Supporting information

for

New approach toward the synthesis of deuterated pyrazolo[1,5-*a*]pyridines and 1,2,4triazolo[1,5-*a*]pyridines

Aleksey Yu. Vorob'ev^{1,2*}, Vyacheslav I. Supranovich^{1,2}, Gennady I. Borodkin^{1,2}, Vyacheslav G. Shubin¹

Address: ¹Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentiev Ave. 9, Novosibirsk,

630090, Russia and ²Novosibirsk State University, Pirogov st. 2, Novosibirsk, 630090, Russia

Email - Aleksey Yu. Vorob'ev - vor@nioch.nsc.ru

* Corresponding author

Experimental part, NMR spectra, and quantum calculation details

Table of content	
General information	S2
Synthesis of 7-Deuteropyrazolo[1,5-a]pyridines	S 3
Synthesis of 7-deutero-1,2,4-triazolo[1,5-a]pyridines	S10
Ouantum chemistry studies	S16

General information

°C. Chloranil purified sublimation. K₂CO₃ dried 400 **O**was by was at (Mesitylenesulfonyl)hydroxylamine (MSH) was obtained as described in the literature¹. 1-Amino-4-Xpyridinium ($X = CH_3$, OMe, CO_2Me , NMe₂) and isoquinolinium mesitylenesulfonates were obtained as previously described¹. Other starting materials were obtained from commercial supplies and used without purification unless otherwise specified.

The TLC was carried out on Sorbfil silica plates (UV 254). Visualization of the developed chromatograms was performed by UV light. Spectral and analytical studies were provided at Chemical Service Centre of Siberian Branch of the Russian Academy of Sciences. NMR spectra were recorded on a Bruker Avance-300 (300.13 MHz for ¹H) and Avance-400 (400.13 MHz for ¹H and 100.62 MHz for ¹³C) spectrometers, using the residual proton and carbon signals of $(CD_3)_2SO$ (δ_H 2.50 ppm; δ_C 39.5 ppm) or CDCl₃ (δ_H 7.26 ppm; δ_C 77.0 ppm) as internal standards. ¹³C NMR spectra were measured with C–H spin decoupling. Masses of molecular ions were determined by HRMS on a DFS Thermo scientific instrument (EI, 70 eV).

Incorporation of deuterium into heterocyclic moiety was confirmed by lowering the intensity of the corresponding signals in ¹H and ¹³C NMR spectra.

N-Aminopyridinium tetrafluoroborate

N-Aminopyridinium tetrafluoroborate was obtained according to previously described procedure ².

To a solution of 22.6 g. (0.20 mol) of hydroxylamine-O-sulfonic acid in 100 mL of water 48 mL (48 g, 0.60 mol) of pyridine was added. The resulted mixture is heated at about 90 °C for half an hour. After cooling to room temperature 27.6 g (0.20 mol) of potassium carbonate were added. The water and excess pyridine were removed under reduced pressure. The solid residue was extracted with 200 mL of ethanol. To the purple ethanol extract 40% aqueous HBF₄ was added dropwise until the purple color disappeared. The resulting solution was stored at -20 °C overnight. The solid that precipitated was collected by filtration and recrystalized from ethanol to give 25.8 g (70%) of 1-aminopyridinium tetrafluoroborate as pale yellow crystals. M.p. 142-143 °C. ¹H-NMR (DMSO-*d*₆): 8.00 (t, 2H, J = 7.8 Hz), 8.26 (t, 1H, J = 7.8 Hz), 8.45 (br s, 2H), 8.75 (d, 2H, J = 7.8 Hz).

Synthesis of 7-Deuteropyrazolo[1,5-a]pyridines

General procedure for 7-D pyrazolo[1,5-a]pyridines

N-Aminopyridinium salt (0.20 mmol) and K_2CO_3 (138mg, 1.00 mmol) in D_2O (0.83 mol, 1.5 mL) were heated for 5 min in water bath (80 °C). After cooling the mixture was evaporated under reduced pressure. Acetylene derivatives (0.20 mmol) in acetonitrile (5 mL) were added to the residue. The mixture was stirred for 10 min and then chloranile (0.20 mmol) was added. After an hour the mixture was evaporated, the residue rinsed with chloroform and the resulting solution was passed through a thin silica gel layer. Evaporation gave the product.

