Supporting Information

for

Asymmetric Michael addition reactions catalyzed by calix[4]thiourea cyclohexanediamine derivatives

Zheng-Yi Li¹, Hong-Xiao Tong¹, Yuan Chen^{1,2}, Hong-Kui Su¹, Tangxin Xiao*¹, Xiao-Qiang Sun¹, and Leyong Wang*^{1,2}

Address: ¹Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China and ²Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

Email: Tangxin Xiao - xiaotangxin@cczu.edu.cn; Leyong Wang- lywang@nju.edu.cn *Corresponding author

Experimental procedures, characterization data for all compounds and copies of NMR spectra

1. General	S2
2. Synthesis of catalysts and characterization data	S2
2.1 Synthesis of isothiocyanato-calix[4]arenes	S2
2.2 Synthesis of catalyst 1	S3
2.3 Synthesis of catalyst 2 and 3	S4
2.4 Synthesis of catalyst 4	S5
3. Synthesis of substrates and characterization data	S6
4. NMR spectra for catalysts and intermediates	S11
5. NMR spectra for substrates	S17
6. HPLC chromatograms	S28
7. References	S39

General

All chemicals were used as received without special purification unless stated otherwise. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 F254 plates. Visualization on TLC was achieved by the use of UV light (254 nm). ¹H and ¹³C NMR spectra were recorded on a Bruker 300 and 75 MHz NMR spectrometer using TMS as the internal standard. Melting points (mp) are determined with a MPA 100 apparatus and are not corrected. The ee values of products were determined by chiral-phase HPLC analysis. (1*R*, 2*R*)-*N*,*N*'-dimethylcyclohexane-1,2-diamine, (1*R*,2*R*)-*N*-Boc-cyclohexanediamine, **5a** and **5b** were prepared according to literature procedures [1,2].

2. Synthesis of catalysts and characterization data

2.1 Synthesis of isothiocyanato-calix[4] arenes

To a solution of **5a** or **5b** (1 equiv) in 20 mL DCM, NaOH (3 equiv or 6 equiv, respectively) was added and the resulting mixture was stirred at room temperature for 15 min. Next, phenyl chlorothionocarbonate (1 equiv or 2 equiv respectively) was added slowly in 5 min. After the reaction was complete, the reaction mixture washed with 10% HCl and deionized water. The aqueous layer was extracted with DCM, the combined organic phase was dried over MgSO4 and concentrated to give the crude product, which was purified by flash chromatography on silica gel (eluent with ethyl acetate/hexane 1:100) to afford product **6a** or **6b**.

Compound **6a**. White solid; 71% yield; mp: 116-117 °C; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.95-1.02 (m, 12H, C H_3), 1.25-1.39 (m, 5H, C H_2), 1.47-1.59 (m, 3H, C H_2), 1.79-1.92 (m, 8H, C H_2), 3.08 (d, J=13.5 Hz, 2H, ArC H_2 Ar), 3.17 (d, J=13.5 Hz, 2H, ArC H_2 Ar), 3.75-3.80 (m, 4H, ArOC H_2), 3.87-4.03 (m, 4H, ArOC H_2), 4.39 (d, J=9.0 Hz, 2H, ArC H_2 Ar), 4.44 (d, J=9.0 Hz, 2H, ArC H_2 Ar), 6.19 (s, 2H, ArH), 6.42 (d, J=7.5 Hz, 2H, ArH), 6.46-6.52 (m, 1H, ArH), 6.78-6.95 (m, 6H, ArH). ¹³C NMR (75

MHz, CDCl₃): δ (ppm) = 13.9, 14.0, 14.1, 19.1, 19.4, 19.5, 30.8, 31.0, 32.1, 32.3, 32.4, 74.8, 74.9, 75.0, 77.2, 122.0, 122.2, 124.1, 124.9, 127.7, 128.4, 129.1, 134.0, 135.3, 136.0, 136.5, 155.4, 155.8, 157.3.

Compound **6b**. White solid; 75% yield; mp: 123–126 °C; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 0.95-1.02 (m, 12H, C H_3), 1.34-1.41 (m, 4H, C H_2), 1.47-1.54 (m, 4H, C H_2), 1.81-1.92 (m, 8H, C H_2), 3.11 (d, J=13.5 Hz, 4H, ArC H_2 Ar), 3.79-3.93 (m, 8H, ArOC H_2), 4.40 (d, J= 13.2 Hz, 4H, ArC H_2 Ar), 6.38 (s, 4H, ArH), 6.72-6.80 (m, 6H, ArH). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 14.0, 14.1, 19.2, 19.4, 26.9, 29.7, 30.9, 32.1, 32.3, 75.0, 75.2, 77.2, 122.7, 124.7, 125.1, 128.7, 133.3 134.8, 136.3, 155.6, 156.6.

2.2 Synthesis of catalyst 1

To a solution of chiral (1R,2R)-N-Boc-cyclohexanediamine (0.21 mmol) in DCM (15 mL) was added **6a** (0.21 mmol). The reaction mixture was stirred for 0.5 h at room temperature. After removal of the solvent, the crude product was purified by flash chromatography on silica gel (eluent with ethyl acetate/hexane 1:4) to give Boc-protected product. Subsequently, CF₃COOH (1 mL) and DCM (30 mL) were added, and the mixture was stirred at room temperature for 3 h. After the reaction was complete, the solvent was distilled off. Then, DCM (30 mL) and H_2O (30 mL) were successively added, and 2.0 mol/L NaOH solution was added dropwise to adjust the pH to 8–9. The aqueous layer was extracted with DCM $(3 \times 20 \text{ mL})$, the combined organic phase was dried over MgSO₄ and concentrated to give the catalyst **1**.

Compound **1**. White solid; 89% yield; mp: 134-135 °C; $[\alpha]_D^{20}$ -37.5° (C = 1.0, in CHCl₃); ¹H NMR (300MHz, DMSO- d_6): $\delta = 0.95$ -1.01 (m, 12H, C H_3), 1.22-1.53 (m, 14H, C H_2 + CHHCH₂CH₂CHH), 1.65-1.75 (m, 2H, CHHCH₂CH₂CHH), 1.82-2.02 (m, 10H, C H_2 + CHNH₂ + CHNH), 3.11-3.19 (m, 4H, ArC H_2 Ar), 3.79-3.88 (m, 8H, ArOC H_2), 4.33-4.37 (m, 4H, ArC H_2 Ar), 6.27-6.80 (m, 11H, ArH), 7.56 (d, 1H, J = 8.4 Hz, NH), 7.88 (s, 2H, N H_2), 9.25 (s, 1H, NH). ¹³C NMR (75MHz, DMSO- d_6): δ (ppm) = 14.3, 14.4, 19.3, 19.4, 23.7, 24.5, 29.9, 30.7, 31.4, 32.3, 53.5, 55.4, 74.8, 74.9, 75.0,

122.3, 128.2, 128.3, 128.5, 133.3, 134.6, 135.0, 135.2, 135.3, 154.6, 156.4, 156.6, 158.7, 159.2, 180.8. HR-ESI-MS ($C_{51}H_{69}N_3O_4S$): m/z calcd for $[M + H]^+ = 819.5009$, found = 819.5013.

2.3 Synthesis of catalyst 2 and 3

To a solution of chiral (1*R*,2*R*)-*N*,*N*'-dimethylcyclohexane-1,2-diamine (1.0 mmol) in DCM (15 mL) was added **6a** or **6b** (0.5 mmol). The reaction mixture was stirred for 0.5 h at room temperature. After removal of the solvent, the crude product was purified by flash chromatography on silica gel (eluent with CH₃OH/CH₂Cl₂ 1:25) to afford product **2** or **3**.

