Supporting Information

for

Nucleophilic dearomatization of 4-aza-6-
 nitrobenzofuroxan by CH acids in the synthesis of pharmacology-oriented compounds

Alexey M. Starosotnikov*1 ${ }^{1}$, Dmitry V. Shkaev ${ }^{1}$, Maxim A. Bastrakov ${ }^{1}$, Ivan V. Fedyanin ${ }^{2}$, Svyatoslav A. Shevelev ${ }^{1}$ and Igor L. Dalinger ${ }^{1}$

Address: ${ }^{1}$ N.D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, Moscow 119991, Russia and ${ }^{2}$ A.N. Nesmeyanov Institute of Organoelement Compounds, Vavilova str. 28, Moscow 119991, Russia

Email: Alexey M. Starosotnikov - alexey41@list.ru
*Corresponding author

Experimental section, NMR spectra, HRMS and X-ray analysis data

Experimental

General. All chemicals were of commercial grade and used directly without purification. Melting points were measured on a Stuart SMP 20 apparatus. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AM-300 spectrometer (at 300.13 and 75.13 MHz , respectively) in DMSO- d_{6} or acetone $-d_{6}$ with TMS as internal standard. HRMS spectra were recorded on a Bruker micrOTOF II mass spectrometer using ESI. All reactions were monitored by TLC analysis using ALUGRAM SIL G/UV254 plates, which were visualized by UV light.

1

4-Aza-6-nitrobenzofuroxan (1)

2-Chloro-3,5-dinitropyridine ($22.3 \mathrm{~g}, 0.11 \mathrm{~mol}$) was added in small portions to a solution of NH_{3} in $\mathrm{MeOH}(7 \mathrm{~N}, 150 \mathrm{~mL})$ at $5-10^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at room temperature and poured in water (500 mL). The resulting solid was filtered, washed with water (100 mL) and dried to give 2-amino-3,5-dinitropyridine ($19.55 \mathrm{~g}, 97 \%$) which was used in next step without further purification.

To a solution of 2-amino-3,5-dinitropyridine ($5 \mathrm{~g}, 27.2 \mathrm{mmol}$) in benzene (100 mL) $\mathrm{Phl}(\mathrm{OAc})_{2}(11.37 \mathrm{~g}, 35.3 \mathrm{mmol})$ was added and the mixture was heated under reflux for 5 h . The solvent was evaporated and the residue was washed thoroughly with hexane and ether to give 4-aza-6-nitrobenzofuroxan (1, $4.42 \mathrm{~g}, 90 \%$) as yellow solid. M.p. 95$96{ }^{\circ} \mathrm{C}$ (lit. [26] 93-96 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\mathrm{d}_{6}, 300 \mathrm{MHz}$): $9.35(\mathrm{~s}, 1 \mathrm{H}), 9.48(\mathrm{~s}, 1 \mathrm{H})$.

Reaction of ANBF 1 with CH acids (general procedure)

To a solution of $\operatorname{ANBF}(1,0.364 \mathrm{~g}, 2 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ the corresponding CH acid (2 mmol) was added and the mixture was stirred for 30 min at room temperature. In
case of compounds 8 and 9 the precipitated product was filtered off and dried on air. In all other cases the mixture was poured in water (50 mL) and filtered or extracted with EtOAc $(3 \times 30 \mathrm{~mL})$ and evaporated to dryness. In case of diethyl malonate and 2,4,6trinitrotoluene $0.28 \mathrm{~mL}(2 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$ was added to the reaction mixture. On completion of the reaction the mixture was poured in water (50 mL), acidified with conc. HCl to pH 2 , extracted with EtOAc $(3 \times 30 \mathrm{~mL})$ and evaporated to dryness.

Adduct with acetylacetone: 3-(6-Nitro-1-oxido-4,7-dihydro[1,2,5]oxadiazolo[3,4-b]pyridin-7-yl)pentane-2,4-dione monohydrate (6a and 6b).

