Supporting Information
for
A selective removal of the secondary hydroxy group from ortho-dithioacetal-substituted diarylmethanols

Anna Czarnecka,¹ Emilia Kowalska,¹ Agnieszka Bodzioch,¹ Joanna Skalik,¹ Marek Koprowski,¹ Krzysztof Owsianik¹ and Piotr Bałczewski*¹,²

Address: ¹Group of Synthesis of Functional Materials, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland, and ²Department of Structural and Material Research, Institute of Chemistry, Environmental Protection and Biotechnology, Faculty of Mathematics and Natural Sciences Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland

Email: Piotr Bałczewski - pbalczew@cbmm.lodz.pl

*Corresponding author

General experimental information, characterization data and copies of ¹H, ¹³C NMR spectra

Table of Contents
1. Experimental procedures...S2
2. Copies of ¹H and ¹³C NMR spectra..S15
1. Experimental procedures

Experimental details. 1H NMR (200 or 500 MHz) and 13C NMR (50 or 125 MHz) spectra were recorded with a Bruker AV 200 or DRX 500 spectrometers at ambient temperature. The mass spectra of pure compounds were obtained using a Finnigan MAT 95 spectrometer. Melting points were determined using a Boetius apparatus. Column chromatography was performed on Merck silica gel 60 (F254, 270–400 mesh). The starting substrates 1 and 2 are commercially available and were obtained from Sigma-Aldrich.

General procedure for preparation of dithioacetals 3 and 4: To a solution of the aldehyde 1 or 2 (0.1 mol) in benzene (300 mL) were added p-TsOH (10 mol %) and 1,3-propanedithiol (0.11 mol). The resulting mixture was stirred at 80 °C for 2 h, and at room temperature for 2 days. Then, the crude mixture was diluted with diethyl ether (150 mL), washed with aqueous solution of 2 M NaOH (50 mL) and H$_2$O (3 × 50 mL), and dried over anhydrous MgSO$_4$. After removal of the solvent, the crude product was recrystallized from the mixture of benzene/hexane (1:1, v/v) to give analytically pure 3 or 4.

2-(2-Bromophenyl)-1,3-dithiane (3) [1]: By following the general procedure 3 was obtained from aldehyde 1 in 90% yield, 24.7 g; m.p.: 96-98 °C. 1H NMR (200 MHz, CDCl$_3$): $\delta = 7.65$ (d, $J = 7.5$ Hz, 1 H) 7.49 (d, $J = 7.5$ Hz, 1 H), 7.26 (dd, $J = 7.5$, 7.5 Hz, 1 H), 7.06 (dd, $J = 7.5$, 7.5 Hz, 1 H), 5.56 (s, 1 H), 3.08-2.71 (m, 4 H), 2.10-1.71 (m, 2 H). 13C NMR (50 MHz, CDCl$_3$): $\delta = 137.0$, 131.7, 128.6 (2 C), 126.9, 121.8, 23.9, 31.0 (2 C), 49.4. MS (EI, 70 eV): m/z (%): 274 [M$^+$, 75], 200 [M$^+$, -SC$_3$H$_6$, 90], 195 [M$^+$, -Br, 34], 121 [M$^+$, -SCH$_2$CH$_2$CH$_2$, -Br, 100]. HRMS (EI): m/z [M$^+$] calcd. for
C_{10}H_{11}BrS_{2} \text{ 273.9485; found 273.9480. Anal. calcd for } C_{10}H_{11}BrS_{2}: C, 43.64; H, 4.03; Br, 29.03; S, 23.30; found: C, 43.75; H, 4.07; Br, 29.57; S, 23.32.

5-Bromo-6-(1,3-dithian-2-yl)-1,3-benzodioxole (4) [2]: By following the general procedure 4 was obtained from aldehyde 2 in 84% yield, 26.7 g; M.p.: 104-106 °C. 1H NMR (200 MHz, CDCl$_3$): $\delta = 7.16$ (s, 1 H), 6.96 (s, 1 H), 5.96 (s, 2 H), 5.51 (s, 1 H), 3.16-3.02 (m, 2 H), 2.93-2.82 (m, 2 H), 2.21-2.08 (m, 1 H), 1.99-1.77 (m, 1 H). 13C NMR (50 MHz, CDCl$_3$): $\delta = 147.0$, 146.6, 130.0, 112.3, 111.3, 108.1, 100.7, 49.3, 31.0 (2 C), 23.9. MS (Cl, isobutane): m/z (%): 320 [M$^+$, 100], 246 [M$^+$, -SCH$_2$CH$_2$CH$_2$, 18], 239 [M$^+$, -Br, 46], 213 [M$^+$, -SCH$_2$CH$_2$CH$_2$S, 28]. HRMS (EI): m/z [M$^+$] calcd for C$_{11}$H$_{11}$BrO$_2$S$_2$: 317.9384; found: 317.9385. Anal. calcd for C$_{11}$H$_{11}$BrO$_2$S$_2$: C, 41.39; H, 3.47; S, 20.09; found: C, 41.49; H, 3.52; S, 20.42.

General procedure for preparation of ortho-1,3-dithianaryl(aryl) methanols 5a–h and 6a,b [3]: To a solution of dithioacetals 3 or 4 (1 mmol) in dry THF (20 mL), cooled to −78 °C, was added n-BuLi (1.4 mmol, 2.7 M solution in hexanes). The resulting mixture was stirred at this temperature for 30 min under argon atmosphere. Then, the corresponding aldehyde (Ar$_2$-CHO) (1.1 mmol) in THF (10 mL) was added. The reaction mixture was stirred for 3 h at −78 °C, warmed to room temperature and stirred for 4 h at this temperature. The mixture was diluted with ethyl acetate (25 mL), washed with a saturated aqueous solution of NH$_4$Cl (30 mL), and then water (20 mL). The organic layer was dried over anhydrous MgSO$_4$, filtered and concentrated under reduced pressure. The crude product was purified using a silica gel column chromatography with 10% acetone in petroleum ether as eluent.

(2-(1,3-Dithian-2-yl)phenyl)(benzo[d][1,3]dioxol-5-yl)methanol (5a): By following the general procedure 5a was obtained as a white solid from dithioacetals 3 in 82% yield, 0.284 g; m.p.: 142-143 °C. 1H NMR (500 MHz, C$_6$D$_6$): $\delta = 7.89$ (d, $J = 7.3$ Hz, 1
H), 7.20 (d, J = 7.3 Hz, 1 H), 7.01 (s, 1 H), 6.98 (dd, J = 7.5, 7.5, 1 H), 6.92 (dd, J = 7.5, 7.5, 1 H), 6.79 (d, J = 8.0 Hz, 1 H), 6.59 (d, J = 8.0 Hz, 1 H), 6.04 (s, 1 H), 5.50 (s, 1 H), 5.21 (d, J = 3.1 Hz, 2 H), 2.45-2.38 (m, 2 H), 2.33-2.18 (m, 2 H), 2.13 (d, J = 4.1 Hz, 1 H), 1.56-1.47 (m, 1 H), 1.31-1.26 (m, 1 H).

