Supporting Information

for

Cobalt-catalyzed nu	ucleophilic addition of	f the allylic C(sp ³)—	H bond of simple a	lkenes
to ketones				

Tsuyoshi Mita*, Masashi Uchiyama, Kenichi Michigami and Yoshihiro Sato*

Address: Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan

Email: Tsuyoshi Mita: tmita@pharm.hokudai.ac.jp; Yoshihiro Sato: biyo@pharm.hokudai.ac.jp

*Corresponding author

Experimental details and characterization data

Table of Contents

(A)	General		S3
(B)	Materi	als and methods	S3
	(B-1)	Availability of ketones	S3
	(B-2)	Preparation of alkenes	S3
(C)	Genera	al procedure for allylic C(sp ³)–H addition to ketones	S4
	(C-1)	Examination of ketone electrophiles	S4
	(C-2)	Examination of alkenes	S7
(D)	Copies	s of ¹ H NMR and ¹³ C NMR spectra	S9

(A) General

All manipulations were carried out under an atmosphere of argon or nitrogen unless otherwise noted. Infrared (IR) spectra were recorded on a JASCO FT/IR 460 Plus Fourier transform infrared spectrophotometer. NMR spectra were recorded on a JEOL ECA-500 spectrometer, operating at 500 MHz (1 H) or 125 MHz (13 C). Chemical shifts in CDCl₃ were reported in the scale relative to CHCl₃ (7.26 ppm) for 1 H NMR, and to CDCl₃ (77.0 ppm) for 13 C NMR as internal references, respectively. NMR data are reported as follows: chemical shifts, multiplicity (s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, br: broad signal), coupling constant (Hz), and integration. EI-HRMS and ESI-HRMS spectra were measured on a JEOL JMS-T100GCv and Thermo Scientific Exactive, respectively. Gel permeation chromatography was performed on HPLC LC-9201 (Japan Analytical Industry Co., Ltd). Column chromatography was performed with Wakogel[®] FC-40 (20–40 μm, spherical, neutral). DMA was distilled from CaH₂. AlMe₃ (2.0 M in toluene) was purchased from Sigma-Aldrich Co. LLC. Co(acac)₂ and Xantphos were purchased from Tokyo Kasei, Co., Ltd.

(B) Materials and methods

(B-1) Availability of ketones

Acetophenone (2a) was purchased Nacalai Tesque. Inc. 4'-Methylacetophenone (2b) was purchased from Wako Pure Chemical Industries, Ltd. 4'-Methoxyacetophenone (2c) and 2-naphtophenone (2f) were purchased from Tokyo Kasei, Co., Ltd. 4'-Fluoroacetophenone (2d) was purchased from Sigma-Aldrich Co. LLC. Methyl 4-acetylbenzoate (2e) was purchased from Acros Organics Inc. Propiophenone (2g) was purchased from Kanto Chemical Co., Inc. All ketones except 2e and 2f were purified by distillation before use. 2e and 2f were used as received.

(B-2) Preparation of alkenes

1-Undecene (**1a**) and 1-octadecene (**1b**) were purchased from Tokyo Kasei, Co., Ltd and used after distillation. 6-Phenyl-1-hexene (**1c**) was prepared according to the reported procedure.¹

_

Krishna, P. R.; Srinivas, R. Tetrahedron Lett. 2007, 48, 2013.

(C) General procedure for allylic C(sp³)–H addition to ketones

(C-1) Examination of ketone electrophiles

^aWith 1 mmol of 2a.

To an oven-dried test tube was placed Co(acac) $_2$ (5.2 mg, 20 µmol, 10 mol %) and Xantphos (23.1 mg, 40 µmol, 20 mol %) in DMA (2 mL). The resulting mixture was stirred at room temperature until the materials had been completely dissolved. After the solution had been cooled to 0 °C, it was stirred for 1 minute, and then AlMe $_3$ (2 M in toluene, 0.15 mL, 0.3 mmol, 1.5 equiv) was added. The dark green solution was stirred for another 1 minute, and then 1-undecene (1a, 0.6 mmol, 120 µL, 3.0 equiv) was added followed by the addition of ketone 2 (0.2 mmol, 1.0 equiv). The resulting mixture was stirred at 90 °C for 16 h. After cooling the mixture to 0 °C, the reaction was quenched by 1 M HCl aq and extracted with ethyl acetate (3 times). The combined organic layer was washed with brine and dried over Na $_2$ SO $_4$. After the solids had been filtered off, the solvent was removed under reduced pressure and the residue was dried under vacuum to afford the crude mixture. The approximate yield of 3ax was determined at this stage using 1,1,2,2-tetrachloroethane (δ = 6.1 ppm in CDCl $_3$, 2H) as an internal standard. If ketone 2 remained, NaBH $_4$ was added to convert it into the corresponding alcohol, which could be easily separated from 3ax by silica-gel column chromatography. It was then purified by silica-gel column chromatography to afford the product 3ax.