Compound **2**. White solid; 81% yield; mp: 92–93 °C; $[\alpha]_D^{20}$ -38.5° (C = 1.0, in CHCl₃); 1 H NMR (300MHz, DMSO- d_6): δ (ppm) = 0.95-0.99 (m, 12H, CH₃), 1.15-1.23 (m, 4H, CH₂CH₂CH₂CH₂), 1.34-1.73 (m, 12H, CH₂ + CH₂CH₂CH₂CH₂), 1.80-1.93 (m, 10H, CH₂ + CHN(CH₃)₂ + CHNH), 2.18 (S, 6H, N(CH₃)₂), 3.09-3.19 (m, 4H, ArCH₂Ar), 3.75-3.90 (m, 8H, ArOCH₂), 4.29-4.36 (m, 4H, ArCH₂Ar), 6.44-6.82 (m, 11H, ArH), 7.13 (d, 1H, J = 6.6 Hz, NH), 9.11 (s, 1H, NH). 13 C NMR (75 MHz, DMSO- d_6): δ (ppm) = 14.3, 14.4, 19.3, 19.4, 21.8, 24.9, 25.1 30.6, 32.2, 32.3, 32.8, 55.3, 65.8, 74.7, 74.8, 74.9, 122.3, 123.1, 123.4, 128.1, 128.2, 128.3, 128.6, 128.7, 134.3,134.6, 134.7, 135.4, 135.5, 135.6, 153.5, 156.2, 156.8, 174.9. HR-ESI-MS (C₅₃H₇₃N₃O₄S): m/z calcd for [M + H]⁺ = 847.5322, found = 847.5320.

Compound **3**. White solid; 55% yield; mp: 142-144 °C; $[\alpha]_D^{20}$ -36.5° (C = 1.0, in CHCl₃); ¹H NMR (300 MHz, DMSO- d_6) δ (ppm) = 0.95-1.40 (m, 28H, C H_3 + C H_2 CH₂CH₂C H_2 C), 1.48-1.97 (m, 18H, C H_2 + C H_3 N(CH₃), 2.22 (s, 12H, N(C H_3)), 3.12 (d, 4H, J = 12.6 Hz, ArC H_2 Ar), 3.70-3.97 (m, 10H, C H_3 NH + ArOC H_3), 4.32 (d, 4H, J = 13.5 Hz, ArC H_2 Ar), 6.36 (s 5H, Ar H_3), 7.00-7.23 (m, 5H, Ar H_3), 9.32 (s, 2H, N H_3). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 14.0, 14.1, 19.2, 19.5, 22.0, 24.6, 25.1, 29.7, 31.0, 31.1, 32.1, 32.4, 32.8, 40.2, 55.9, 66.7, 74.9, 75.0, 77.2, 122.3, 124.1, 128.8, 128.9, 135.1, 135.2, 135.8, 153.9, 157.3, 179.8. HR-ESI-MS (C₆₂H₉₀N₆O₄S₂): m/z calcd for [M + H]⁺ = 1046.6465, found = 1046.6459.

2.4 Synthesis of catalyst 4

To a solution of 4-butoxyaniline (1.0 mmol) in 20 mL DCM, was added NaOH (4.5 mmol) and the resulting mixture was stirred at room temperature for 15 min. Next, phenyl chlorothionocarbonate was added slowly over 5 min. After the reaction was complete, the reaction mixture washed with 10% HCl (2 × 20 mL) and deionized water (2 \times 20 mL). The aqueous layer was extracted with DCM (3 \times 20 mL), the combined organic phase was dried over MgSO4 and concentrated to give the crude product, which was purified by flash chromatography on silica gel (eluent with ethyl acetate/hexane 1:100) to afford 1-butoxy-4-isothiocyanatobenzene. 1-butoxy-4-isothiocyanatobenzene (0.5 mmol) was added to a solution of chiral (1R,2R)-N,N'-dimethylcyclohexane-1,2-diamine (1.0 mmol) in DCM (15 mL). The reaction mixture was stirred for 0.5 h at room temperature. After removal of the solvent, the crude product was purified by flash chromatography on silica gel (eluent with CH₃OH/CH₂Cl₂ 1:20) to afford catalyst 4.

Compound **4**. Yellow solid; 82% yield; $[\alpha]_D^{20}$ -27.6° (C = 1.0, in CHCl₃); ¹H NMR (300 MHz, DMSO- d_6): δ (ppm) = 0.93 (t, J = 7.5 Hz, 3H, CH₃), 1.04-1.24 (m, 4H, CH₂CH₂CH₂CH₂), 1.37-1.49 (m, 2H, CH₂), 1.55-1.78 (m, 5H, CH₂ + CH₂CH₂CH₂CH₂), 2.21-2.31 (m, 7H, N(CH₃)₂ + CH₂CH₂CH₂CH₂CH₂), 2.42-2.50 (m, 1H, CHN(CH₃)₂), 3.91-4.05 (m, 3H, ArOCH₂ + CHNH), 6.85-6.89 (m, 2H, ArH), 7.21 (d, 1H, J = 6.9 Hz, NH), 7.26-7.29 (m, 2H, ArH), 9.35 (s, 1H, NH). ¹³C NMR (75 MHz, DMSO- d_6): δ (ppm) = 14.2, 19.2, 22.0, 25.0, 25.2, 31.3, 31.7, 32.7, 40.2, 55.3, 65.7, 67.7, 114.8, 125.4, 132.3, 156.0, 179.8. HR-ESI-MS (C₁₉H₃₁N₃OS): m/z calcd for [M + H]⁺ = 349.2188, found = 349.2193.

3. Synthesis of substrates and characterization data

General procedure: To a stirred solution of the nitroalkene (0.5 mmol) and catalyst 2 (0.025 mmol, 5 mol %) in the mixed solvent of toluene (0.32 mL) and water (0.16 mL) was added acetylacetone (1 mmol). After the reaction was completed (monitored by TLC), the resulting mixture was concentrated and the residue was purified by flash

chromatography on silica gel (eluent with ethyl acetate/hexane 1:5 to 1:2) to afford the product. All products had NMR spectra in agreement with published data.

Compound **9a** [3]: (*R*)-3-(2-Nitro-1-phenylethyl)-pentane-2,4-dione

White solid; yield 99%; 94% *ee* determined by HPLC analysis (Daicel Chiralpak AS-H column, hexane/2-propanol = 85/15, flow rate: 1.0 mL/min, wavelength = 210 nm: t_R (minor) = 16.1 min, t_R (major) = 25.3 min). ¹H NMR (300 MHz, CDCl₃) δ (ppm) = 7.35-7.27 (m, 3H, C*H*), 7.20-7.17 (m, 2H, C*H*), 4.67-4.60 (m, 2H, C*H*₂), 4.37 (d, J = 10.8 Hz, 1H, C*H*), 4.28-4.20 (m, 1H, C*H*), 2.28 (s, 3H, C*H*₃), 1.94 (s, 3H, C*H*₃). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 29.7, 30.5, 42.8, 70.6, 78.2, 128.0, 128.5, 129.3, 136.0, 201.1, 201.8.

$$H_3C$$

Compound **9b** [3]: (*R*)-3-(2-Nitro-1-(*p*-tolyl)ethyl)pentane-2,4-dione

White solid; yield 96%; 72% *ee* determined by HPLC analysis (Daicel Chiralpak AD-H column, hexane/2-propanol = 90/10, flow rate: 1.0 mL/min, wavelength = 210 nm: t_R (minor) = 10.9 min, t_R (major) = 17.3 min). ¹H NMR (300 MHz, CDCl₃): 7.14-7.05 (m, 4H, C*H*), 4.66-4.57 (m, 2H, C*H*₂), 4.36 (d, J = 10.8 Hz, 1H, C*H*), 4.24-4.14 (m, 1H, C*H*), 2.29 (s, 6H, C*H*₃), 1.94 (s, 3H, C*H*₃) ppm. ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 201.9, 201.2, 138.4, 132.8, 130.0, 127.8, 78.4, 70.8, 42.5, 30.5, 29.5, 21.1.