13C NMR (125 MHz, C$_6$D$_6$): δ = 149.0, 148.0, 142.1, 138.5, 138.4 130.1 129.4, 129.3, 129.3, 121.1, 108.9, 108.5, 101.6, 73.6, 49.3, 33.1 (2 C) 25.9. MS (EI, 70 eV) m/z: 346 [M$^+$, 1], 240 [M$^+$, -S$_2$C$_3$H$_6$, 100], 239 [M$^+$, -HS$_2$C$_3$H$_6$, 74], 210 [M$^+$, -S$_2$C$_4$H$_7$, -OH, 34]. HRMS (EI): m/z [M$^+$] calcd for C$_{18}$H$_{18}$O$_3$S$_2$: 346.0697; found: 346.0704. Anal. calcd for C$_{18}$H$_{18}$O$_3$S$_2$: C, 62.40; H, 5.24; S, 18.51; found: C, 62.31; H, 5.27; S, 18.68.

(2-(1,3-Dithian-2-yl)phenyl)(3,4,5-trimethoxyphenyl)methanol (5b): By following the general procedure 5b was obtained as a white solid from dithioacetals 3 in 79% yield, 0.310 g; m.p.: 103˗105 °C. 1H NMR (500 MHz, C$_6$D$_6$): δ = 7.94 (d, J=7.5 Hz, 1 H), 7.29 (d, J = 7.5 Hz, 1 H), 7.00 (dd, J = 7.5, 7.5 Hz, 1 H), 6.97 (dd, J = 7.5, 7.5 Hz, 1 H), 6.74 (s, 2 H), 6.21 (s, 1 H), 5.59 (s, 1 H), 3.79 (s, 3 H), 3.37 (s, 6 H), 2.60 (s, 1 H), 2.50-2.38 (m, 2 H), 2.31-2.15 (m, 2 H), 1.60-1.49 (m, 1 H), 1.34-1.29 (m, 1 H). 13C NMR (125 MHz, C$_6$D$_6$): δ = 154.8 (2 C), 142.3, 139.6, 139.1, 138.6, 130.2, 129.5 (2 C), 105.2 (2 C), 73.7, 61.2, 56.5 (2 C), 49.4, 33.1 (2 C), 25.9. MS (EI, 70 eV) m/z: 392 [M$^+$, 11], 286 [M$^+$, -S$_2$C$_3$H$_6$, 66], 285 [M$^+$, -HS$_2$C$_3$H$_6$, 44], 284 [M$^+$, -H$_2$S$_2$C$_3$H$_6$, 69], 255 [M$^+$, -S$_2$C$_4$H$_7$, -H$_2$O, 100]. HRMS (EI): m/z [M$^+$] calcd for C$_{20}$H$_{24}$O$_4$S$_2$: 392.1116; found: 392.1119. Anal. calcd for C$_{20}$H$_{24}$O$_4$S$_2$: C, 61.20; H, 6.16; S, 16.34; found: C, 61.18; H, 6.01; S, 16.07.

(2-(1,3-Dithian-2-yl)phenyl)(benzo[b]thien-2-yl)methanol (5c): By following the general procedure 5c was obtained as a slightly yellow foam from dithioacetals 3 in 74% yield, 0.265 g; m.p.: 67˗69 °C. 1H NMR (500 MHz, C$_6$D$_6$): δ = 7.95 (d, J=7.6 Hz, 1 H), 7.53 (d, J= 7.6 Hz, 1 H), 7.43 (d, J = 7.6 Hz, 1 H), 7.36 (d, J = 7.6 Hz, 1 H),
7.12-7.04 (m, 2 H), 7.04-6.96 (m, 2 H), 6.98 (s, 1 H), 6.40 (s, 1 H), 5.59 (s, 1 H), 2.90 (s, 1 H), 2.45 (dd, \(J = 13.3, 13.3 \) Hz, 1 H), 2.37 (dd, \(J = 13.3, 13.3 \) Hz, 1 H) 2.25-2.13 (m, 2 H), 1.59-1.45 (m, 1 H), 1.37-1.22 (m, 1 H).

\(^{13}C \) NMR (125 MHz, C\(\text{D}_6 \)): \(\delta = 149.5, 141.1, 141.1, 140.9, 138.5, 130.3, 129.9, 129.5, 129.4, 125.1, 125.0, 124.6, 123.3, 122.6, 71.6, 49.6, 33.0 (2 C), 25.8. MS (EI, 70 eV) \(m/z \): 358 [M\(^+\), 7], 252 [M\(^+\), -S\(\text{H}_2\text{C}_3\text{H}_6\), 45], 251 [M\(^+\), -HS\(\text{S}_2\text{C}_3\text{H}_6\), 77], 250 [M\(^+\), -H\(_2\text{S}_2\text{C}_3\text{H}_6\), 100], 234 [M\(^+\), -S\(\text{C}_3\text{H}_6\), -H\(_2\text{O}\), 31], 221 [M\(^+\), -S\(\text{CH}_4\text{H}_7\), -H\(_2\text{O}\), 29]. HRMS (El): \(m/z \) [M\(^+\)] calcd for C\(_{19}\)H\(_{18}\)OS\(_3\): 358.0520; found: 358.0521. Anal. calcd for C\(_{19}\)H\(_{18}\)OS\(_3\): C, 63.65; H, 5.06; S, 26.83; found: C, 63.38; H, 4.91; S, 26.59.

2-(1,3-Dithian-2-yl)phenyl(thien-2-yl)methanol (5d): By following the general procedure 5d was obtained as a yellow oil from dithioacetals 3 in 77% yield, 0.237 g. \(^1H \) NMR (500 MHz, C\(\text{D}_6 \)): \(\delta = 7.87 \) (d, \(J = 7.5 \) Hz, 1 H), 7.31 (d, \(J = 7.5 \) Hz, 1 H), 6.99 (dd, \(J = 7.5, 7.5 \) Hz, 1 H), 6.84 (d, \(J = 6.8 \) Hz, 1 H), 6.71-6.67 (m, 1 H), 6.63 (dd, \(J = 4.9, 3.6 \) Hz, 1 H), 6.29 (s, 1 H), 5.47 (s, 1 H), 2.73 (s, 1H), 2.45-2.35 (m, 2 H), 2.26-2.13 (m, 2 H), 1.57-1.43 (m, 1 H), 1.37-1.21 (m, 1 H).

\(^{13}C \) NMR (125 MHz, C\(\text{D}_6 \)): \(\delta = 148.8, 141.6, 138.1, 130.2, 129.7, 129.5, 127.7, 125.9 \) (3 C), 71.1, 49.4, 33.00 (2 C), 25.9. MS (EI, 70 eV) \(m/z \): 308 [M\(^+\), 1], 290 [M\(^+\), -H\(_2\text{O}\), 7], 243 [M\(^+\), -S\(\text{CH}_4\), -OH, 10], 216 [M\(^+\), -SC\(\text{H}_3\text{H}_6\), -H\(_2\text{O}\), 27], 202 [M\(^+\), -S\(\text{C}_4\text{H}_6\), 80], 201 [M\(^+\), -HS\(\text{S}_2\text{C}_3\text{H}_6\), 59], 200 [M\(^+\), -H\(_2\text{S}_2\text{C}_3\text{H}_6\), 93], 184 [M\(^+\), -S\(\text{C}_3\text{H}_6\), -H\(_2\text{O}\), 49], 171 [M\(^+\), -S\(\text{CH}_4\text{H}_7\), -H\(_2\text{O}\), 100]. HRMS (El): \(m/z \) [M\(^+\)] calcd for C\(_{19}\)H\(_{18}\)OS\(_3\): 308.0363; found: 308.0361. Anal. calcd for C\(_{19}\)H\(_{18}\)OS\(_3\): C, 63.65; H, 5.06; S, 26.83; found: C, 63.38; H, 4.91; S, 26.59.