Dimethyl 7-D-pyrazolo[1,5-*a*]**pyridine-2,3-dicarboxylate (3).** [*cf.* Ref.³]

¹H-NMR (CDCl₃) 8.15 (dd, 1H, J = 1.4, 9.0 Hz), 7.44 (dd, 1H, J = 6.9, 9.0 Hz), 7.02 (dd, 1H, J = 1.2, 6.8 Hz), 4.01 (s, 3H), 3.91 (s, 3H) ppm. ¹³C NMR (CDCl₃): 163.2, 162.6, 147.2, 141.4, 127.9, 119.8, 114.9, 102.7, 52.9, 51.7 ppm. HRMS (EI): M^+ , found 235.0697. $C_{11}H_9DN_2O_4$ requires 235.0698.

Figure S1. ¹H NMR of compound **3**.

Figure S2. Comparision 1H NMR of **3** and nondeuterated dimethyl pyrazolo[1,5-*a*]pyridine-2,3-dicarboxylate.

Figure S3. ¹³C NMR of compound **3**.

Ethyl 2-phenyl-7-D-pyrazolo[1,5-*a*]pyridine-3-carboxylate (9). [*cf.* Ref.⁴]

¹H-NMR (CDCl₃): 8.19 (dd, 1H, J = 1.3, 9.0 Hz), 7.79-7.75 (m, 2H), 7.46-7.41 (m, 3H), 7.38 (dd, 1H, J = 6.9, 9.0 Hz), 6.92 (dd, 1H, J = 1.3, 7.0 Hz), 4.30 (q, 2H, J = 7.2 Hz), 1.29 (t, 3H, J = 7.2 Hz) ppm. ¹³C NMR (CDCl₃): 163.6, 157.0, 142.7, 132.6, 130.0, 128.9, 127.8, 127.3, 119.8, 113.7, 100.8, 59.9, 14.3 ppm. HRMS (EI): M^+ , found 267.1113. $C_{16}H_{13}DN_2O_2$ requires 267.1113.

Figure S5. ¹³C NMR of compound **9**.

Ethyl 7-D-pyrazolo[1,5-*a*]pyridine-3-carboxylate (mixture of 7, 8). [*cf.* Ref.⁵]

24 mg (63%). ¹H-NMR (CDCl₃): 8.39 (s, 1H), 8.14 (dd, 1H, J =1.4, 8.9 Hz), 7.39 (dd, 1H, J = 6.9, 8.9 Hz), 6.93 (dd, 1H, J = 0.9, 6.9 Hz), 4.37 (quart, 2H, J = 7.2 Hz), 1.40 (t, 3H, J = 7.2 Hz) ppm. ¹³C NMR (CDCl₃): 163.3, 144.7, 140.7, 127.1, 128.9 (t), 118.9, 113.5, 103.8, 113.3, 59.8, 14.4 ppm. HRMS (EI): M⁺, found 191.0801. $C_{10}H_{19}DN_2O_2$ requires 191.0800.

Figure S6. ¹H NMR of compounds **7,8**.

Dimethyl 5-methoxy-7D-pyrazolo[1,5-*a*]**pyridine-2,3-dicarboxylate** (6). [*cf.* Ref.⁶]

Was obtained according to the general procedure, but was held in water bath an hour instead of 5 min. ¹H-NMR (CDCl₃): 7.90 (d, 1H, J = 1.9), 6.83 (d, 1H, J = 1.9), 3.99 (s, 3H), 3.89 (s, 3H) ppm.

Figure S8. ¹H NMR of compound **6**.