$$\begin{array}{c|c} & \circ & \circ \\ & & NO_2 \\ \\ H_3CO & \end{array}$$

Compound **9c** [3]: (*R*)-3-[1-(4-Methoxyphenyl)-2-nitroethyl]pentane-2,4-dione White solid; yield 97%; 46% *ee* determined by HPLC analysis (Daicel Chiralpak AD-H column, hexane/2-propanol = 90/10, flow rate: 1.0 mL/min, wavelength = 210 nm: t_R (minor) = 14.6 min, t_R (major) = 22.1 min). ¹H NMR (300 MHz, CDCl₃): 7.10 (d, J = 8.7 Hz, 2H, CH), 6.85 (d, J = 8.7 Hz, 2H, CH), 4.60-4.58 (m, 2H, CH₂), 4.33 (d, J = 11.1 Hz, 1H, CH), 4.23-4.15 (m, 1H, CH), 3.78 (s, 3H, OCH₃), 2.29 (s, 3H, CH₃), 1.94 (s, 3H, CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 201.9, 201.2, 159.5, 129.1, 127.6, 114.7, 77.4, 71.0, 55.2, 42.1, 30.4, 29.4.

$$NO_2$$

Compound **9d** [3]: (*R*)-3-[1-(3-Methoxyphenyl)-2-nitroethyl]pentane-2,4-dione White solid; yield 99%; 63% *ee* determined by HPLC analysis (Daicel Chiralpak AD-H column, hexane/2-propanol =85/15, flow rate: 1.0 mL/min, wavelength = 210 nm: t_R (minor) = 9.6 min, t_R (major) = 12.3 min). ¹H NMR (300 MHz, CDCl₃): 7.23 (d, J = 8.1 Hz, 1H, CH), 6.83-6.71 (m, 3H, CH), 4.64-4.61 (m, 2H, CH₂), 4.37 (d, J = 10.8 Hz, 1H, CH), 4.25-4.20 (m, 1H, CH) 3.78 (s, 3H, OCH₃), 2.30 (s, 3H, CH₃), 1.97 (s, 3H, CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 201.8, 201.0, 160.1, 137.6, 130.4, 119.9, 114.2, 113.6, 78.2, 70.6, 55.3, 42.8, 30.5, 29.6.

$$F_3C$$

Compound **9e**[4]: (*R*)-3-[1-(4-Trifluoromethylphenyl)-2-nitroethyl]pentane-2,4-dione Colorless oil; yield 99%; 76% *ee* determined by HPLC analysis (Daicel Chiralpak AD-H column, hexane/2-propanol = 90/10, flow rate: 1.0 mL/min, wavelength = 210 nm: t_R (minor) = 9.1 min, t_R (major) = 49.9 min). ¹H NMR (300 MHz, CDCl₃): 7.61 (d, J = 8.1 Hz, 2H, CH), 7.34 (d, J = 8.1 Hz, 2H, CH), 4.72-4.61 (m, 2H, CH₂), 4.41-4.29 (m, 1H, CH), 2.32 (s, 3H, CH₃), 2.00 (s, 3H, CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 201.2, 200.4, 140.3, 131.0, 130.6, 128.5, 126.3, 77.7, 70.3, 42.4, 30.5, 29.8.

Compound **9f** [5]: (*R*)-3-[1-(4-Bromophenyl)-2-nitroethyl]pentane-2,4-dione

White solid; yield 93%; 64% *ee* determined by HPLC analysis (Daicel Chiralpak AD-H column, hexane/2-propanol = 85/15, flow rate: 0.7 mL/min, wavelength = 210 nm: $t_{\rm R}$ (minor) = 17.5 min, $t_{\rm R}$ (major) = 54.3 min). ¹H NMR (300 MHz, CDCl₃): 7.47 (d, J = 8.4 Hz, 2H, CH), 7.08 (d, J = 8.4 Hz, 2H, CH), 4.67-4.60 (m, 2H, CH₂), 4.33 (d, J = 10.8 Hz, 1H, CH), 4.26-4.18 (m, 1H, CH), 2.30 (s, 3H, CH₃), 1.98 (s, 3H, CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 201.4, 200.6, 135.1, 132.5, 129.7, 122.7, 77.9, 70.4, 42.2, 30.5, 29.7.

Compound **9g** [5]: (*R*)-3-[1-(2-Bromophenyl)-2-nitroethyl]pentane-2,4-dione

Orange solid; yield 95%; 70% *ee* determined by HPLC analysis (Daicel Chiralpak AD-H column, hexane/2-propanol = 98/2, flow rate: 0.7 mL/min, wavelength = 210 nm: t_R (minor) = 43.7 min, t_R (major) = 46.2 min). ¹H NMR (300 MHz, CDCl₃): 7.63 (d, J = 7.8 Hz, 1H, CH), 7.31-7.26 (m, 1H, CH), 7.20-7.13 (m, 2H, CH), 4.87-4.81 (m, 1H, CH), 4.78-4.65 (m, 2H, CH₂), 4.60 (d, J = 9.3 Hz, 1H, CH), 2.28 (s, 3H, CH₃), 2.05 (s, 3H, CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 202.0, 200.9, 135.1, 134.0, 130.0, 128.3, 77.5, 69.1, 41.1, 31.0, 28.5.

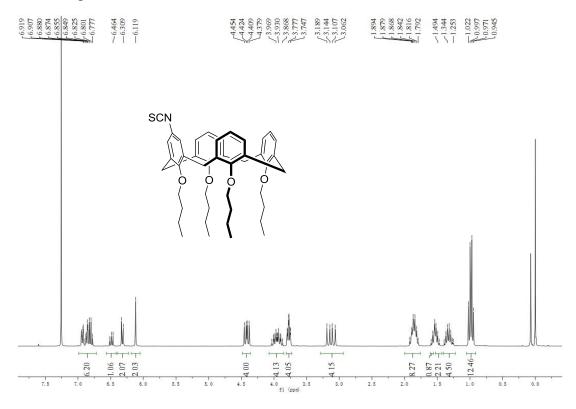
Compound **9h** [5]: (*R*)-3-[1-(4-Fluorophenyl)-2-nitroethyl]pentane-2,4-dione

Colorless oil; yield 90%; 68% *ee* determined by HPLC analysis (Daicel Chiralpak AD-H column, hexane/2-propanol = 90/10, flow rate: 0.7 mL/min, wavelength = 210 nm: t_R (minor) = 13.8 min, t_R (major) = 26.5 min). ¹H NMR (300 MHz, CDCl₃): 7.20-7.15 (m, 2H, C*H*), 7.06-6.99 (m, 2H, C*H*), 4.62-4.60 (m, 2H, C*H*₂), 4.36-4.20 (m, 2H, C*H*), 2.28 (s, 3H, C*H*₃), 1.96 (s, 3H, C*H*₃) ppm. ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 201.5, 200.8, 164.2, 160.9, 131.8, 130.0, 129.5, 116.5, 116.3, 78.2, 70.7, 42.0, 30.5, 29.6.

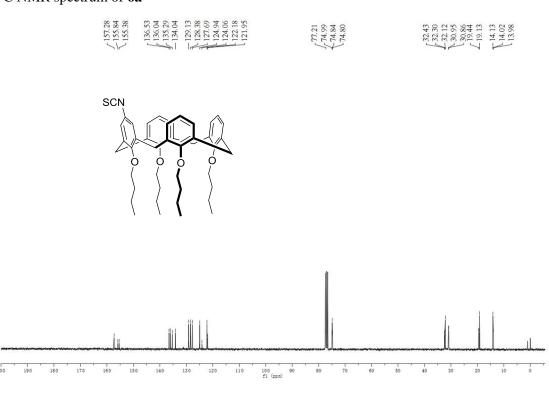
Compound **9i** [3]: (*R*)-3-[1-(2-Fluorophenyl)-2-nitroethyl]pentane-2,4-dione Colorless oil; yield 91%; 59% *ee* determined by HPLC analysis (Daicel Chiralpak

AD-H column, hexane/2-propanol = 90/10, flow rate: 1.0 mL/min, wavelength = 210 nm: $t_R(\text{minor}) = 10.5 \text{ min}$, $t_R(\text{major}) = 12.0 \text{ min}$). ¹H NMR (300 MHz, CDCl₃): 7.33-7.26 (m, 1H, CH), 7.21-7.04 (m, 3H, CH), 4.80-4.61 (m, 2H, CH₂), 4.53-4.43 (m, 2H, CH), 2.29 (s, 3H, CH₃), 2.02 (s, 3H, CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 201.9, 200.9, 133.8, 133.5, 130.7, 129.7, 129.0, 127.7, 77.5, 68.9, 38.9, 30.9, 28.6.

