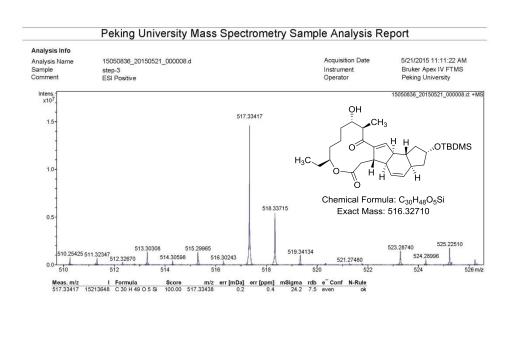



MS of 1




MS of 2

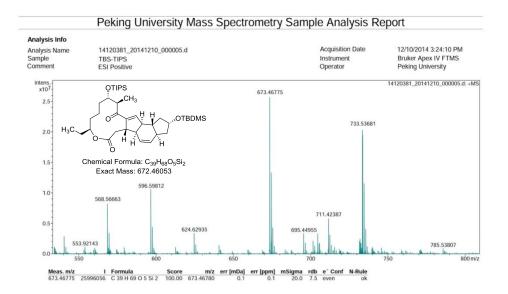



MS of 3



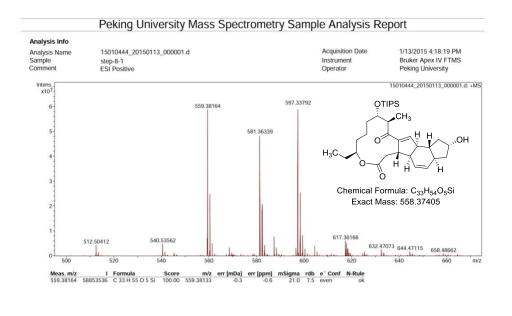


## MS of 5

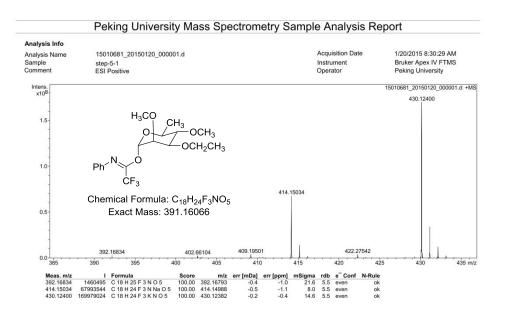

Bruker Compass DataAnalysis 4.0



printed:


5/21/2015 11:12:28 AM

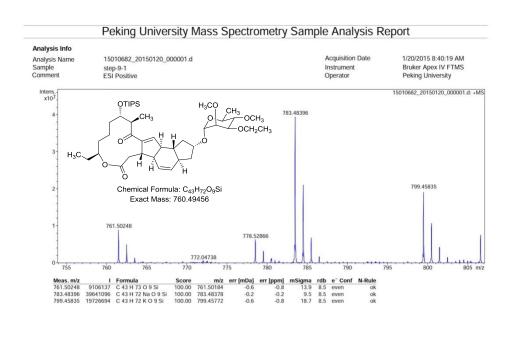
Page 1 of 1




 Bruker Compass DataAnalysis 4.0
 printed:
 12/10/2014 3:25:33 PM
 Page 1 of 1

### MS of 7

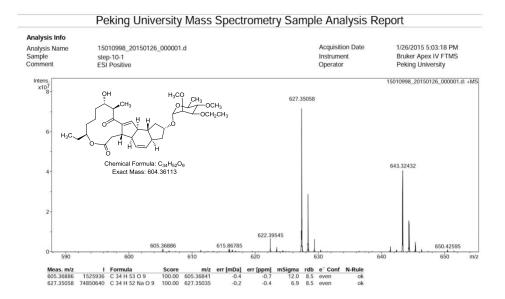



Bruker Compass DataAnalysis 4.0 printed: 1/13/2015 4:19:16 PM Page 1 of 1



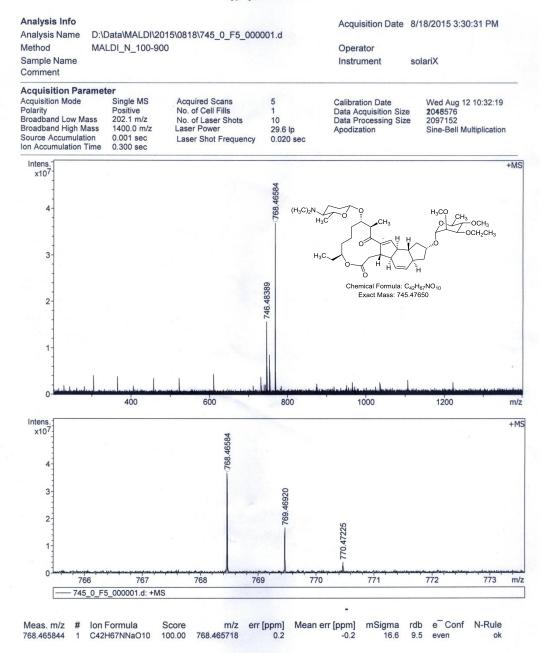
 Bruker Compass DataAnalysis 4.0
 printed:
 1/20/2015 8:36:15 AM
 Page 1 of 1

### MS of 9


Bruker Compass DataAnalysis 4.0



printed:


1/20/2015 8:43:33 AM

Page 1 of 1



 Bruker Compass DataAnalysis 4.0
 printed:
 1/26/2015 5:04:43 PM
 Page 1 of 1

# MALDI(p),745,20150818



#### MALDI, ZK-Y, 20160127 **Analysis Info** Acquisition Date 1/27/2016 5:01:16 PM D:\Data\MALDI\2016\0127\ZK-Y\_0\_G14\_000001.d Analysis Name Method MALDI\_P\_100-3000 Operator Sample Name Instrument solariX Comment **Acquisition Parameter** Acquisition Mode Polarity Broadband Low Mass Broadband High Mass Source Accumulation Ion Accumulation Time Acquired Scans No. of Cell Fills No. of Laser Shots Laser Power Laser Shot Frequency Calibration Date Data Acquisition Size Data Processing Size Apodization Wed Jan 27 05:00:47 **2**046576 2097152 Sine-Bell Multiplication Single MS Positive 202.1 m/z 10 1400.0 m/z 0.001 sec 0.300 sec 26.6 lp 0.020 sec Intens. x108 +MS 770.48125 0.8 $(H_3C)_2N$ ∠осн₂сн₃ 0.6 748.49935 0.4 Chemical Formula: C<sub>42</sub>H<sub>69</sub>NO<sub>10</sub> Exact Mass: 747.49215 0.2 0.0 400 600 800 1000 1200 m/z +MS x108 770.48125 1.0 0.8 771.48468 0.6 0.4 772.49674 773.50021 0.2 771 772 773 774 775 769 770 m/z - ZK-Y\_0\_G14\_000001.d: +MS err [ppm] Mean err [ppm] mSigma 0.1 58.6 rdb e Conf N-Rule Meas. m/z # Ion Formula Score m/z 1 C42H69NNaO10 100.00 770.481368 8.5