Dimethyl 5-CD₃-7-D-pyrazolo[1,5-*a*]**pyridine-2,3-dicarboxylate** (5). [*cf.* Ref.⁷]

4-Methylpyridinium-*N*-amino mesitylenesulfonate (61 mg, 0.20 mmol) and K₂CO₃ (138 mg, 1.00 mmol) in D₂O (0.83 mol, 1.5 mL) were heated for 5 min in a water bath (80 °C). After cooling the mixture was evaporated. The residue was dissolved in D₂O (0.83 mol, 1.5 mL) and the solution was heated for 5 min in a water bath (80 °C). After cooling the mixture was evaporated. Acetylene (0.20 mmol) in acetonitrile (5 mL) was added to the residue. The mixture was stirred for 10 min and then chloranile (37 mg, 0.15 mmol) was added. After an hour the mixture was evaporated, the residue rinsed with chloroform and the resulting solution passed through a thin silica gel layer. Evaporation gave 17 mg (34%) of colourless crystals. ¹H-NMR (CDCl₃): 7.93 (d, 1H, J = 1.9 Hz), 6.85 (d, 1H, J = 1.9 Hz), 4.02 (s, 3H), 3.91 (s, 3H) ppm. ¹³C NMR (CDCl₃): 163.5, 162.9, 147.6, 141.8, 139.6, 128.0 (t), 118.4, 117.7, 101.7, 53.0, 51.7 ppm. HRMS (EI): M⁺, found 252.1042. C₁₂H₈D₄N₂O₄ requires 252.1043.

Figure S9. ¹H NMR of compound **5**.

Figure S11. ¹H NMR of compound **5** after first deuteration step.

Synthesis of 7-deutero-1,2,4-triazolo[1,5-a]pyridines

General procedure for 7-D-1,2,4-triazolo[1,5-a]pyridines

To a basic D_2O solution prepared by mixing 1.5 mL D_2O with 336 mg (3 mmol) *t*-BuOK 36.4 mg (0.2 mmol) of 1-aminopyridinium tetrafluoroborate was added. The solution became violet in color. After that 0.2 mL MeCN-*d*₃, or 0.2 mmol of benzonitrile or 4-cyanopyridine was added in one portion without solvent. The mixture was vigorously stirred for overnight and then was extracted with CH₂Cl₂ (3 × 1 mL). Organic extracts were combined, dried over Na₂SO₄ and evaporated. Solid residue was chromatographed on Al₂O₃ to afford pure products.

2-CD₃-7-D-1,2,4-triazolo[1,5-*a***]pyridine (15). [***cf.* **Ref.⁸]**

¹H-NMR (CDCl₃): 7.60 (dd, 1H, J = 8.9 Hz, 1.3 Hz), 7.42 (dd, 1H, J = 8.9 Hz, 6.9 Hz), 6.91 (dd, 1H J = 6.9 Hz, 1.3Hz) ppm. ¹³C NMR (CDCl₃): 163.8, 161.3, 129.2, 115.8, 112.9 (C⁷ and CD₃ are not visible due to low intensity) ppm. HRMS (EI): M^+ , found 137.0893. $C_{12}H_8D_4N_2O_4$ requires 137.0891.

Figure S12. ¹H NMR of compound **15**

2-CH₃-7-D-1,2,4-triazolo[1,5-*a*]pyridine. (mixture of CH₃-, CH₂D- and CHD₂- products) (14).

¹H-NMR (CDCl₃): 7.60 (dd, 1H, J = 8.9 Hz, 1.3 Hz), 7.42 (dd, 1H, J = 8.9 Hz, 6.9 Hz), 6.91 (dd, 1H J = 6.9 Hz, 1.3Hz), 2.53 (s, CH₃), 2.52 (t, J = 2.3 Hz, CH₂D), 2.50 (pent, J = 2.2 Hz, CHD₂) ppm.

Figure S14. ¹H NMR of compound **14**

2-Ph-7-D-1,2,4-triazolo[1,5-*a*]**pyridine (16).** [*cf.* Ref.⁹]

¹H-NMR (CDCl₃): 8.26 (m, 2H), 7.71 (dd, 1H, J = 9.0 Hz, 1.2 Hz), 7.40-7.49 (m, 4H), 6.94 (dd, 1H, J = 6.9 Hz, 1.2 Hz) ppm. ¹³C NMR (CDCl₃): 164.2, 151.7, 130.8, 130.0, 129.4, 128.6, 128.0 (t, J = 28.7 Hz), 127.3, 116.3, 113.4 ppm. HRMS (EI): M^+ , found 196.0858. $C_{12}H_8D_4N_2O_4$ requires 196.0859.