(2-(1,3-Dithian-2-yl)phenyl)(1-methyl-1\(H \)-indol-2-yl)methanol (5e): By following the general procedure 5e was obtained as a yellow solid from dithioacetals 3 in 76% yield, 0.270 g; m.p.: 170-172 °C. \(^1H \) NMR (500 MHz, C\(\text{D}_6 \)): \(\delta = 7.96 \) (d, \(J = 7.5 \) Hz,
1 H), 7.60 (d, $J = 7.5$ Hz, 1 H), 7.21-7.10 (m, 2 H), 7.03 (dd, $J = 7.5$, 7.5 Hz, 1 H), 7.00 (dd, $J = 7.5$, 7.5 Hz, 1 H), 6.91 (dd, $J = 7.5$, 7.5 Hz, 1 H), 6.43 (s, 1 H), 6.19 (d, $J = 5.0$ Hz, 1 H), 5.63 (s, 1 H), 3.17 (s, 3 H), 2.40 (dd, $J = 13.3$, 13.3 Hz, 1 H), 2.33 (dd, $J = 13.3$, 13.3 Hz, 1 H), 2.24-2.13 (m, 3 H), 1.55-1.47 (m, 1 H), 1.26-1.22 (m, 1 H).

13C NMR (125 MHz, C$_6$D$_6$): $\delta = 140.4$, 138.4, 137.8, 129.2, 128.7, 128.7, 128.6, 128.3, 127.9, 127.5, 121.6, 120.9, 119.6, 108.9, 101.7, 67.7, 48.2, 31.8 (2 C), 29.6, 24.8. MS (EI, 70 eV) m/z: 355 [M$^+$, 21], 248 [M$^+$, $-$S$_2$C$_3$H$_7$, 100], 231 [M$^+$, $-$S$_2$C$_3$H$_7$, $-$OH, 22]. HRMS (EI): m/z [M$^+$] calcd for C$_{20}$H$_{21}$NOS$_2$: 355.1058; found: 355.1065. Anal. Calcd for C$_{20}$H$_{21}$NOS$_2$: C, 67.57; H, 5.95; N, 3.94; S, 18.04; found: C, 67.51; H, 6.03; N, 4.03; S, 17.99.

(2-(1,3-Dithian-2-yl)phenyl)(4-(diphenylamino)phenyl)methanol (5f): By following the general procedure 5f was obtained as a yellow solid from dithioacetals 3 in 81% yield, 0.380 g; m.p.: 71-73 °C. 1H NMR (500 MHz, C$_6$D$_6$): $\delta = 7.90$ (d, $J = 7.3$ Hz, 1 H), 7.27 (d, $J = 7.3$ Hz, 1 H), 7.23 (d, $J = 7.3$ Hz, 2 H), 7.07-6.92 (m, 12 H), 6.77 (dd, $J = 7.3$, 7.3 Hz, 2 H), 6.04 (d, $J = 3.2$ Hz, 1 H), 5.51 (s, 1 H), 3.47-2.41 (m, 2 H), 2.29-2.23 (m, 2 H), 2.15 (d, $J = 3.2$ Hz, 1 H), 1.62-1.51 (m, 1 H), 1.36-1.30 (m, 1 H).

13C NMR (125 MHz, C$_6$D$_6$): $\delta = 149.1$, 148.1, 142.3, 138.9, 138.4, 130.4, 130.2 (3 C), 129.4 (2 C), 129.3, 129.2 (2 C), 129.0 (3 C), 125.2 (2 C), 125.1 (3 C), 123.6 (2 C), 73.9, 49.3, 33.1 (2 C), 26.0. MS (EI, 70 eV) m/z: 469 [M$^+$, 80], 362 [M$^+$, $-$S(CH$_2$)$_3$SH, 100], 346 [M$^+$, $-$S(CH$_2$)$_3$SH, $-$OH, 71]. HRMS (EI): m/z [M$^+$] calcd for C$_{29}$H$_{27}$NOS$_2$: 469.1534; found 469.1534. Anal. calcd for C$_{29}$H$_{27}$NOS$_2$: C, 74.16; H, 5.79; N, 2.98; S, 13.65. Found: C, 74.25; H, 5.82; N, 2.99; S, 13.38.

(2-(1,3-Dithian-2-yl)phenyl)(9-ethyl-9H-carbazol-3-yl)methanol (5g): By following the general procedure 5g was obtained as a white foam from dithioacetals 3 in 88% yield, 0.369 g; m.p.: 79-81 °C. 1H NMR (500 MHz, C$_6$D$_6$): $\delta = 8.35$ (s, 1 H), 7.99 (d, J
= 7.5 Hz, 1 H), 7.93 (d, \(J = 7.5 \) Hz, 1 H), 7.52 (d, \(J = 7.5 \) Hz, 1 H), 7.42 (d, \(J = 7.5 \) Hz, 1 H), 7.32 (dd, \(J = 7.5, 7.5 \) Hz, 1 H), 7.15-7.12 (m, 1 H), 7.07-6.93 (m, 4 H), 6.49 (s, 1 H), 5.71 (s, 1 H), 3.60 (q, \(J = 7.2 \) Hz, 2 H), 2.46-2.36 (m, 3 H), 2.23-2.12 (m, 2 H), 1.51 (q, \(J = 12.7 \) Hz, 1 H), 1.26-1.15 (m, 1 H), 0.83 (t, \(J = 7.2 \) Hz, 3 H).

\(^{13}\)C NMR (125 MHz, C\(_6\)D\(_6\)): \(\delta = 142.8, 141.4, 140.4, 138.6, 135.1, 130.2, 129.5, 129.4, 129.3, 126.6, 126.0, 124.2, 124.0, 121.7, 119.9 (2 C), 109.4, 109.3, 74.37, 49.5, 49.4, 38.0, 33.1 (2 C), 26.0, 14.2.

MS (EI, 70 eV) \(m/z \): 419 [M\(^+\), 6]; 313 [M\(^+\), -S(CH\(_2\)_3S, 100]; 296 [M\(+\), -S(CH\(_2\)_3S, -OH, 67]. HRMS (EI): \(m/z \) [M\(^+\)] calcd for C\(_{25}\)H\(_{25}\)NOS\(_2\): 419.1378; found: 419.1383. Anal. calcd for C\(_{25}\)H\(_{25}\)NOS\(_2\): C, 71.56; H, 6.01; N, 3.34; S, 15.28; found: C, 71.59; H, 6.08; N, 3.31; S, 15.34.