6b

6a:6b-3:5
M.p. ${ }^{153-154}{ }^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300.13 \mathrm{MHz}, \delta\right)$ for $\mathbf{6 a}: 2.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.71(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}(5))$, 11.72 (br.s., 1H, NH); for 6b: 2.06 (br.s., $3 \mathrm{H}, \mathrm{CH}_{3}$), 2.40 (br.s., $3 \mathrm{H}, \mathrm{CH}_{3}$), 5.44 (s, 1 H , $\mathrm{H}\left(1^{\prime}\right)$), $8.34\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}(5)\right.$), 11.72 (br.s., $1 \mathrm{H}, \mathrm{NH}$), 14.79 (br.s., $1 \mathrm{H}, \mathrm{OH}$); ${ }^{13} \mathrm{C}$ NMR (DMSO$\left.\mathrm{d}_{6}, 75.47 \mathrm{MHz}, \delta\right)$ for mixture of $\mathbf{6 a}$ and $\mathbf{6 b}$: 29.39, 30.78, 31.07, 31.37, 64.35, 107.21, 123.82, 125.83, 137.73, 139.81, 152.03, 202.62, 204.60 ppm; anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{7}$ (\%): C, 40.01; H, 4.03; N, 18.66; found C, 40.02; H, 3.69; N, 18.76.

Adduct with benzoylacetone: 2-(6-Nitro-1-oxido-4,7-dihydro[1,2,5]oxadiazolo[3,4-b]pyridin-7-yl)-1-phenylbutane-1,3-dione (7a and 7b).

M.p. $190-191^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300.13 \mathrm{MHz}, \delta\right)$: major diastereomer: 2.17 (s, 3H, CH3), $5.03(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.76(\mathrm{~m}, 3 \mathrm{H}), 8.13(\mathrm{~d}$, $\mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{o}-\mathrm{Ph}), 8.44(\mathrm{~s}, 1 \mathrm{H})$ ppm; minor diastereomer: $2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.34(\mathrm{~d}$, $\mathrm{J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{o}-\mathrm{Ph})$, $8.40(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$. HRMS (ESI): $\left[\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}$calc. 367.0649, found 367.0638. anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{6}$ (\%): C, 52.33; H, 3.51; N, 16.27; found C, 52.31; H, 3.64; N, 16.24.

Adduct with 1,3-cyclohexanedione: 3-Hydroxy-2-(6-nitro-1-oxido-4,7-dihydro[1,2,5]oxadiazolo[3,4-b]pyridin-7-yl)cyclohex-2-en-1-one (8).

M.p. $180-181^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300.13 \mathrm{MHz}, \delta\right): 1.75-1.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.33 (br.s., 4H, 2CH 2), 5.54 (s, 1H, CH), 8.26 (s, 1H, CH), 11.46 (br.s., 2H, NH+OH) ppm; ${ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 75.47 \mathrm{MHz}, \delta\right): 20.40,26.47,29.18,107.85,108.53,125.93$, 137.33, 151.85, 217.31 ppm ; anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{6}$ (\%): C, 44.90; H, 3.43; N , 19.04; found C, 45.05; H, 3.40; N, 19.12.

Adduct with dimedone: 5,5-Dimethyl-3-hydroxy-2-(6-nitro-1-oxido-4,7-dihydro[1,2,5]oxadiazolo[3,4-b]pyridin-7-yl)cyclohex-2-en-1-one (9).

M.p. $212-213^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300.13 \mathrm{MHz}, \delta\right): 0.95\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.23$ (br.s., $4 \mathrm{H}, 2 \mathrm{CH}_{2}$), $5.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{H}(7)), 8.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}(5)), 11.42$ (br.s., $2 \mathrm{H}, \mathrm{NH}+\mathrm{OH}$) ppm; ${ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.6,75.47 \mathrm{MHz}, \delta\right): 27.52,28.89,31.58,107.93,125.86,137.31$, 151.78, 200.29, 200.95 ppm ; HRMS (ESI): $\left[\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{6}+\mathrm{H}\right]^{+}$calc. 323.0986, found 323.0988. anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{6}$ (\%): C, 48.45; H, 4.38; $\mathrm{N}, 17.38$; found $\mathrm{C}, 48.52$; H, 4.33; N, 17.53.

Adduct with Meldrum's acid: 2,2-Dimethyl-5-(6-nitro-1-oxido-4,7-dihydro[1,2,5]oxadiazolo[3,4-b]pyridin-7-yl)-1,3-dioxane-4,6-dione (10).

10
M.p. $135-136^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR (acetone-d $\left.{ }_{6}, 300.13 \mathrm{MHz}, \delta\right): 1.75$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.90 (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.85\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}\left(1^{\prime}\right)\right), 5.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}(7)), 8.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}(5)), 10.54$ (br.s., 1H, NH) ppm. HRMS (ESI): $\left[\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{8}+\mathrm{H}\right]^{+}$calc. 327.0571 , found 327.0565. anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{8}$ (\%): C, 40.50; H, 3.09; N, 17.17; found C, 40.32; H, 2.86; N, 17.34.