Figure S16. ¹³C NMR of compound **16.**

2-(4-Pyridyl)-7-D-1,2,4-triazolo[1,5-*a*]**pyridine (17).** [*cf.* Ref.⁹]

¹H-NMR (CDCl₃): 8.69 (m, 2H), 8.06 (m, 2H), 7.71 (dd, 1H, J = 9.0 Hz, 1.2 Hz), 7.48 (dd, 1H, J = 9.0 Hz, 7.0 Hz), 6.99 (dd, 1H, J = 7.0 Hz, 1.2 Hz) ppm. ¹³C NMR (CDCl₃): 161.8, 151.6, 150.3, 138.1, 129.9, 128.1 (t, J = 28.8 Hz), 121.2, 116.7, 114.1 ppm. HRMS (EI): M⁺, found 197.0815. $C_{12}H_8D_4N_2O_4$ requires 196.0812.

Figure S17. ¹H NMR of compound **17**.

Quantum chemistry studies

DFT quantum chemical calculations were performed with $GAMESS^{10}$ package at the M06-2X/6-31+G(d,p) level of theory with PCM SMD solvation. The nature of stationary points was confirmed with hessians calculation. For transition states one imaginary mode was observed. ZPVEs were used without correction. Thermodynamic properties and activation free energies for the reactions were calculated at 298.15 K and 1 atm for gas or 1 M solution.

N-aminopyridinium cations acidity calculations.

Simple thermodynamic cycle (Scheme 1) was applied to calculate pKa values¹¹.

Scheme 1. Thermodynamic cycle.

From this cycle $\Delta G^*(aq) = \Delta G^*(aq) + \Delta \Delta G^*(solv)$, where $\Delta \Delta G^*(solv) = \Delta G^*_{solv}(NH) + \Delta G^*_{solv}(H^+) - \Delta G^*_{solv}(H^+)$, and $pK_a = \Delta G^*(aq)/(RT \ln 10)$. For H^+ we used following empirical values: $\Delta G^o_{gas}(H^+) = -26.3 \text{ kJ mol}^{-1}$ and $\Delta G^*_{solv}(H^+) = -1112.5 \text{ kJ mol}^{-1}$

Different functionals and basis sets were applied to calculate pK_a of 1-aminopyridinium cation (Figure S19). Two different values of the pK_a were found in literature 11.47^{12} and 13.6^{13} . Most of our calculations data are close to the first value. So we choose this value as reference.

Figure S19. Calculated pKa of 1-aminopyridinium carion vs basis set.

Optimized	structures of	N-aminopyri	dinium cations,	corresponded 1	V-imines and	C-ylides.
1		1.	,	1		•

1-aminopyridinium cation, N-imine and C-ylide								
С	0.000000	0.000000	0.000000	C	0.0	00000	0.000000	0.000000
С	0.000000	0.000000	1.392944	C	0.0	00000	0.000000	1.397243
С	1.213548	0.000000	2.084914	C	1.2	42494	0.000000	2.023344
С	2.394845	-0.000068	1.370407	C	2.4	11484	0.000000	1.286940
Ν	2.365239	-0.000163	0.017946	Ν	2.4	05468	0.000000	-0.090116
С	1.208570	-0.000106	-0.674849	C	1.1	76397	0.000000	-0.714096
Ν	3.544190	-0.000236	-0.755034	Ν	3.4	71039	0.000000	-0.851302
Н	1.320811	-0.000139	-1.752355	Н	1.2	43167	0.000000	-1.793070
Н	-0.921666	0.000113	-0.569399	Н	-0.9	28266	0.000000	-0.560790
Н	3.377610	0.000147	1.828284	Н	3.3	95385	0.000000	1.738150
Н	1.250378	-0.000110	3.167756	H	1.3	28578	0.000000	3.104603
Н	4.084077	0.836808	-0.548326	Н	4.2	77905	0.000000	-0.226041
Н	4.084352	-0.836915	-0.547648	H	-0.921	1749	0.000000	1.964592
H ·	-0.937430	0.000143	1.939250					