(2-(1,3-Dithian-2-yl)phenyl)(4-methoxyphenyl)methanol (5h): By following the general procedure 5h was obtained as a white solid from dithioacetals 3 in 79% yield, 0.262 g. \(^1\)H NMR (500 MHz, C\(_6\)D\(_6\)): \(\delta = 7.92 \) (dd, \(J = 7.6, 1.1 \) Hz, 1 H), 7.30 (d, \(J = 8.6 \) Hz, 2 H), 7.27 (dd, \(J = 7.6, 1.1 \) Hz, 1 H), 7.03-6.93 (m, 2 H), 6.78-6.66 (m, 2 H), 5.52 (s, 1 H), 6.16 (s, 1 H), 3.21 (s, 3 H), 2.53-2.31 (m, 3 H), 2.30-2.07 (m, 2 H), 1.64-1.44 (m, 1 H), 1.35-1.22 (m, 1 H). \(^{13}\)C NMR (125 MHz, C\(_6\)D\(_6\)): \(\delta = 159.1, 141.2, 137.4, 135.4, 129.1, 128.4, 128.33, 128.31, 128.1, 128.0, 113.7 (2 C), 72.5, 54.4, 48.3, 32.08, 32.04, 25.0. Anal. calcd for C\(_{18}\)H\(_{20}\)O\(_2\)S\(_2\): C, 65.02; H, 6.06; S, 19.29; found: C, 64.87; H, 6.15; S, 19.21.

(6-(1,3-Dithian-2-yl-benzo[d][1,3]dioxol-5-yl)(benzo[d][1,3]dioxol-5-yl)methanol (6a): By following the general procedure 6a was obtained as a white foam from dithioacetals 4 in 76% yield; 0.296 g; m.p.: 149-151 °C. \(^1\)H NMR (500 MHz, C\(_6\)D\(_6\)): \(\delta = 7.55 \) (s, 1 H), 7.08 (s, 1 H), 6.89 (d, \(J = 8.0 \) Hz, 1 H), 6.86 (s, 1 H), 6.66 (d, \(J = 8.0 \) Hz, 1 H), 6.06 (s, 1 H), 5.50 (s, 1 H), 5.27 (s, 2 H), 5.20 (d, \(J = 1.1 \) Hz, 1 H), 5.16 (d, \(J = 1.1 \) Hz, 1 H), 2.46 (m, 2 H), 2.32-2.18 (m, 2 H), 2.12 (s, 1 H), 1.62-1.44 (m, 1 H),
1.39–1.27 (m, 1 H), 13C NMR (125 MHz, C$_6$D$_6$): $\delta = 149.0, 148.7, 148.0, 148.9, 138.5, 136.5, 131.8, 121.0, 110.0, 109.3, 108.9, 108.4, 102.00, 101.6, 73.0, 49.0, 33.0, 32.9, 25.8. MS (EI, 70 eV): m/z: 390 [M$^+$, 2], 284 [M$^+$, -S$_2$C$_3$H$_6$, 100], 283 [M$^+$, -HS$_2$C$_3$H$_6$, 96], 267 [M$^+$, -S$_2$C$_3$H$_6$, -OH, 27], 254 [M$^+$, -S$_2$C$_4$H$_7$, -OH, 18]. HRMS (EI): m/z [M$^+$] calcd for C$_{19}$H$_{18}$O$_5$S$_2$: 390.0596; found: 390.0602. Anal. calcd for C$_{19}$H$_{18}$O$_5$S$_2$: C, 58.44; H, 4.65; S, 16.42; found: C, 58.44; H, 4.88; S, 16.66.

(6-(1,3)-Dithian-2-yl-benzo[d][1,3]dioxol-5-yl)(3,4,5-trimethoxyphenyl)methanol

(6b): By following the general procedure 6b was obtained as a white foam from dithioacetals 4 in 72% yield, 0.314 g; m.p.: 214–216 °C. 1H NMR (200 MHz, CDCl$_3$): $\delta = 7.12$ (s, 1 H), 6.65 (s, 1 H), 6.61 (s, 2 H), 6.11 (s, 1 H), 5.92 (s, 2 H), 5.44 (s, 1 H), 3.81 (s, 3 H), 3.80 (s, 6 H), 3.08–2.77 (m, 4 H), 2.68 (s, 1 H), 2.18–1.74 (m, 2 H). 13C NMR (50 MHz, CDCl$_3$): $\delta = 151.9$ (2 C), 146.5, 146.3, 143.7, 137.1, 133.7, 129.3, 107.5, 107.2, 102.0 (2 C), 100.2, 70.7, 59.6, 54.9 (2 C), 46.8, 31.2 (2 C), 23.7. MS (EI, 70 eV): m/z (%): 436 [M$^+$, 15], 329 [M$^+$, -HS$_2$C$_3$H$_6$, 96], 328 [M$^+$, -H$_2$S$_2$C$_3$H$_6$, 100], 299 [M$^+$, -S$_2$C$_4$H$_7$, -H$_2$O, 79]. HRMS (EI): m/z [M$^+$] calcd for C$_{21}$H$_{24}$O$_6$S$_2$: 436.1014; found: 436.1023. Anal. calcd for C$_{21}$H$_{24}$O$_6$S$_2$: C, 57.78; H, 5.54; S, 14.69; found: C, 57.68; H, 5.38; S, 14.42.

General procedure for preparation of ortho-1,3-dithianaryl(aryl)methanes 7a–h and 8a-b

To a solution of the corresponding diarylmethanol (5a-h, 6a,b) (1 mmol) in 1,2-dichloroethane or benzene (30 mL, Table 1) were added solid zinc iodide (1.5 mmol) and sodium cyanoborohydride (7 mmol). The mixture was stirred at room temperature or at reflux (due to a weak solubility) for 2–24 h. Then, the mixture was
filtered through the Celite® pad and eluted with dichloroethane (100 mL). The filtrate was washed with saturated ammonium chloride (20 mL), water (20 mL) and dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the residue was purified with silica gel column chromatography using petroleum ether as eluent to give the desired diarylmethanes (7a−h, 8a−b).

5-(1,3-Dithian-2-yl)benzyl)benzo[d][1,3]dioxole (7a): By following the general procedure 7a was obtained as a yellow solid from diarylmethanol 5a in 95% yield, 0.313 g; m.p.: 125˗127 °C. ¹H NMR (500 MHz, C₆D₆): δ = 7.94 (d, J = 7.4 Hz, 1 H), 6.99 (dd, J = 7.4, 7.4 Hz, 1 H), 6.90 (dd, J = 7.4, 7.4 Hz, 1 H), 6.87 (d, J = 7.4 Hz, 1 H), 6.64 (s, 1 H), 6.57 (d, J = 7.9 Hz, 1 H), 6.47 (d, J = 7.9 Hz, 1 H), 5.34 (s, 1 H), 5.22 (s, 2 H), 3.93 (s, 2 H), 2.49-2.37 (m, 2 H), 2.28-2.21 (d, 2 H), 1.63-1.50 (m, 1 H), 1.38-1.25 (m, 1 H). ¹³C NMR (125 MHz, C₆D₆): δ = 148.1, 146.2, 137.9, 137.8, 134.2, 130.5, 128.9, 128.3, 127.3, 121.7, 109.3, 108.1, 100.5, 48.5, 38.2, 32.1 (2 C), 25.0. MS (EI, 70 eV) m/z (%): 330 [M⁺, 5], 255 [M⁺, -HSC₃H₆, 70], 223 [M⁺, -S₂C₃H₇, 59], 222 [M⁺, -HS₂C₃H₇, 100], 165 [M⁺, -S₂C₃H₇, -O₂CH₂, 34]. HRMS (EI): m/z [M⁺] calcd for C₁₈H₁₈O₂S₂: 330.0748; found: 330.0747. Anal. Calcd for C₁₈H₁₈O₂S₂: C, 65.42; H, 5.49; S, 19.41; found: C, 65.26; H, 10.66, S, 19.48.