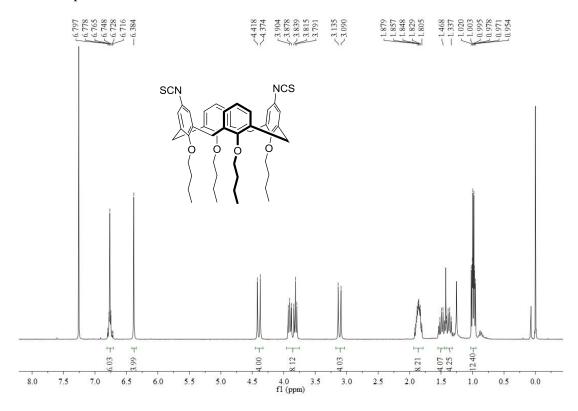
Compound **9j** [5]: (*R*)-3-[1-(4-Chlorophenyl)-2-nitroethyl]pentane-2,4-dione

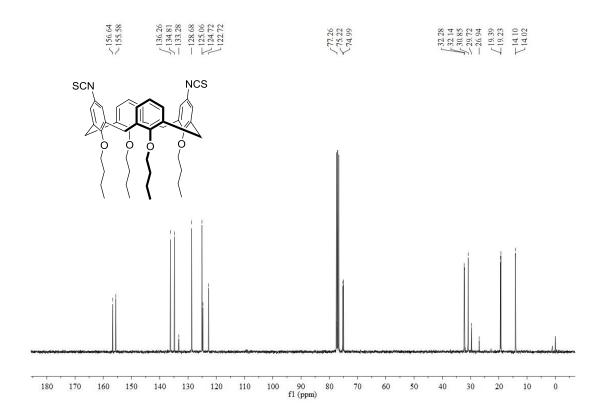

White solid; yield 92%; 70% *ee* determined by HPLC analysis (Daicel Chiralpak AD-H column, hexane/2-propanol =85/15, flow rate: 0.7 mL/min, wavelength = 210 nm: t_R (minor) = 16.4 min, t_R (major) = 42.0 min). ¹H NMR (300 MHz, CDCl₃): 7.31 (d, J = 8.4 Hz, 2H, CH), 7.14 (d, J = 8.4 Hz, 2H, CH), 4.63-4.60 (m, 2H, CH₂), 4.34 (d, J = 10.5 Hz, 1H, CH), 4.27-4.19 (m, 1H, CH), 2.30 (s, 3H, CH₃), 1.98 (s, 3H, CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 201.4, 200.6, 134.6, 129.6, 129.3, 77.9, 70.5, 42.1, 30.5, 29.7.

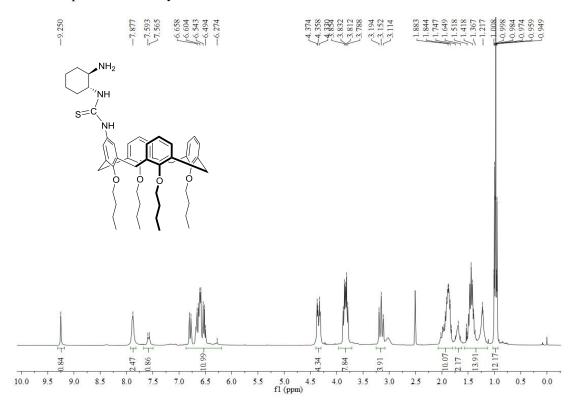
Compound **9k** [5]: (*R*)-3-[1-(2-Chlorophenyl)-2-nitroethyl]pentane-2,4-dione

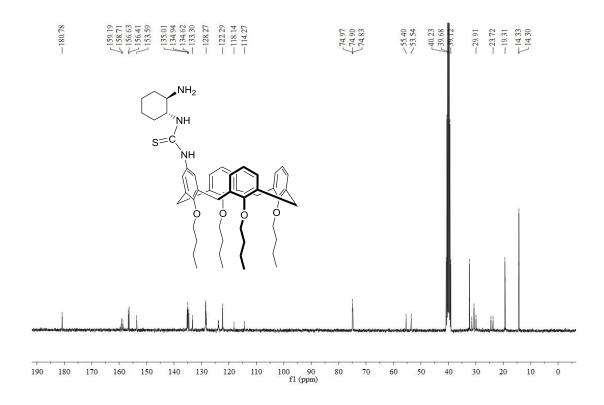

White solid; yield 90%; 72% *ee* determined by HPLC analysis (Daicel Chiralpak AD-H column, hexane/2-propanol =98/2, flow rate: 0.7 mL/min, wavelength = 210 nm: t_R (minor) = 30.3 min, t_R (major) = 32.8 min). ¹H NMR (300 MHz, CDCl₃): 7.45-7.40 (m, 1H, C*H*), 7.26-7.21 (m, 2H, C*H*), 7.19-7.15 (m, 1H, C*H*), 4.87-4.58 (m, 4H, C*H*+ C*H*₂), 2.28 (s, 3H, C*H*₃), 2.04 (s, 3H, C*H*₃) ppm. ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 201.9, 200.9, 133.8, 133.5, 130.7, 129.7, 129.0, 127.7, 77.5, 68.9, 38.9, 30.9, 28.6.

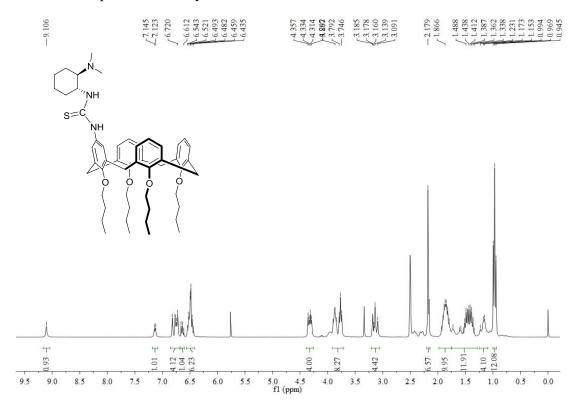
4. NMR spectra for catalysts and intermediates