C 0.000000 0.000000 0.000000 C 0.000000 0.000000 1.381951 C 1.224936 0.000000 2.072578 C 2.377505 0.008417 1.330784 N 2.294933 0.055406 -0.026286 C 1.179206 0.042533 -0.796175 N 3.561922 0.082543 -0.677848 H -0.949756 -0.020210 -0.526534 H 3.376922 -0.031915 1.746467 H 1.278796 -0.026585 3.154020 H 3.818923 1.065307 -0.768848 H 3.351042 -0.240924 -1.620893	C 0.000000 0.000000 0.000000 C 0.000000 0.000000 1.418151 C 1.148543 0.000000 2.219297 C 2.389194 0.000202 1.610175 N 2.437323 0.000215 0.265856 C 1.300648 -0.000006 -0.498359 N 3.730077 0.000390 -0.311599 H 3.346553 0.000479 2.113916 H 1.100098 -0.000292 3.303917 H 3.807297 0.825844 -0.900628 H 3.807269 -0.824630 -0.901261 H -0.956450 -0.000026 1.942391
Н -0.932587 -0.012286 1.939684	H 1.532490 -0.000172 -1.564753
C 0.000000 C 0.000000 C 1.331893 C 2.469652 - N 2.357986 C 1.134073 N 3.549462 H 3.491952 - H 1.499186 H 3.568355 H 3.568042 - H 1.143275 H -0.945120 -0.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

4-methyl-1-aminopyridinium	cation, N-imine and C-ylide
C 0.000000 0.000000 0.000000	C 0.000000 0.000000 0.000000
C 0.000000 0.000000 1.406733	C 0.000000 0.000000 1.402342
C 1.240940 0.000000 2.054320	C 1.258630 0.000000 1.997163
C 2.411338 -0.000658 1.320286	C 2.421608 -0.000804 1.246949
N 2.365520 -0.001244 -0.026637	N 2.402745 -0.001658 -0.125522
C 1.187363 -0.000987 -0.694954	C 1.164901 -0.000740 -0.729693
N 3.607065 -0.001073 -0.691597	N 3.459172 -0.003186 -0.906167
Н -0.931846 0.001216 -0.555457	Н -0.936371 0.000570 -0.550635
Н 3.408272 -0.000203 1.744332	Н 3.408680 -0.000611 1.691511
Н 1.305146 0.001227 3.136583	Н 1.359673 0.000432 3.078523
Н 3.684260 0.834777 -1.265760	Н 4.274421 -0.004047 -0.291846
Н 3.685316 -0.837907 -1.264193	C -1.277695 -0.001966 2.196519
C -1.288330 -0.006279 2.168496	Н 1.213929 -0.000545 -1.809818
Н -1.121944 0.074506 3.242586	Н -1.070647 0.016603 3.269139
Н -1.924564 0.822756 1.845872	Н -1.895130 0.870269 1.958457
Н -1.834111 -0.934027 1.968948	Н -1.874812 -0.895219 1.985927
Н 1.250968 -0.000830 -1.777305	
	1
Ц	
0	Ŭ T
C C C C C C C C C C C C C C C C C C C	
8	
C 0.000000 0.000000 0.000000	C 0.000000 0.000000 0.000000
C 0.000000 0.000000 1.385928	C 0.000000 0.000000 1.464348
C 1.249648 0.000000 2.043906	C 1.344250 0.000000 2.045423
C 2.390990 0.007997 1.289154	C 2.451907 0.005856 1.276913
N 2.294048 0.050511 -0.066987	N 2.381892 0.015436 -0.104128
C 1.163692 0.037907 -0.814268	C 1.143424 0.005894 -0.714753
N 3.553063 0.075675 -0.735462	N 3.518185 -0.016212 -0.912905
H -0.958558 -0.018866 -0.514027	H -0.945945 -0.004713 -0.530128
H 3.394804 -0.028618 1.694622	H 3.456197 0.006321 1.687706
H 1.320594 -0.025472 3.126156	H 1.456468 -0.004133 3.124267
Н 3.776877 1.059037 -0.887176	H 4.095181 0.801994 -0.739799
Н 3.342642 -0.305462 -1.656674	Н 4.055766 -0.859730 -0.732297