Adduct with N, N-dimethylbarbituric acid: 1,3-Dimethyl-5-(6-nitro-1-oxido-4,7-dihydro[1,2,5]oxadiazolo[3,4-b]pyridin-7-yl)pyrimidine-2,4,6(1H,3H,5H)-trione (11).

M.p. $186-187^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR (acetone- $\left.\mathrm{d}_{6}, 300.13 \mathrm{MHz}, \delta\right): 3.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.27$ (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.51\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}\left(1^{\prime}\right)\right), 5.46(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}, \mathrm{H}(7)), 8.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}(5)), 10.58$ (br.s., $1 \mathrm{H}, \mathrm{NH}$) ppm; HRMS (ESI): $\left[\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{7}+\mathrm{H}\right]^{+}$calc. 339.0684, found 339.0679. anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{7}$ (\%): $\mathrm{C}, 39.06 ; \mathrm{H}, 2.98$; $\mathrm{N}, 24.85$; found $\mathrm{C}, 38.94 ; \mathrm{H}, 3.01$; N , 24.85.

Adduct with ethyl acetoacetate: Ethyl 2-(6-nitro-1-oxido-4,7-dihydro[1,2,5]oxadiazolo[3,4-b]pyridin-7-yl)-3-oxobutanoate (12).

M.p. $143-144^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 300.13 \mathrm{MHz}, \delta$): for 12a: 1.06-1.23 (m, 3H, CH_{3}), 3.99-4.20 (m, 2H, CH $)_{2}$), $5.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}(7)), 8.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}(5)), 11.73$ (br.s., 1 H , $\mathrm{NH}), 13.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) \mathrm{ppm}$; for 12b+12c: 1.06-1.23 (m, $3 \mathrm{H}, \mathrm{CH}_{3}$), 3.99-4.20 (m, 2H, CH_{2}), 4.24 and 4.42 (both d, $1 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{H}\left(1^{\prime}\right)$), 4.98 and 5.2 (both d, $1 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz}$, $H(7)), 8.2$ and 8.46 (both s, $1 \mathrm{H}, \mathrm{H}(5)$), 10.90 and 11.73 (both br.s., $1 \mathrm{H}, \mathrm{NH}$) ppm; anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{7}(\%)$: C, 42.31; H, 3.87; N, 17.94; found C, 42.45; H, 4.69; N, 17.73.

Adduct with diethylmalonate: Diethyl (6-nitro-1-oxido-4,7-
dihydro[1,2,5]oxadiazolo[3,4-b]pyridin-7-yl)malonate (13).

13

Brown oil. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 300.13 \mathrm{MHz}, \delta\right): 1.10-1.22\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$, 3.99-4.17 (m, $5 \mathrm{H}, 2 \mathrm{CH}_{2}+\mathrm{CH}$), $5.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}, \mathrm{H}(7)), 8.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}(5)), 12.03$ (br.s, 1H,NH) ppm. ${ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 75.47 \mathrm{MHz}, \delta\right): 14.08$ and $14.36\left(2 \mathrm{CH}_{3}\right), 33.08,51.05,62.00$ and $62.43\left(2 \mathrm{CH}_{2}\right), 106.75,123.45,140.77,152.33,166.24$ and $166.97(2 \mathrm{C}=\mathrm{O}) \mathrm{ppm}$; anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{8}$ (\%): C, 42.11; H, 4.12; $\mathrm{N}, 16.37$; found $\mathrm{C}, 42.35 ; \mathrm{H}, 4.39$; N , 16.22.

Adduct with 1,1,1-trifluoroacetylacetone: (3Z)-5,5,5-trifluoro-4-hydroxy-3-(6-nitro-1-oxido-4,7-dihydro[1,2,5]oxadiazolo[3,4-b]pyridin-7-yl)pent-3-en-2-one (14).

Not isolated. ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 300.13 \mathrm{MHz}, \delta$): 2.34 (br.s., $3 \mathrm{H}, \mathrm{CH}_{3}$), 5.38 (s, 1 H , $\mathrm{H}(7))$, 8.35 (s, 1H, H(5)), 11.70 (br.s, 1H, NH) ppm.

Adduct with 2,4,6-trinitrotoluene: 6-Nitro-7-(2,4,6-trinitrobenzyl)-4,7-dihydro[1,2,5]oxadiazolo[3,4-b]pyridine 1-oxide (15).