2-(2-(3,4,5-Trimethoxybenzyl)phenyl)-1,3-dithiane (7b): By following the general procedure 7b was obtained as a yellow oil from diarylmethanol 5b in 95% yield, 0.350 g. ¹H NMR (500 MHz, C₆D₆): δ = 8.00 (d, J = 7.6 Hz, 1 H), 7.07-6.89 (m, 3 H), 6.35 (s, 2 H), 5.41 (s, 1 H), 4.08 (s, 2 H), 3.80 (s, 3 H), 3.35 (s, 6 H), 2.47-2.39 (m, 2 H), 2.25 (dd, J = 4.0, 3.2 Hz, 1 H), 2.28 (dd, J = 4.0, 3.2 Hz, 1 H), 1.64-1.53 (m, 1 H), 1.36-1.28 (m, 1 H). ¹³C NMR (125 MHz, C₆D₆): δ = 154.0 (2 C), 138.0, 137.5 (2 C), 135.4, 130.4, 128.9 (2 C), 128.4, 106.2 (2 C), 60.1, 55.4 (2 C), 48.6, 38.7, 31.9 (2 C), 24.9. MS (EI, 70 eV) m/z: 376 [M⁺, 23], 301 [M⁺, -HSC₃H₆, 35], 269 [M⁺, -HS₂C₃H₆,
2-(2-[1,3]Dithian-2-yl-benzyl)benzo[b]thiophene (7c): By following the general procedure 7c was obtained as a yellow solid from diarylmethanol 5c in 70% yield, 0.239 g; m.p.: 115-116 °C. \(^1\)H NMR (500 MHz, C\(_6\)D\(_6\)): δ = 7.95 (d, \(J = 7.9\) Hz, 1 H), 7.44 (d, \(J = 7.9\) Hz, 1 H), 7.37 (d, \(J = 7.9\) Hz, 1 H), 7.06-6.98 (m, 2 H), 6.97-6.92 (m, 3 H), 6.75 (s, 1 H), 5.38 (s, 1 H), 4.20 (s, 2 H), 2.42-2.35 (m, 2 H), 2.21 (dd, \(J = 3.3\), 3.3 Hz, 1 H), 2.19 (dd, \(J = 3.3\), 3.3 Hz, 1 H), 1.60-1.44 (m, 1 H), 1.32-1.20 (m, 1 H).

\(^{13}\)C NMR (125 MHz, C\(_6\)D\(_6\), 25 °C): δ = 145.3, 141.3, 140.9, 139.0, 137.4, 131.5, 130.0, 129.4, 129.0, 125.2, 124.8, 124.1, 123.1, 123.1, 49.8, 34.8, 33.0 (2 C), 26.0.

MS (EI, 70 eV) m/z (%): 342 [M\(^+\), 4], 267 [M\(^+\), -HSC\(_3\)H\(_6\), 11], 234 [M\(^+\), -S\(_2\)C\(_4\)H\(_6\), 27], 235 [M\(^+\), -S\(_2\)C\(_4\)H\(_7\), 78], 234 [M\(^+\), -HS\(_2\)C\(_4\)H\(_7\), 100]. HRMS (EI): m/z [M\(^+\)] calcd for C\(_{19}\)H\(_{18}\)S\(_3\): 342.0571; found: 342.0567. Anal. calcd for C\(_{19}\)H\(_{18}\)S\(_3\): C, 66.62; H, 5.30; S, 28.08. Found: C, 66.43; H, 5.21; S, 28.14.

2-(2-(Thien-2-ylmethyl)phenyl)-1,3-dithiane (7d): By following the general procedure 7d was obtained as a yellow solid from diarylmethanol 5d in 95% yield, 0.277 g; m.p.: 53-55 °C. \(^1\)H NMR (500 MHz, C\(_6\)D\(_6\)): δ = 8.02 (d, \(J = 7.3\) Hz, 1 H), 7.08 (dd, \(J = 7.3\), 7.3 Hz, 1 H), 7.04-6.96 (m, 2 H), 6.85 (d, \(J = 4.9\) Hz, 1 H), 6.74 (dd, \(J = 4.9\), 3.6 Hz, 1 H), 6.72-6.68 (m, 1 H), 5.47 (s, 1 H), 4.26 (s, 2 H), 2.59-2.46 (m, 2 H), 2.36 (dd, \(J = 3.3\), 3.3 Hz, 1 H), 2.34 (dd, \(J = 3.3\), 3.3 Hz, 1 H), 1.74-1.58 (m, 1 H), 1.47-1.33 (m, 1 H). \(^{13}\)C NMR (125 MHz, C\(_6\)D\(_6\)): δ = 143.3, 137.8, 137.3, 130.3, 129.0, 128.5, 127.0, 125.5, 123.9 (2 C), 48.7, 33.1, 32.1 (2 C), 25.1. MS (EI, 70 eV) m/z (%): 292 [M\(^+\), 3], 217 [M\(^+\), -HSC\(_3\)H\(_6\), 50], 185 [M\(^+\), -HS\(_2\)C\(_3\)H\(_6\), 73], 184 [M\(^+\), -H\(_2\)S\(_2\)C\(_3\)H\(_6\), 73].
100]. HRMS (El): \(m/z \) [M\(^+\)] calcd for C\(_{15}H_{16}S_3\): 292.0414; found: 292.0404. Anal. calcd for C\(_{15}H_{16}S_3\): C, 61.60; H, 5.51; S, 32.89; found: C, 61.50; H, 5.53; S, 32.68.