C = 1.270853 = 0.012401 = 2.100523	C = 1.125202 = 0.000800 = 2.210048
C -1.270033 -0.012401 2.190323	C = -1.123302 = -0.0000399 = 2.210940
H -1.304048 -0.885895 2.849145	H 1.183541 0.005235 -1.796968
Н -1.335967 0.878229 2.823553	H -1.080003 -0.001187 3.294548
Н -2.147247 -0.037738 1.540194	Н -2.105831 -0.001277 1.747629
Q	
	Т
	Ŭ I
	0
Ŭ	
1-mothovy_1-omin	onvridinium estion
	C = 0.00000 = 0.00000 = 0.000000
C = 0.000000 = 0.000000 = 0.000000	C = 0.000000 = 0.000000 = 0.000000
C = 0.000000 = 0.000000 = 1.415022	C = 0.00000 = 0.00000 = 1.405521
C 1.245079 0.000000 2.089549	C 1.242416 0.000000 2.040555
C 2.406414 0.000856 1.351571	C 2.412295 0.000063 1.290081
N 2.375684 -0.000445 -0.006799	N 2.412928 0.000063 -0.084863
C 1.190557 -0.001979 -0.679928	C 1.177365 0.000009 -0.706855
N 3.549255 -0.001738 -0.795850	N 3.490673 0.000159 -0.869044
H -0.939887 -0.001216 -0.538166	H -0.941207 -0.000015 -0.537633
$\begin{array}{c} H \\ H \\ 3 \\ 389103 \\ 0 \\ 003266 \\ 1 \\ 807891 \\ \end{array}$	H $3.391309 = 0.000134 = 1.751421$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
H = 1.514507 - 0.000043 = 5.108880	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
H 4.083262 0.84/41/ -0.632248	H 4.299/13 0.000181 -0.244542
O -1.180173 -0.000584 2.002489	O -1.216148 0.000037 2.024575
Н 1.277391 -0.005215 -1.758565	Н 1.235779 0.000011 -1.786085
C -1.297173 -0.010795 3.443988	C -1.242956 0.000608 3.445182
Н -2.367630 -0.011387 3.639337	Н -2.296938 0.000945 3.725598
Н -0.841336 -0.916976 3.852968	Н -0.757822 -0.895826 3.853441
$H_{-0.839899} = 0.887717 = 3.867959$	H _0 757427 0 897204 3 852721
H = 4.104525 = 0.829370 = 0.597288	0.057427 0.057204 5.052721
11 4.104525 -0.825570 -0.557288	
C 0.000000 (0.000000 0.000000
C 0.000000	0.000000 1.397157
C 1.235522	0.000000 2.084308

C	2.385857	0.012493	1.330050	
N	2.307436	0.059580	-0.023789	
С	1.168822	0.041905	-0.784393	
N	3.577887	0.093738	-0.691647	
Н	-0.963422	-0.024507	-0.501139	
Н	3.379924	-0.024797	1.758795	
Н	1.310529	-0.030237	3.162431	
Н	3.800165	1.077350	-0.848095	
Н	3.376552	-0.296383	-1.611574	
О	-1.202557	-0.012641	2.021085	
С	-1.253553	-0.020134	3.445317	
Н	-2.313178	-0.019363	3.702958	
Н	-0.780611	-0.920746	3.855770	
Н	-0.775976	0.873340	3.865569	

Optimized structures of dihydro ethyl pyrazolo[1,5-*a*]pyridine-3-carboxylate intermediates.