15
M.p. $122-123^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300.13 \mathrm{MHz}, \delta\right): 3.30-3.38(\mathrm{dd}, \mathrm{J}=14.1 \mathrm{~Hz}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $3.74\left(\mathrm{dd}, \mathrm{J}=14.1 \mathrm{~Hz}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.97(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}(7)), 8.47$ (s, 1H, H(5)), 9.10 (s, 2H, Pic), 11.85 (br.s., 1H, NH) ppm; ${ }^{13} \mathrm{C}$ NMR (DMSO$\left.\mathrm{d}_{6}, 75.47 \mathrm{MHz}, \delta\right): 30.33,31.96,107.05,122.80,125.55,130.85,138.79,146.73$, 151.19, $151.22 \mathrm{ppm} ; \operatorname{IR}\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right): 722,818,986,1022,1084,1205,1251,1321$, 1349, 1491, 1544, 1587, 1653, 3093; HRMS (ESI): $\left[\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{~N}_{7} \mathrm{O}_{10}+\mathrm{NH}_{4}\right]^{+}$calc. 427.0593, found 427.0575. anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{~N}_{7} \mathrm{O}_{10}$ (\%): $\mathrm{C}, 35.22 ; \mathrm{H}, 1.72 ; \mathrm{N}, 23.96$; found C , 35.37; H, 1.58; N, 23.74.

NMR and HRMS spectra of compounds 6-15

Display Report

Display Report

Display Report

Display Report

Display Report

X-ray diffraction experiments:

Data collection was performed on a Bruker APEX DUO diffractometer equipped with Apex II CCD detector and operating with Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA$). Frames were integrated using the Bruker SAINT software package [SAINT (version 8.34A), Bruker AXS Inc., Madison, Wisconsin, USA, 2014] by a narrow-frame algorithm. A semiempirical absorption correction was applied with the SADABS program [G.M. Sheldrick, SADABS, v. 2008/1, Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, Wisconsin, USA, 2008] using the intensity data of equivalent reflections. The structures were solved with direct methods and refined by the full-matrix least-squares technique against $F^{2}{ }_{\text {hkl }}$ in anisotropic approximation with SHELX [G.M. Sheldrick, Acta Cryst. 2015, C71, 3-8] software package. Hydrogen atoms connected to oxygen and nitrogen atoms were located from difference Fourier synthesis and refined isotropically. All other hydrogen atoms were placed in calculated positions and refined in riding model $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})$ equal to $1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{Cm})$ and $1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{Ci})$, where $\mathrm{U}_{\mathrm{eq}}(\mathrm{Cm})$ and $1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{Ci})$ are respectively the equivalent thermal parameters of methyl and all other carbon atoms to which corresponding H atoms are bonded. Detailed crystallographic information is given in Tables S1 and S2. Crystallographic data have been deposited to the Cambridge Crystallographic Data Centre, CCDC numbers 1574256 (12•DMF) and 1574257 (15•DMSO), and can be retrieved free of charge via https://www.ccdc.cam.ac.uk/structures.

Table S1. Crystallographic data for 12•DMF and 15•DMSO.

	(12. DMF)	(15. DMSO)
Formula	$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{8}$	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{O}_{11} \mathrm{~S}$
Formula weight	385.34	487.37
T, K	120	120
Crystal system	monoclinic	monoclinic
Space group	P 21 c	$\mathrm{P} 2_{1} / \mathrm{n}$
Z / Z'	4 / 1	4 / 1
a, \AA	11.138(2)	10.9841(16)
b, Å	12.765(3)	7.2477(11)
c, Å	12.649(2)	24.162(3)
$\beta{ }^{\circ}$	103.045(4)	99.107(3)
V, \AA^{3}	1752.1(6)	1899.3(5)
$d_{\text {calc }}, \mathrm{g} \mathrm{cm}^{-3}$	1.461	1.704
μ, cm^{-1}	1.21	2.52
$2 \theta_{\text {max }}{ }^{\circ}$	60.0	60.0
Reflns. collected / independent	22965 / 5112	32671 / 5550
Observed reflections [l>2 $\sigma(\mathrm{l})$]	3840	4079
R_{1}	0.0425	0.0463
$w R_{2}$	0.1153	0.0986
GOF	1.032	1.045
Residual density, e $\AA^{-3}\left(d_{\text {max }} / d_{\text {min }}\right)$	0.336/-0.271	0.386/-0.350

Table S2. Selected bond lengths (\AA) in crystals $\mathbf{1 2} \cdot$ DMF and $\mathbf{1 5} \cdot$ DMSO.