2-(2-[1,3]Dithian-2-yl-benzyl)-1-methyl-1H-indole (7e): By following the general procedure 7e was obtained as a white solid from diarylmethanol 5e in 26% yield, 0.088 g; m.p.: 165-167 °C. \(^1\)H NMR (500 MHz, C\(_6\)D\(_6\)): \(\delta = 7.95 \) (d, \(J = 7.6 \) Hz, 1 H), 7.68-7.55 (m, 1 H), 7.22-7.13 (m, 2 H), 6.99 (dd, \(J = 7.6, 7.6 \) Hz, 2 H), 6.86 (dd, \(J = 7.6, 7.6 \) Hz, 1 H), 6.76 (d, \(J = 7.6 \) Hz, 1 H), 6.28 (s, 1 H), 5.36 (s, 1 H), 4.03 (s, 2 H), 2.95 (s, 3 H), 2.50-2.40 (m, 2 H), 2.29 (dd, \(J = 3.3, 3.3 \) Hz, 1 H), 2.26 (dd, \(J = 3.3, 3.3 \) Hz, 1 H), 1.66-1.51 (m, 1 H), 1.40-1.27 (m, 1 H). \(^{13}\)C NMR (125 MHz, C\(_6\)D\(_6\)): \(\delta = 139.1, 138.7, 138.5, 136.7, 130.4, 129.6, 129.5, 129.3, 129.0, 122.0, 121.3, 120.6, 109.9, 102.9, 49.4, 32.9 (2 C), 31.1, 30.0, 26.0. MS (El, 70 eV) \(m/z \): 339 [M\(^+\), 22], 232 [M\(^+\), -HS\(_2\)C\(_3\)H\(_6\), 100], 217 [M\(^+\), -HS\(_2\)C\(_3\)H\(_6\), -CH\(_3\), 28]. HRMS (El): \(m/z \) [M\(^+\)] calcd for C\(_{20}H_{21}NS_2\): 339.1115; found: 339.1107. Anal. Calcd for C\(_{20}H_{21}NS_2\): C, 70.75; H, 6.23; N, 4.13; S, 18.89; found: C, 70.87; H, 6.07; N, 4.23; S, 19.01.

2-(4-(Diphenylamino)phenyl)methyl)phenyl)-1,3-dithiane (7f): By following the general procedure 7f was obtained as a white solid from diarylmethanol 5f in 95% yield, 0.430 g; m.p.: 57-59 °C. \(^1\)H NMR (500 MHz, C\(_6\)D\(_6\)): \(\delta = 8.00 \) (d, \(J = 7.8 \) Hz, 1 H), 7.11-6.96 (m, 15 H), 6.85-6.79 (m, 2 H), 5.43 (s, 1 H), 4.04 (s, 2 H), 2.53-2.45 (m, 2 H), 2.38-2.30 (m, 2 H), 1.74-1.54 (m, 1 H), 1.47-1.32 (m, 1 H). \(^{13}\)C NMR (125 MHz, C\(_6\)D\(_6\)): \(\delta = 148.1 \) (2 C), 146.2, 138.0, 137.9, 135.2, 130.6, 129.8 (2 C), 129.2 (4 C), 129.0, 128.3, 127.3, 124.8 (2 C), 124.0 (4 C), 122.4 (2 C), 48.6, 38.1, 32.1 (2 C), 25.1. MS (El, 70 eV) \(m/z \): 453 [M\(^+\), 87], 346 [M\(^+\), -HS\(_2\)C\(_3\)H\(_6\), 100]. HRMS (El): \(m/z \) [M\(^+\)] calcd for C\(_{28}H_{27}NS_2\): 453.1585; found: 453.1583. Anal. calcd for C\(_{28}H_{27}NS_2\): C, 76.78; H, 6.00; N, 3.09; S, 14.14; found: C, 76.82; H, 5.94; N, 3.11; S, 14.17.
3-(2-[1,3]Dithian-2-yl-benzyl)-9-ethyl-9H-carbazole (7g): By following the general procedure 7g was obtained as a white solid from diarylmethanol 5g in 59% yield; 0.238 g; m.p.: 140-142 °C. 1H NMR (500 MHz, C$_6$D$_6$): δ = 8.09-7.98 (m, 1 H), 7.98-7.87 (m, 2 H), 7.33 (ddd, J = 8.3, 7.3, 1.1 Hz, 1H), 7.27 (dd, J = 8.3, 1.6 Hz, 1 H), 7.08-6.92 (m, 5 H), 7.18-7.12 (m, 1 H), 5.57 (s, 1 H), 4.36 (s, 2 H), 3.62 (q, J = 7.2 Hz, 2 H), 2.49-2.39 (m, 2 H), 2.26 (dd, J = 3.2, 3.2 Hz, 1 H), 2.24 (dd, J = 3.2, 3.2 Hz, 1 H), 1.57 (dtt, J = 15.5, 12.6, 3.2 Hz, 1 H), 1.33-1.25 (m, 1 H), 0.84 (t, J = 7.2 Hz, 3 H). 13C NMR (125 MHz, C$_6$D$_6$): δ = 141.3, 139.8 (2 C), 139.0, 131.6 (2 C), 129.9, 129.3, 128.2, 127.7, 126.5, 124.4, 124.1, 121.6, 121.6, 119.8, 109.5, 109.4, 49.7, 39.6, 38.0, 33.1 (2 C), 26.1, 14.2. MS (EI, 70 eV) m/z (%): 403 [M$^+$, 38]; 396 [M$^+$, -S(CH$_2$)$_2$CH$_3$, 100]. HRMS (EI): m/z [M$^+$] calcd for C$_{25}$H$_{25}$NS$_2$: 403.1428; found: 403.1418. Anal. calcd for C$_{25}$H$_{25}$NS$_2$: C, 74.40; H, 6.24; N, 3.47; S, 15.89; found: C, 74.36; H, 6.20; N, 3.51; S, 16.02.

2-(2-(4-Methoxybenzyl)phenyl)-1,3-dithiane (7h): By following the general procedure 7h was obtained as a white solid from diarylmethanol 5h in 64% yield, 0.202 g; m.p.: 115-117 °C. 1H NMR (500 MHz, C$_6$D$_6$): δ = 1.38-1.26 (m, 1 H), 1.66-1.47 (m, 1 H), 2.25-2.22 (m, 1 H), 2.30-2.25 (m, 1 H), 2.50-2.35 (m, 2 H), 3.22 (s, 3 H), 4.03 (s, 2 H), 5.38 (s, 1 H), 6.74-6.68 (m, 2 H), 7.04-6.88 (m, 5 H), 7.97 (d, J =7.5 Hz, 1 H). 13C NMR (125 MHz, C$_6$D$_6$): δ = 158.4, 138.1, 138.0, 132.2, 130.5, 129.7, 128.8, 128.3, 128.0, 127.2, 114.0 (2 C), 54.4, 48.6, 37.7, 32.1 (2 C), 25.1. MS (EI, 70 eV) m/z: 316 [M$^+$, 10], 241 [M$^+$, -HSC$_3$H$_6$, 100]. Anal. calcd for C$_{18}$H$_{20}$OS$_2$: C, 68.31; H, 6.37; S, 20.26; found: C, 68.12; H, 6.26; S, 16.99.