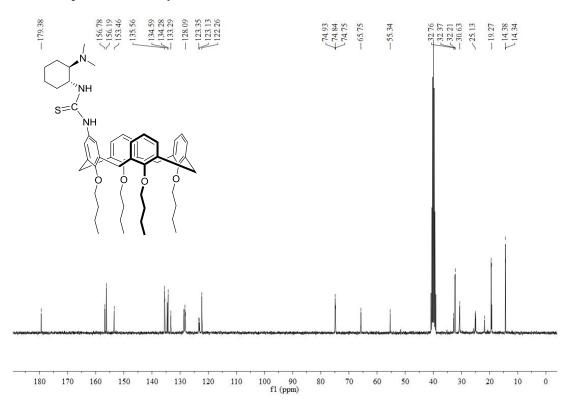

¹H NMR spectrum of **6a**

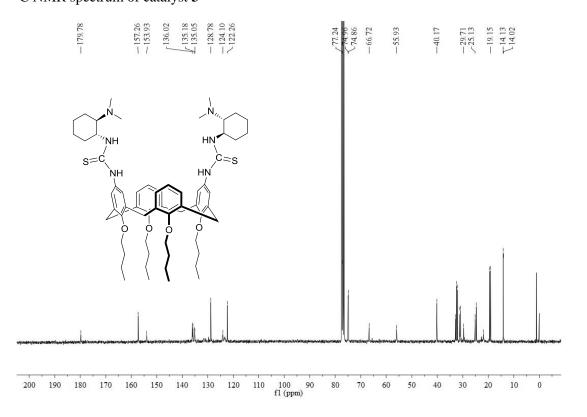

¹³C NMR spectrum of **6a**

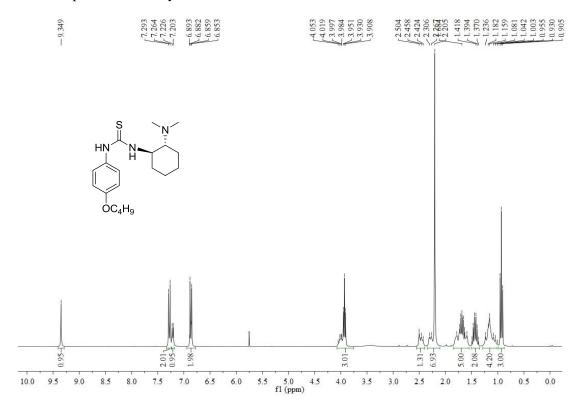


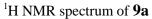

¹H NMR spectrum of **6b**

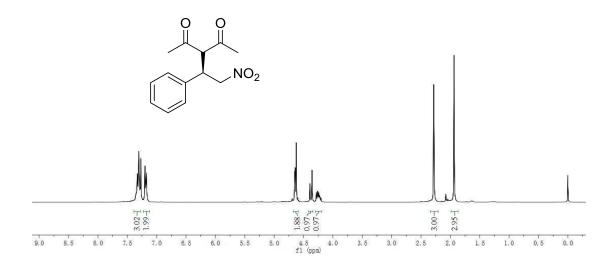



¹³C NMR spectrum of **6b**

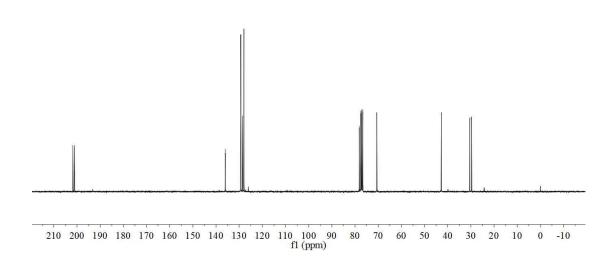


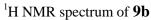


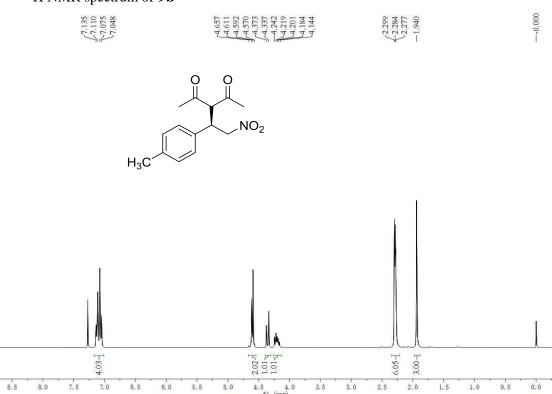




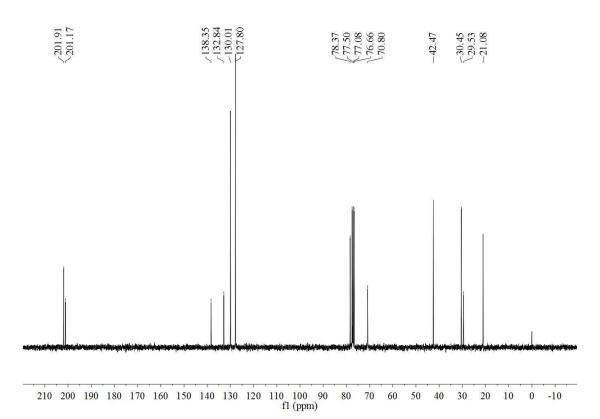
5. NMR spectra for products

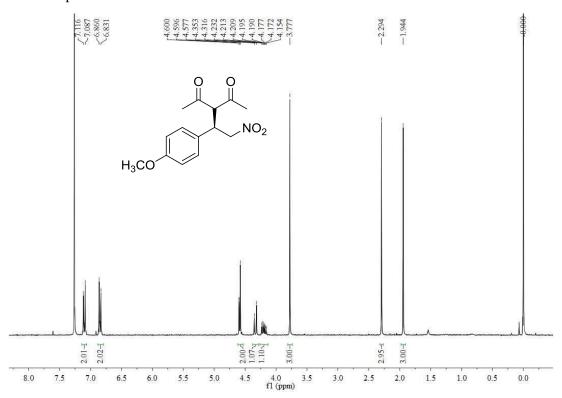

¹³C NMR spectrum of **9a**

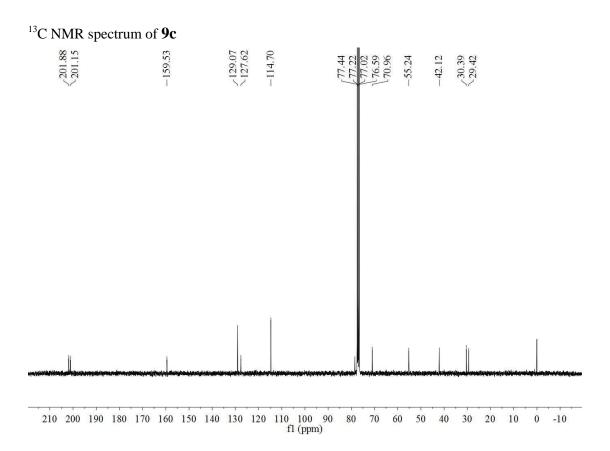

201.77


/136.01 /129.32 /128.53 /127.95

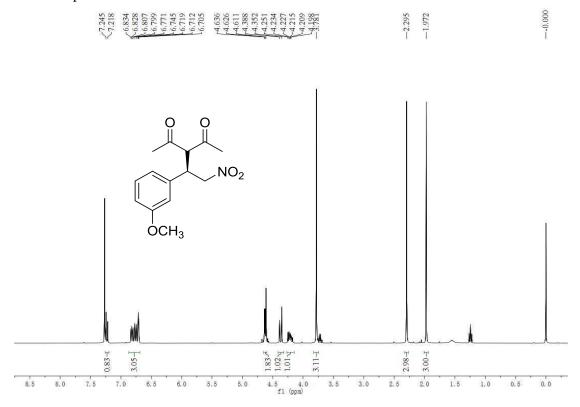
78.16


30.47

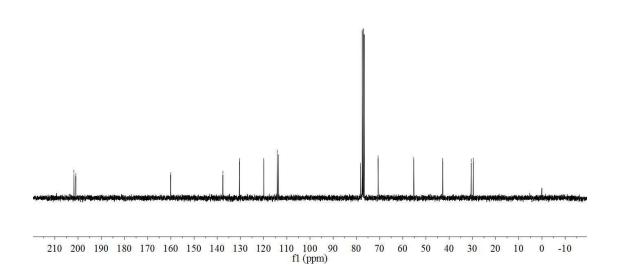




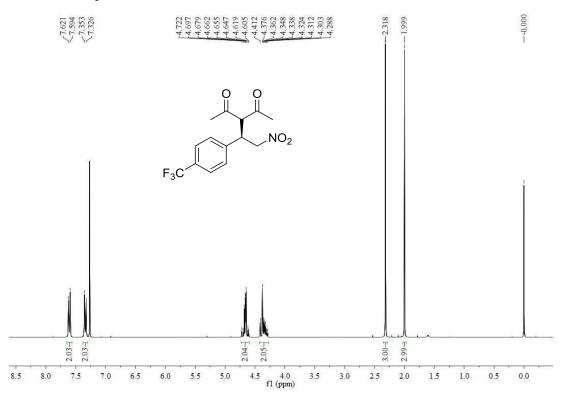
¹³C NMR spectrum of **9b**



¹H NMR spectrum of **9c**



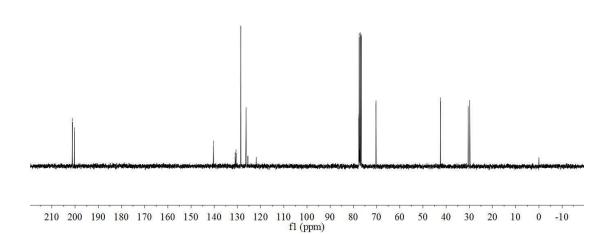
¹H NMR spectrum of **9d**

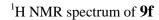


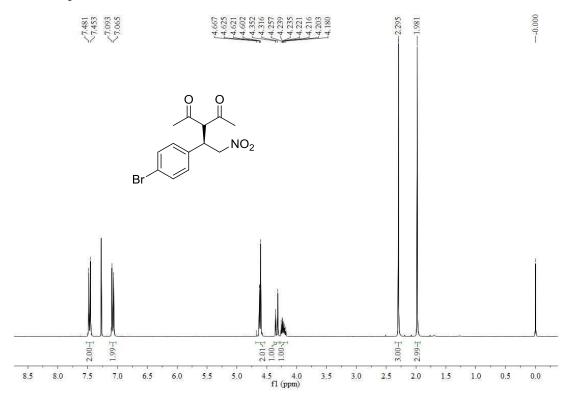
13 C NMR spectrum of $\bf 9d$

201.79	80.091	137.56 130.42 119.91 114.15	78.16 77.47 77.04 76.62 70.64	Physics 1,000 (100)
	1	1 1 552	ا سرنا ا	1 3