	$(12 \cdot \mathrm{DMF})$	$(15 \cdot \mathrm{DMSO})$
N1-C2	$1.3610(18)$	$1.360(2)$
C2-C3	$1.3486(19)$	$1.350(2)$
C3-C4	$1.5175(17)$	$1.512(2)$
C4-C5	$1.4972(18)$	$1.489(2)$
N7-C5	$1.3104(16)$	$1.312(2)$
O8-N7	$1.4482(15)$	$1.448(2)$
N7-O10	$1.2301(14)$	$1.228(2)$
O8-N9	$1.3994(15)$	$1.393(2)$
N9-C6	$1.3068(17)$	$1.310(2)$
C5-C6	$1.3710(17)$	$1.366(2)$
C4-C11	$1.4110(18)$	$1.402(2)$
C11-C12	$1.5250(18)$	$1.567(2)$
C11-C14	$1.3687(19)$	
O1-C14	$1.450(2)$	$1.395(2)$
O2-C14	$1.2352(17)$	
C12-C12	$1.3344(17)$	$1.507(2)$

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) sd76
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report
Datablock: sd76

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

```
    Alert level C
PLAT230_ALERT_2_C Hirshfeld Test Diff for o4 -- N2 .. 6.3 s.u.
PLAT906 ZIERT 3 C Targe \(K\) value in the Analysis of Variance ........
```

```
Alert level G
PLAT301_ALERT_3_G Main Residue Disorder ..............(Resd 1).. 7% Note
PLAT395_ALERT_2_G Deviating X-O-Y Angle from 120 Deg for O8 107.9 Degree
PLAT432 ALERT 2 G Short Inter X...Y Contact O20" .. C14 .. 2.91 Ang
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... }6\mathrm{ Note
PLAT793_ALERT_4_G The Model has Chirality at C4 (Centro SPGR) R Verify
PLAT960_ALERT_3_G Number of Intensities with I < - 2*sig(I) ... 8 Check
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. I3 Info
```

```
ALERT level \(A=\) Most likely a serious problem - resolve or explain
ALERT level \(B=A\) potentially serious problem, consider carefully
ALERT level \(C=\) Check. Ensure it is not caused by an omission or oversight
ALERT level \(G=\) General information/check it is not something unexpected
ALERT type 1 CIF construction/syntax error, inconsistent or missing data
4 ALERT type 2 Indicator that the structure model may be wrong or deficient
ALERT type 3 Indicator that the structure quality may be low
ALERT type 4 Improvement, methodology, query or suggestion
ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or E or IUCrData, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of $13 / 08 / 2017$; check.def file version of $27 / 07 / 2017$
Datablock sd76 - ellipsoid plot

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) sd77
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report
Datablock: sd77

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

```
Alert level C
PLAT230_ALERT_2_C Hirshfeld Test Diff for O10 -- N7 .. 5.3 s.u.
Alert level G
PLAT395_ALERT_2_G Deviating X-O-Y Angle from 120 Deg for O8 107.7 Degree
```



```
PLAT432_ALERT_2_G Short Inter X...Y Contact Olo .. C14 .. 2. % Ang.
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels ...........
PLAT793_ALERT_4_G The Model has Chirality at C4 (Centro SPGR) R Verify
PLAT960_ALERT_3_G Number of Intensities with I < - 2*sig(I)... 14 Check
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.
R Verify
```

```
ALERT level A = Most likely a serious problem - resolve or explain
```

ALERT level A = Most likely a serious problem - resolve or explain
ALERT level B = A potentially serious problem, consider carefully
ALERT level B = A potentially serious problem, consider carefully
ALERT level C = Check. Ensure it is not caused by an omission or oversight
ALERT level C = Check. Ensure it is not caused by an omission or oversight
7 ALERT level $G=$ General information/check it is not something unexpected
7 ALERT level $G=$ General information/check it is not something unexpected
ALERT type 1 CIF construction/syntax error, inconsistent or missing data
ALERT type 1 CIF construction/syntax error, inconsistent or missing data
5 ALERT type 2 Indicator that the structure model may be wrong or deficient
5 ALERT type 2 Indicator that the structure model may be wrong or deficient
1 ALERT type 3 Indicator that the structure quality may be low
1 ALERT type 3 Indicator that the structure quality may be low
2 ALERT type 4 Improvement, methodology, query or suggestion
2 ALERT type 4 Improvement, methodology, query or suggestion
ALERT type 5 Informative message, check

```
ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or E or IUCrData, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

Datablock sd77 - ellipsoid plot