5-(Benzo[d][1,3]dioxol-5-ylmethyl)-6-(1,3-dithian-2-yl)benzo[d][1,3]dioxole (8a): By following the general procedure 8a was obtained as a white solid from diarylmethanol 6a in 95% yield, 0.355 g; m.p.: >250 °C. 1H NMR (500 MHz, C$_6$D$_6$): δ
= 7.62 (s, 1 H), 6.72 (s, 1 H), 6.64 (d, J =8.0 Hz, 1 H), 6.54 (dd, J = 8.0, 8.0 Hz, 1 H), 6.48 (s, 1 H), 5.35 (s, 1 H), 5.27 (s, 2 H), 5.20 (s, 2 H), 3.85 (s, 2 H), 2.50-2.42 (m, 2 H), 2.31-2.24 (m, 2 H), 1.63-1.50 (m, 1 H), 1.38-1.30 (m, 1 H). 13C NMR (125 MHz, C6D6): δ = 149.1, 148.8, 148.0, 147.3, 135.4, 132.6, 132.0, 122.5, 111.4, 110.2, 110.0, 109.1, 101.8, 49.3, 39.0, 33.0 (2 C), 25.9. MS (EI, 70 eV) m/z: 374 [M+, 9], 299 [M+, -HSC3H6, 100], 267 [M+, -HS2C3H6, 86], 266 [M+, -H2S2C3H6, 80]. HRMS (EI): m/z [M+] calcd for C19H18O4S2: 374.0646; found: 374.0649. Anal. Calcd for C19H18O4S2: C, 60.94; H, 4.84; S, 17.13; found: C, 60.23; H, 4.58; S, 16.99.

5-(1,3-Dithian-2-yl)-6-(3,4,5-trimethoxybenzyl)benzo[d][1,3]dioxole (8b): By following the general procedure 8b was obtained as a white solid from diarylmethanol 6b in 60% yield, 0.252 g; m.p.: 146-148 °C. 1H NMR (500 MHz, C6D6): δ = 7.67 (s, 1 H), 6.62 (s, 1 H), 6.44 (s, 2 H), 5.42 (s, 1 H), 5.20 (s, 2 H), 3.99 (s, 2 H), 3.85 (s, 3 H), 3.44 (s, 6 H), 2.50-2.40 (m, 2 H), 2.35-2.21 (m, 2 H), 1.65-1.53 (m, 1 H), 1.44-1.28 (m, 1 H). 13C NMR (125 MHz, C6D6): δ = 155.0 (2 C), 149.0, 148.1, 138.6, 136.6, 132.4, 132.2, 111.3, 110.0, 107.1 (2 C), 101.9, 61.2, 56.6 (2 C), 49.4, 39.6, 32.9 (2 C), 25.9. MS (EI, 70 eV) m/z: 420 [M+, 15], 345 [M+, -HSC3H6, 55], 313 [M+, -HS2C3H6, 68], 312 [M+, -H2S2C3H6, 100]. HRMS (EI): m/z [M+] calcd for C21H24O5S2: 420.1065; found: 420.1076. Anal. calcd for C21H24O5S2: C, 59.98; H, 5.75; S, 15.25; found: C, 59.71; H, 5.54; S, 15.13.

5-(3,4,5-Trimethoxyphenyl)-5,7-dihydro-furo[3',4':4,5]benzo[1,2-d][1,3]dioxole (10): To a stirred solution of ortho-1,3-dioxanyl-diarylmethanol 9 (200 mg, 0.49 mmol) dissolved in EtOAc (5 mL), (10%) Pd/C (30 mg) was added. The mixture was stirred for 0.5 h at room temperature under hydrogen gas atmosphere (balloon). Then, the balloon with hydrogen gas was removed and the mixture was left for 18 h at rt. The crude mixture was filtered through the Celite® pad and concentrated in vacuo.
Preparative chromatography gave 330 mg (90%) of the product 10. m.p.: 95 - 100 °C. \(^1H \) NMR (200 MHz, C\(_6\)D\(_6\)): \(\delta = 3.40 \) (s, 6H), 3.91 (s, 3H), 4.98 (dd\(_{AB}\), \(J = 2.3 \), 11.8, 1H), 5.15 (dd\(_{AB}\), \(J = 2.3 \), 11.8, 1H), 5.35 (d, \(J = 1.0 \), 1H), 5.40 (d, \(J = 1.0 \), 1H), 6.07 (dd, \(J = 2.8 \), 2.8, 1H), 6.46 (s, 1H), 6.58 (s, 1H), 8.66 (s, 2H). \(^1\)H NMR (500 MHz, CD\(_2\)Cl\(_2\)): \(\delta = 3.76 \) (s, 3H), 3.81 (s, 6H), 5.06 (dd, \(J = 2.1 \), 11.7, 1H), 5.21 (dd, \(J = 3.0 \), 11.7, 1H), 5.95 (d, \(J = 1.1 \), 1H), 5.96 (d, \(J = 1.1 \), 1H), 5.96 (bs, 1H), 6.47 (s, 1H), 6.54 (s, 2H), 6.72 (s, 1H). \(^13\)C NMR (137.5 MHz, CD\(_2\)Cl\(_2\)): \(\delta = 56.5, 60.9, 73.7, 86.8, 101.9, 102.3, 103.0, 104.2, 132.4, 135.5, 138.3, 138.1, 148.2, 148.5, 154.0. \\
Anal. Calcd for C\(_{18}\)H\(_{18}\)O\(_6\): C, 65.45; H, 5.49. Found: C, 65.01; H, 5.79.

Literature

2. Copies of 1H and 13C NMR spectra
1H NMR spectrum of 2-(2-bromophenyl)-1,3-dithiane (3) (200 MHz, CDCl$_3$).
13C NMR spectrum of 2-(2-bromophenyl)-1,3-dithiane (3) (50 MHz, CDCl$_3$).
1H NMR spectrum of 5-bromo-6-(1,3-dithian-2-yl)benzo-1,3-dioxole (4) (200 MHz, CDCl$_3$).
13C NMR spectrum of 5-bromo-6-(1,3-dithian-2-yl)benzo-1,3-dioxole (3) (50 MHz, CDCl$_3$).
\(^1\)H NMR spectrum of (2-(1,3-dithian-2-yl)phenyl)(benzo[d][1,3]dioxol-5-yl)methanol (5a) (500 MHz, C\textsubscript{6}D\textsubscript{6}).
13C NMR spectrum of (2-(1,3-dithian-2-yl)phenyl)(benzo[d][1,3]dioxol-5-yl)methanol (5a) (125 MHz, C$_6$D$_6$).
1H NMR spectrum of 2-(1,3-dithian-2-yl)phenyl(3,4,5-trimethoxyphenyl)methanol (5b) (500 MHz, C$_6$D$_6$).
13C NMR spectrum of 2-(1,3-dithian-2-yl)phenyl(3,4,5-trimethoxyphenyl)methanol (5b) (125 MHz, C$_6$D$_6$).
1H NMR spectrum of (2-(1,3-dithian-2-yl)phenyl)(benzo[b]thien-2-yl)methanol (5c) (500 MHz, C$_6$D$_6$).