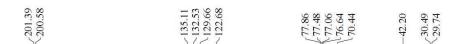
¹H NMR spectrum of **9e**

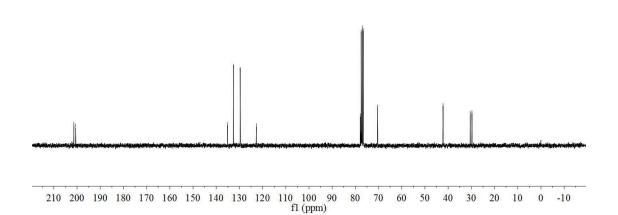

13 C NMR spectrum of $\mathbf{9e}$

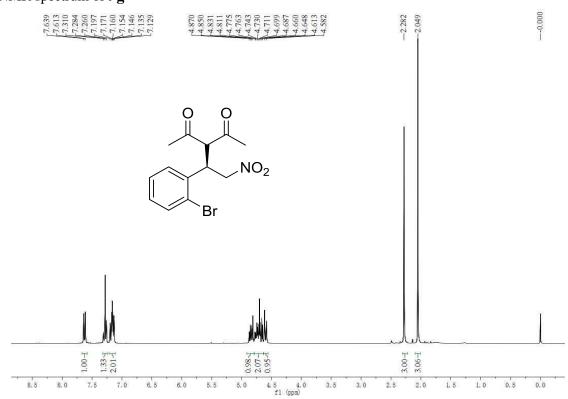

201.19


140.31 131.01 130.57 -128.51 126.27

77.05

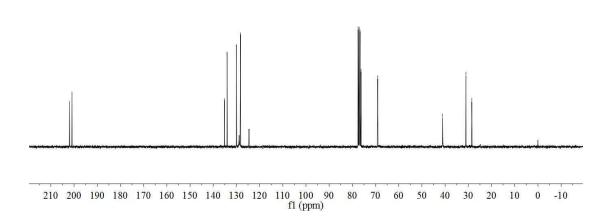

-42.42 30.51 29.82

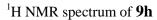


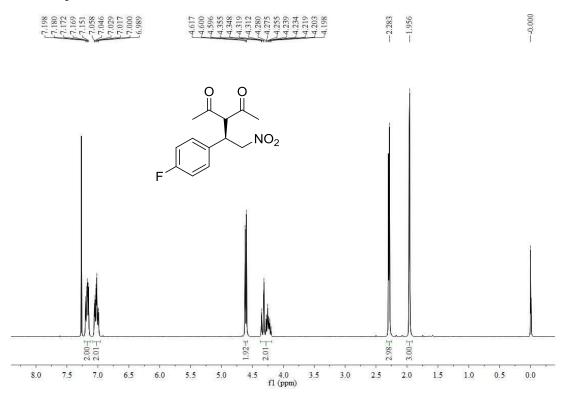


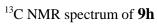
 13 C NMR spectrum of $\bf 9f$

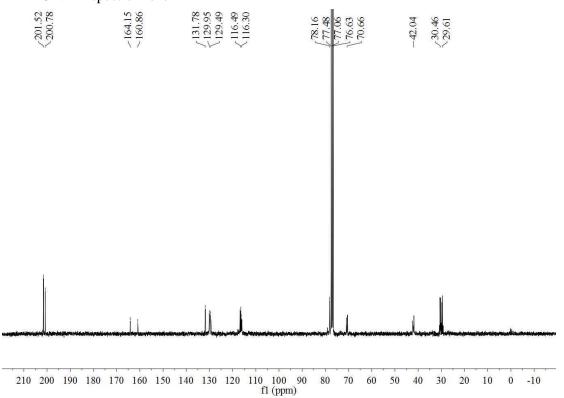
¹H NMR spectrum of **9g**

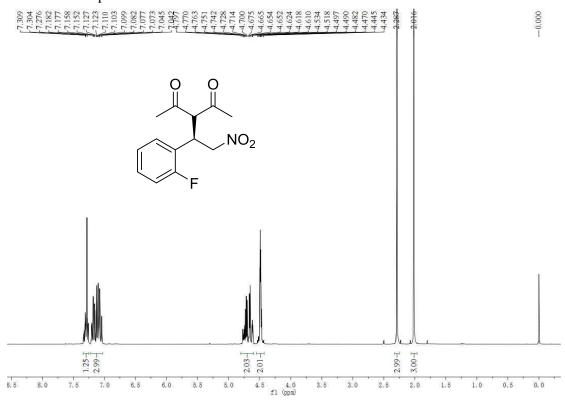


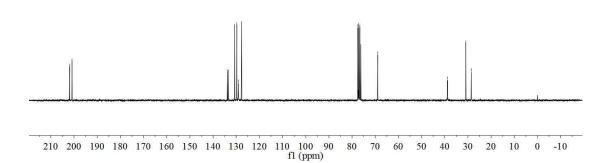

¹³C NMR spectrum of **9g**

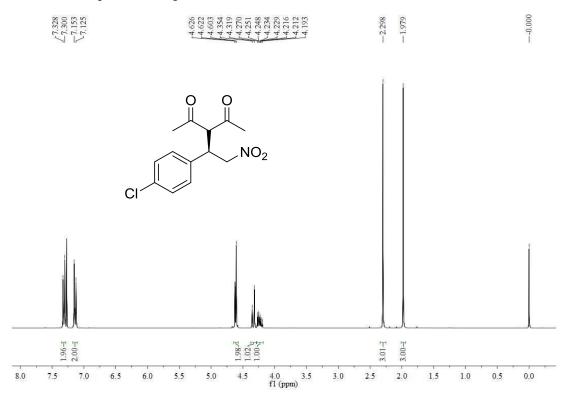

201.97


 $\begin{array}{c}
135.11 \\
134.03 \\
129.98 \\
128.28
\end{array}$

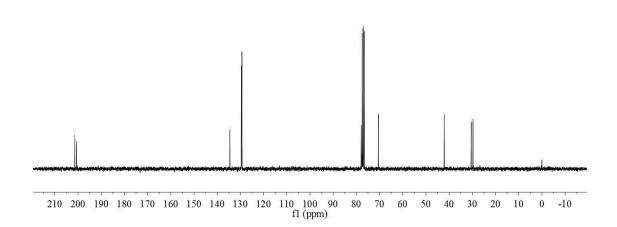

77.51



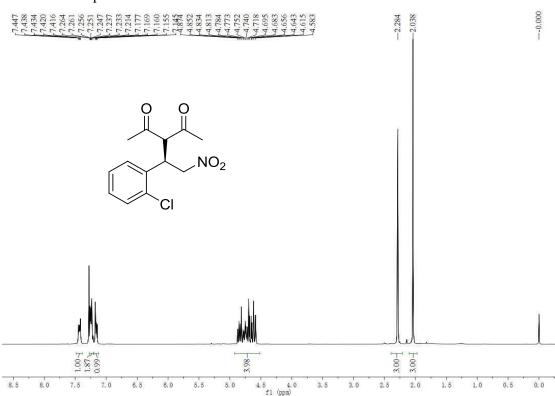




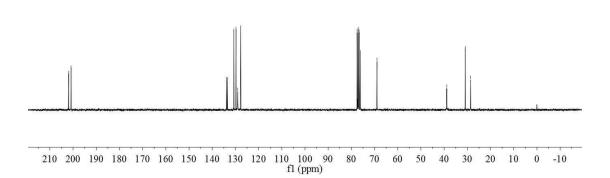
¹³C NMR spectrum of **9i**

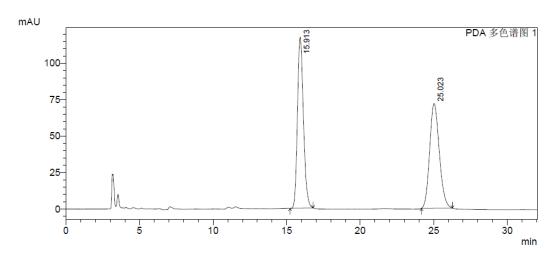


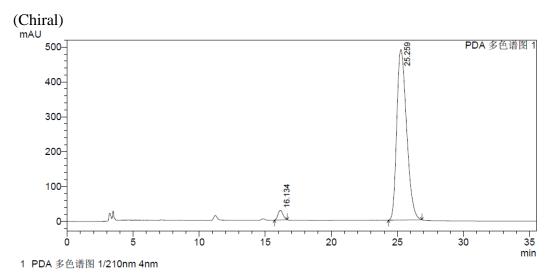
¹H NMR spectrum of **9j**

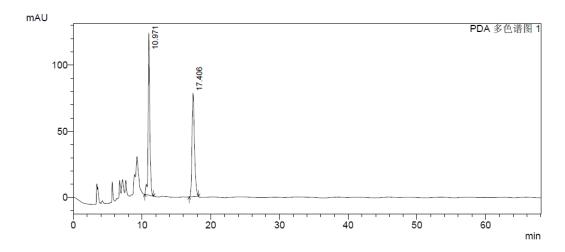


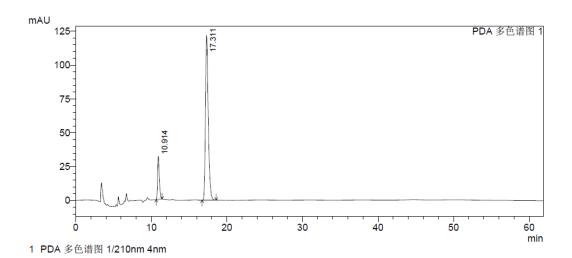
¹³C NMR spectrum of **9j**