Ν	-1.999153	0.870962	0.451942	Ν	-2.057062	0.895753	-0.487616]
C	-1.124491	-0.336816	0.576012	С	-1.145390	-0.285841	-0.708027]
C	-1.627562	-1.466126	-0.299048	С	-1.604762	-1.524995	0.031108]
C	-2.932701	-1.508609	-0.639357	С	-2.820813	-1.603877	0.598828]
C	-3.844091	-0.421479	-0.308563	C	-3.715226	-0.453678	0.629558	
C	-3 332492	0.765126	0 113132	Ċ	-3 267921	0 742827	0 193247]
	0 22/19/	0.256500	0.119192	C	0 199220	0.281413	-0.257133	
с ц	0.013031	2 217/03	0.100105	с ц	0.177220	2 3//681	0.062022]
	-0.913031	-2.217493	-0.021100		-0.894311	-2.344081	1.002022	
	-3.314326	-2.333603	-1.232974	п	-3.129322	-2.319033	1.096014	
п	-4.911592	-0.526255	-0.40/303	п	-4./08000	-0.555010	1.030220	
	-3.921820	1.6/2850	0.224785	H	-3.835/60	1.662076	0.304513]
N	-1.239663	1.99/626	-0.016622	N	-1.264924	2.025321	-0.044308	
C	0.061278	1.548433	-0.176948	C	0.050530	1.592751	0.026135	
H	0.814362	2.240066	-0.531923	Н	0.821163	2.305493	0.292666	
C	1.469529	-0.499917	0.240035	C	1.439182	-0.486595	-0.256067	
0	2.555153	0.249012	-0.091646	0	2.509361	0.240026	0.163027	
0	1.542179	-1.682241	0.545933	0	1.524808	-1.653550	-0.614396	
C	3.830003	-0.436757	-0.082130	С	3.783705	-0.447205	0.173345	
C	4.898598	0.578866	-0.445315	С	4.843188	0.560844	0.581993	
Η	3.789636	-1.262620	-0.799745	Η	3.723985	-1.284230	0.876974	
Η	3.992333	-0.864608	0.912313	Н	3.970539	-0.859665	-0.823171	
Н	-1.651103	2.445894	-0.835496	Н	-1.412496	2.840217	-0.639383	
Н	-1.123768	-0.648316	1.633766	Н	-1.103816	-0.510107	-1.788460	
н	5.880911	0.093883	-0.449684	Н	5.825284	0.075702	0.600502	
Н	4 719613	1 000240	-1 439846	Н	4 885703	1 394378	-0.126697	
н	4 923876	1 399038	0 279270	н	4 640191	0.963612	1 579629]
~				C B				
N	-1 626727	-0 699394	0.460075	N	-1 9/12823	0.804276	0.207214	l
C	-1.229554	-0.350059	-0.921745	C	-1.066014	-0.395739	0.226677	
C	-1 276313	1 145436	-1 098927	C	-1 750209	-1 529111	-0.493436]
C	-2 125840	1.870122	-0 333945	C	-3 101684	-1 564941	-0 539913]
	-2.123040	1.070122	0.766883		-3.015228	-0.460137	-0.059157]
	-2.8078+0	0.025255	1 182002		2 200/27	0.728555	-0.037137	l
	-2.332371 0.124125	1 110402	1.102093		-3.309437	0.726333	0.217333	l
	0.124123	-1.119402	-1.032239		0.230139	0.171770	-0.374396	l
	-0.0/13//	1.390420	-1.0/9303	п	-1.13/039	-2.324704	-0.908/19	l
	-2.220304	2.737731	-0.304020 1 200175		-3.003397	-2.413430	-0.999131	
	-3.393320	1.83800/	1.3221/3		-4.995113	-0.338004	-0.023304	
	-2.892347	-0.446954	2.089819		-3.829312	1.00228/	0.403823	
	-0.9/585/	-1.801238	0.929839		-1.252190	1.962448	0.0198/3	
	-0.029/01	-2.09/06/	0.105149		-0.02/100	1.669983	-0.260096	
	0.632294	-2.92/2/9	0.316293	H	0.692375	2.451265	-0.4/1129	
	1 0 - 0 0					11/1/51/1/		
C	1.363218	-0.218653	-0.961878	C	1.493602	-0.265140	0.368/06	1