![NMR spectrum image]

Chemical shifts:
- 7.76
- 7.69
- 7.48
- 7.42
- 7.26
- 7.20
- 6.88
- 6.86
- 5.98
- 5.20
- 4.00
- 3.40
- 2.10
- 1.00
- 0.00

S24
13C NMR spectrum of (2-(1,3-dithian-2-yl)phenyl)(benzo[b]thien-2-yl)methanol (5c) (125 MHz, C$_6$D$_6$).
1H NMR spectrum of 2-(1,3-dithian-2-yl)phenyl(thien-2-yl)methanol (5d) (500 MHz, C_6D_6).
13C NMR spectrum of 2-(1,3-dithian-2-yl)phenyl(thien-2-yl)methanol (5d) (125 MHz, C$_6$D$_6$).
1H NMR spectrum of (2-(1,3-dithian-2-yl)phenyl)(1-methyl-1H-indol-2-yl)methanol (5e) (500 MHz, C$_6$D$_6$).
13C NMR spectrum of (2-(1,3-dithian-2-yl)phenyl)(1-methyl-1H-indol-2-yl)methanol (5e) (125 MHz, C$_6$D$_6$).
1H NMR spectrum of (2-(1,3-dithian-2-yl)phenyl)(4-(diphenylamino)phenyl)methanol (5f) (500 MHz, C$_6$D$_6$).

![NMR spectrum](image)
13C NMR spectrum of (2-(1,3-dithian-2-yl)phenyl)(4-(diphenylamino)phenyl)methanol (5f) (125 MHz, C$_6$D$_6$).
1H NMR spectrum of 3-(2-(1,3-dithian-2-yl)phenyl(9-ethyl-9H-carbazol-3-yl)methanol (5g) (500 MHz, C$_6$D$_6$).
13C NMR spectrum of 3-(2-(1,3-dithian-2-yl)phenyl(9-ethyl-9H-carbazol-3-yl)methanol (5g) (125 MHz, C$_6$D$_6$).
1H NMR spectrum of (2-(1,3-dithian-2-yl)phenyl)(4-methoxyphenyl)methanol (5h) (500 MHz, C$_6$D$_6$).
\[^{13}\text{C}\] NMR spectrum of (2-(1,3-dithian-2-yl)phenyl)(4-methoxyphenyl)methanol (5h) (125 MHz, C\textsubscript{6}D\textsubscript{6}).
\(^1\)H NMR spectrum of (6-(1,3)-dithian-2-yl-benzo[\(d\)][1,3]dioxol-5-yl)(benzo[\(d\)][1,3]dioxol-5-yl)methanol (6a) (500 MHz, \(C_6D_6\)).
13C NMR spectrum of (6-(1,3)-dithian-2-yl-benzo[d][1,3]dioxol-5-yl)(benzo[d][1,3]dioxol-5-yl)methanol (6a) (125 MHz, C$_6$D$_6$).
1H NMR spectrum of 6-(1,3-dithian-2-yl)benzo[d][1,3]dioxol-5-yl)(3,4,5-trimethoxyphenyl)methanol (6b) (200 MHz, CDCl$_3$).
13C NMR spectrum of 6-(1,3-dithian-2-yl)benzo[d][1,3]dioxol-5-yl)(3,4,5-trimethoxyphenyl)methanol (6b) (50 MHz, CDCl$_3$).
1H NMR spectrum of 5-(1,3-dithian-2-yl)benzyl)benzo[d][1,3]dioxole (7a) (500 MHz, C$_6$D$_6$).
13C NMR spectrum of 5-(1,3-dithian-2-yl)benzyl)benzo[d][1,3]dioxole (7a) (125 MHz, C$_6$D$_6$).
1H NMR spectrum of 2-(2-(3,4,5-trimethoxybenzyl)phenyl)-1,3-dithiane (7b) (500 MHz, C$_6$D$_6$).
13C NMR spectrum of 2-(2-(3,4,5-trimethoxybenzyl)phenyl)-1,3-dithiane (7b) (125 MHz, C$_6$D$_6$).
1H NMR spectrum of 2-(2-(1,3-dithian-2-yl)benzyl)benzo[b]thiophene (7c) (500 MHz, C$_6$D$_6$).
\(^{13}\)C NMR spectrum of 2-(2-(1,3)-dithian-2-yl)benzyl)benzo[b]thiophene (7c) (125 MHz, C\(_6\)D\(_6\)).
\(^1\)H NMR spectrum of 2-(2-(thien-2-ylmethyl)phenyl)-1,3-dithiane (7d) (500 MHz, C\textsubscript{6}D\textsubscript{6}).
13C NMR spectrum of 2-(2-(thien-2-ylmethyl)phenyl)-1,3-dithiane (7d) (125 MHz, C$_6$D$_6$).
1H NMR spectrum of 2-(2-[1,3]dithian-2-yl-benzyl)-1-methyl-1H-indole (7e) (500 MHz, C$_6$D$_6$).
13C NMR spectrum of 2-(2-[1,3]dithian-2-yl-benzyl)-1-methyl-1H-indole (7e) (125 MHz, C$_6$D$_6$).
1H NMR spectrum of 2-((4-(diphenylamino)phenylmethyl)phenyl)-1,3-dithiane (7f) (500 MHz, C$_6$D$_6$).
13C NMR spectrum of 2-(4-(diphenylamino)phenylmethyl)phenyl)-1,3-dithiane (7f) (125 MHz, C$_6$D$_6$).
1H NMR spectrum of 3-(2-[1,3]dithian-2-yl-benzyl)-9-ethyl-9H-carbazole (7g) (500 MHz, C$_6$D$_6$).
13C NMR spectrum of 3-(2-[1,3]dithian-2-yl-benzyl)-9-ethyl-9H-carbazole (7g) (125 MHz, C$_6$D$_6$).
1H NMR spectrum of 2-((2-(4-methoxybenzyl)phenyl)-1,3-dithiane (7h) (500 MHz, C$_6$D$_6$).
\(^{13}\)C NMR spectrum of 2-(2-(4-methoxybenzyl)phenyl)-1,3-dithiane (7h) (125 MHz, C\(_6\)D\(_6\)).
1H NMR spectrum of 5-(benzo[d][1,3]dioxol-5-ylmethyl)-6-(1,3-dithian-2-yl)benzo[d][1,3]dioxole (8a) (500 MHz, C$_6$D$_6$).
13C NMR spectrum of 5-(benzo[d][1,3]dioxol-5-ylmethyl)-6-(1,3-dithian-2-yl)benzo[d][1,3]dioxole (8a) (125 MHz, C$_6$D$_6$).
1H NMR spectrum of 5-(1,3-dithian-2-yl)-6-(3,4,5-trimethoxybenzyl)benzo[d][1,3]dioxole (8b) (500 MHz, C$_6$D$_6$).
13C NMR spectrum of 5-(1,3-dithian-2-yl)-6-(3,4,5-trimethoxybenzyl)benzo[d][1,3]dioxole (8b) (125 MHz, C$_6$D$_6$).
1H NMR spectrum of 5-(3,4,5-trimethoxy-phenyl)-5,7-dihydrofuro[3',4':4,5]benzo[1,2-d][1,3]dioxole (10) (200 MHz, C$_6$D$_6$).
1H NMR spectrum of 5-(3,4,5-trimethoxy-phenyl)-5,7-dihydrofuro[3',4':4,5]benzo[1,2-d][1,3]dioxole (10) (500 MHz, CD$_2$Cl$_2$).
13C NMR spectrum of 5-(3,4,5-trimethoxyphenyl)-5,7-dihydrofuro[3',4':4,5]benzo[1,2-d][1,3]dioxole (10) (500 MHz, CD$_2$Cl$_2$).