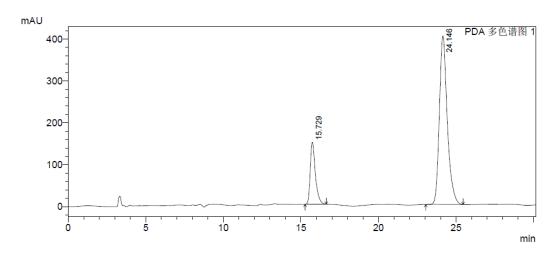

¹³C NMR spectrum of **9k**

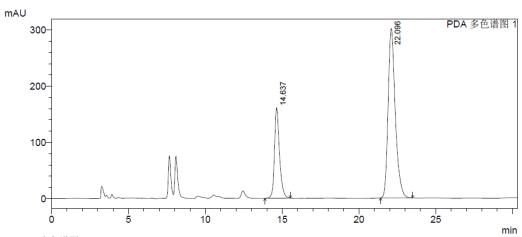





6. HPLC chromatograms

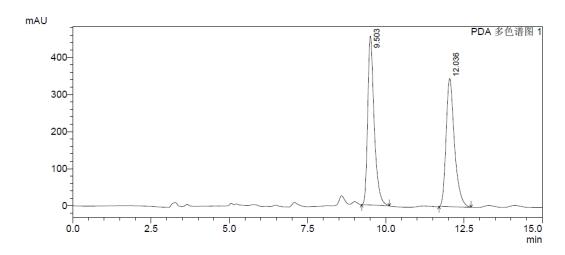

(Racemic)


			峰 表		
PDA Ch1	210nm 4nm				
峰#	保留时间	面积	高度	面积%	高度 %
1	16. 134	728965	27922	2. 803	5. 401
2	25. 259	25282071	489071	97. 197	94. 599
总计		26011036	516993	100, 000	100,000

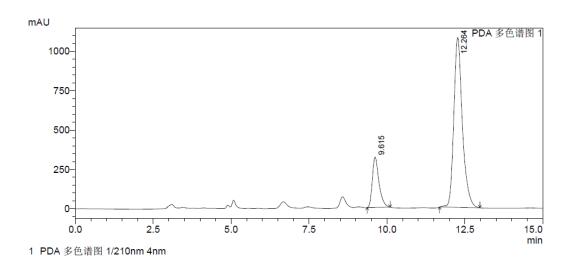


峰表

PDA CHI	210nm 4nm				
峰#	保留时间	面积	高度	面积%	高度 %
1	10. 914	500672	31766	13. 878	20. 716
2	17. 311	3107098	121578	86. 122	79. 284
总计		3607770	153344	100.000	100.000

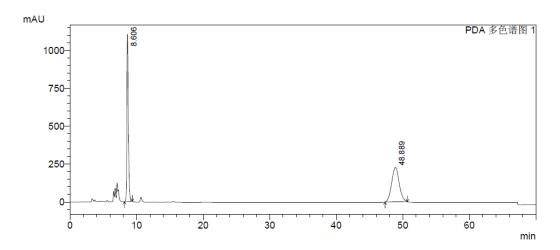


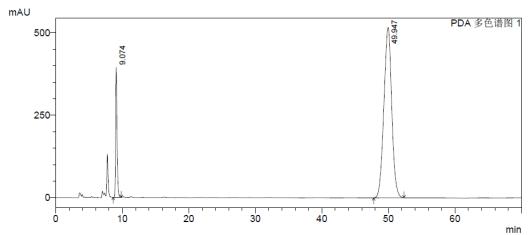
(Chiral)



1 PDA 多色谱图 1/210nm 4nm

			峰表		
PDA Ch1	210nm 4nm				
峰#	保留时间	面积	高度	面积%	高度 %
1	14. 637	3639831	161120	27. 125	34. 815
2	22. 096	9779132	301673	72. 875	65. 185
总计		13418963	462793	100, 000	100, 000

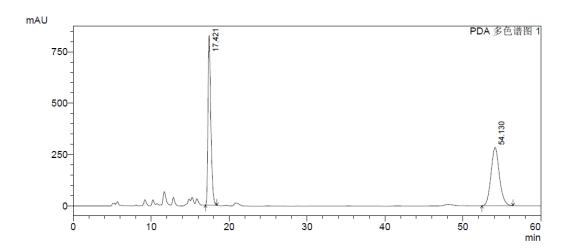

(Chiral)

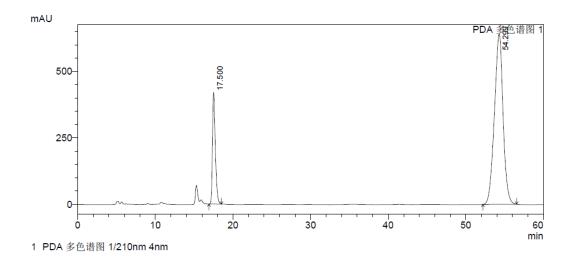


峰表

PDA Ch1	210nm 4nm				
峰#	保留时间	面积	高度	面积 %	高度 %
1	9. 615	4735510	320163	18. 679	22. 867
2	12. 264	20616832	1079926	81. 321	77. 133
总计		25352342	1400089	100, 000	100, 000