O C C H H H H H H H H H H H H M	1.861050 2.947092 3.262607 2.674538 3.784549 -1.943104 0.183422 4.112680 2.407427 3.524386	0.323587 0.804573 0.815996 1.796275 0.435068 -0.850633 -1.606038 1.481002 1.176563 -0.185864	-1.929107 0.493678 1.977345 0.119810 -0.106365 -1.606362 -2.027877 2.165181 2.557074 2.331773	O C C H H H H H H H H	1.521677 3.871950 4.957212 3.872868 3.964096 -0.865111 0.365839 5.937682 4.837851 4.939754	-0.757730 -0.338830 0.016017 -1.404044 0.228051 -0.655818 -0.091432 -0.225110 -0.549942 1.084145	$\begin{array}{c} 1.477860\\ 0.235741\\ -0.763184\\ 0.486893\\ 1.167397\\ 1.281027\\ -1.436659\\ -0.338310\\ -1.692626\\ -1.002300\end{array}$
N	_1 0/053/) _0.865136	-0.015741				
C	-1.949554	0.214126	-0.013741				
C	-1.664133	1 513914	-0.033505				
C	-3.031676	1.515714	0.049616				
C	-3 877824	0.475387	0.104895				
C	-3.295962	-0.768994	0.069942				
C	0.231997	-0.263587	-0.042790				
H	-1.002623	2.370617	-0.058701				
Н	-3.483862	2.613259	0.071992				
Н	-4.954246	0.566218	0.181060				
Н	-3.835079	-1.708632	0.106891				
Ν	-1.261990	-2.110028	-0.171322				
С	0.161070	-1.770307	0.147428				
Н	0.819801	-2.344485	-0.508907				
С	1.410100	0.555609	-0.052045				
0	2.551239	-0.204085	0.030891				
Ο	1.446342	1.784400	-0.122402				
С	3.797796	0.521448	0.039920				
С	4.922125	-0.500221	0.069709				
Η	3.848407	1.157488	-0.849959				
Η	3.822337	1.177471	0.917166				
Η	-1.319016	-2.322075	-1.171033				
Η	0.373463	-2.071985	1.183317				
Η	5.890278	0.012907	0.082454				
Η	4.855683	-1.131637	0.961815				
Η	4.886673	-1.147007	-0.813191				
9			F				

References

- 1. Y. Tamura, J. Minamikawa, M. Ikeda, Synthesis. 1977, 1.
- 2. Lämsä M., Huuskonen J., Rissanen K., Pursiainen J. Chem. Eur. J., 1998, 4, 84-92.
- 3. V. I. Supranovich, A. Yu. Vorob'ev, G. I. Borodkin, Y. V. Gatilov, V. G. Shubin, *Tetrahedron Lett.*, **2016**, *57*, 1093.
- 4. D. C. Mohan, C. Ravi, S. N. Raoa, S. Adimurthy, Org. Biomol. Chem., 2015, 13, 3556.
- 5. Almirall S.A., Bach T. J., Perez Crespo D.; Llera Soldevila O., Esteve Trias C., Taboada Martinez L., patent, WO2015/86693 A1 (2015)
- 6. D. Möller, R. C. Kling, M. Skultety, K. Leuner, H. Hübner, P. Gmeiner, J. Med. Chem., 2014, 57, 4861.
- 7. T. Sasaki, K. Kanematsu, A. Kakehi, J. Org. Chem., 1971, 36, 2978.
- 8. T. Koike, T. Takai, Y. Hoashi, Patent EP2141150 A1, 2010.
- 9. S. Ueda, H. Nagasawa, J. Am. Chem. Soc., 2009, 131, 15080.
- 10. M.W. Schmidt, K.K.Baldridge, J.A.Boatz, S.T.Elbert, M.S.Gordon, J.H.Jensen, S.Koseki, N.Matsunaga, K.A.Nguyen, S.Su, T.L.Windus, M.Dupuis, J.A.Montgomery, *J. Comput. Chem.*, **1993**, *14*, 1347.
- 11. G. C. Shields, P. G. Seybold. Computational approaches for the prediction of pKa values; J. Devillers,
- Ed.; CRC Press, Taylor & Francis Group, 2015.
- 12. T. Okamoto, M. Hirobe, Y. Tamai, and E. Yabe, Chem. Pharm. Bull. 1966, 14, 506.
- 13. J. Epsztajn, E. Lunt, and A. R. Katritzky, Tetrahedron, 1970, 26, 1665.