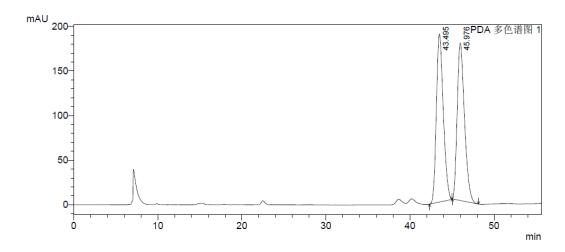
$$F_3C$$
 $9e$

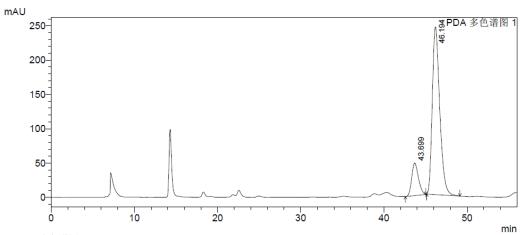



1 PDA 多色谱图 1/210nm 4nm

峰表

			"+1X		
PDA Ch	1 210nm 4nm				
峰#	保留时间	面积	高度	面积%	高度 %
	9.074	5809439	395093	12.060	43. 290
	2 49. 947	42360578	517567	87. 940	56. 710
总	计	48170016	912659	100.000	100.000


(Chiral)



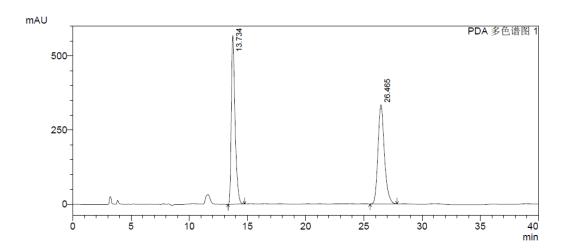
峰表

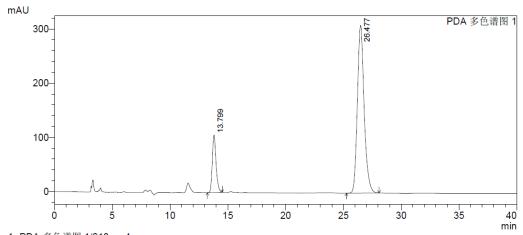
.

PΙ	DA Ch1	210nm 4nm				
	峰#	保留时间	面积	高度	面积%	高度 %
	1	17. 500	10770979	420431	17. 834	39. 571
	2	54. 299	49624893	642041	82. 166	60. 429
	总计		60395872	1062472	100.000	100.000

1 PDA 多色谱图 1/210nm 4nm

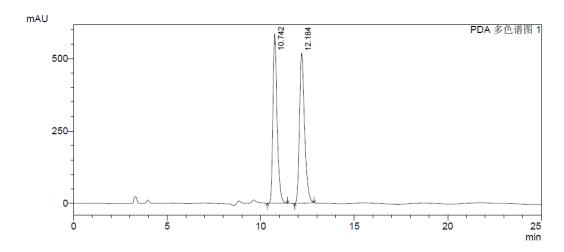
 峰表

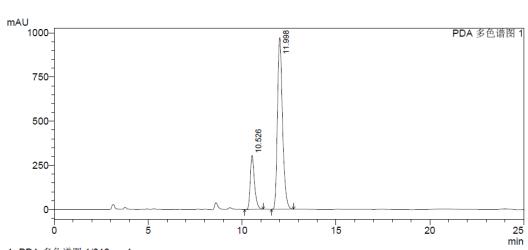

 PDA Ch1 210nm 4nm


 峰# 保留时间
 面积
 高度
 面积 %
 高度 %

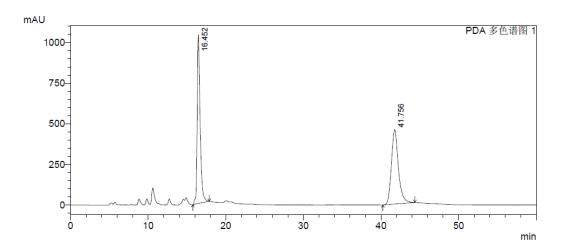
 1 43.699
 2648025
 47438
 14.857
 16.254

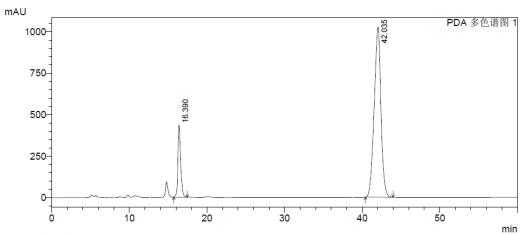
 2 46.194
 15174997
 244416
 85.143
 83.746


 总计
 17823023
 291854
 100.000
 100.000

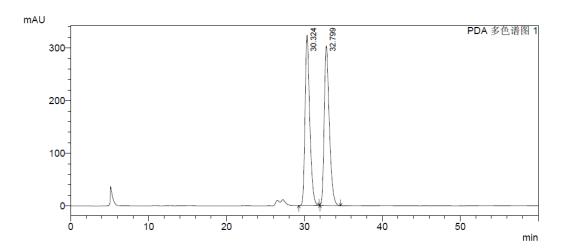


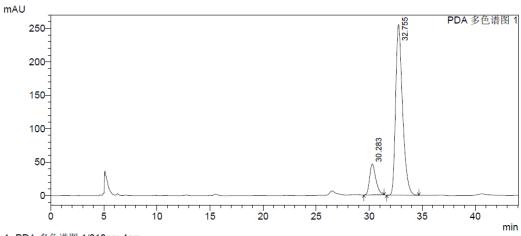
1 PDA 多色谱图 1/210nm 4nm


			1 个		
PDA Ch1	210nm 4nm				
峰#	保留时间	面积	高度	面积%	高度 %
1	13. 799	2401325	106232	15. 999	25. 537
2	26. 477	12608096	309763	84. 001	74. 463
总计		15009422	415995	100.000	100.000



1 PDA 多色谱图 1/210nm 4nm


			峰表		
PDA Ch1	210nm 4nm				
峰#	保留时间	面积	高度	面积%	高度 %
1	10. 526	4765876	305868	20. 650	23. 933
2	11. 998	18313815	972140	79. 350	76. 067
总计		23079691	1278008	100 000	100 000



1 PDA 多色谱图 1/210nm 4nm

				峰表		
F	DA Ch1	210nm 4nm				
	峰#	保留时间	面积	高度	面积 %	高度 %
	1	16. 390	10772952	435053	14. 824	29. 753
	2	42. 035	61899906	1027173	85. 176	70. 247
	总计		72672858	1462226	100.000	100.000

1 PDA 多色谱图 1/210nm 4nm

			峰表		
PDA Ch1	210nm 4nm				
峰#	保留时间	面积	高度	面积%	高度 %
1	30. 283	1879169	46314	13. 942	15. 340
2	32. 755	11599093	255600	86. 058	84. 660
总计		13478262	301914	100.000	100.000

7. References

- 1. Amarasinghe, N. R.; Turner, P.; Todd, M. H. Adv. Synth. Catal. **2012**, 354, 2954-2958.
- 2. Li, Z. Y.; Ma, J. J.; Chen, J. W.; Pan, Y.; Jiang, J. L.; Wang, L. Y. *Chinese J. Chem.* **2009**, *27*, 2031-2036.
- 3. Durmaz, M.; Tataroglu, A.; Yilmaz, H.; Sirit, A. *Tetrahedron-Asymmetr* **2016**, 27, 148-156.
- 4. Dong, Z.; Qiu, G. F.; Zhou, H. B.; Dong, C. N. Tetrahedron-Asymmetr 2012, 23, 1550-1556.
- 5. Ren, X.; He, C.; Feng, Y.; Chai, Y.; Yao, W.; Chen, W.; Zhang, S. *Org. Biomol. Chem.* **2015**, *13*, 5054-5060.