2-Phenyl-3-vinylundecan-2-ol (**3aa**): **1a** (120 μL, 0.6 mmol, 3.0 equiv) and **2a** (23 μL, 0.2 mmol, 1.0

equiv) were employed as starting materials. Purification of the crude product by silica-gel column chromatography (eluent: hexane/ethyl acetate, 20:1) afforded **3aa** as colorless oil (38.5 mg, 140
$$\mu$$
mol, 70%, dr = 1.3:1). Preparative scale synthesis: **1a** (600 μ L, 3 mmol, 3.0 equiv), **2a** (117 μ L, 1 mmol, 1.0 equiv), Co(acac)₂ (25.7 mg, 0.1 mmol, 10 mol %), Xantphos (115.7 mg, 0.2 mmol, 20 mol %), and AlMe₃ (2 M in toluene, 0.75 mL, 1.5

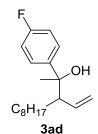
Xantphos (115.7 mg, 0.2 mmol, 20 mol %), and AlMe₃ (2 M in toluene, 0.75 mL, 1.5 mmol, 1.5 equiv) were used in DMA (10 mL). Purification of the crude product by silica-gel column chromatography (eluent: hexane/ethyl acetate, 20:1) afforded 3aa as colorless oil (215.1 mg, 0.784 mmol, 78%, dr = 1.3:1).

IR (neat): 3467, 2925, 2855, 1637, 1446, 1375, 1065, 913, 759, 701 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ: 7.44-7.21 (m, 5H), 5.63-5.52 (m, 1H), 5.21-5.01 (m, 2H), 2.30-2.23 (m, 1H), 1.53/1.51 (s, 3H), 1.26-1.06

(m, 14H), 0.85 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ : 147.2, 146.5, 138.9, 138.6, 127.84, 127.75, 126.6, 126.3, 125.9, 125.2, 118.8, 118.1, 76.0, 75.5, 56.6, 55.6, 31.8, 29.42, 29.41, 29.37, 29.2, 28.9, 28.6, 28.4, 27.8, 27.7, 25.4, 22.6, 14.1 ppm; HRMS (EI) m/z calcd. for $C_{19}H_{28}$ [M-H₂O]⁺: 256.2191, found: 256.2191.

2-(p-Tolyl)-3-vinylundecan-2-ol (3ab): 1a (120 μL, 0.6 mmol, 3.0 equiv) and **2b** (27 μL, 0.2 mmol, 1.0

OH C₈H₁₇ equiv) were employed as starting materials. Purification of the crude product by silica-gel column chromatography (eluent: hexane/ethyl acetate, 100:1 to 20:1) afforded **3ab** as colorless oil (44 mg, 153 μ mol, 76%, dr = 1.2:1). IR (neat): 3466, 2925, 2855, 1637, 1512, 1457, 1374, 1078, 912, 817 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 7.31/7.26 (d, J = 8.3 Hz, 2H), 7.14 (d, J = 8.3 Hz, 2H), 5.63-5.52 (m, 1H), 5.21-5.03 (m, 2H), 2.34 (s, 3H), 2.27-2.22 (m, 1H), 1.51/1.49 (s, 3H), 1.25-1.06 (m, 14H), 0.85 (t, J = 7.0 Hz, 3H) ppm;


3ab 2.27-2.22 (m, 1H), 1.51/1.49 (s, 3H), 1.25-1.06 (m, 14H), 0.85 (t, J = 7.0 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ: 144.2, 143.6, 139.1, 138.7, 136.1, 135.8, 128.54, 128.46, 125.8, 125.1, 118.7, 117.9, 75.8, 75.3, 56.6, 55.6, 31.8, 29.45, 29.43, 29.42, 29.39, 29.2, 28.9, 28.7, 28.5, 27.8, 27.7, 25.4, 22.6, 20.94, 20.91, 14.1 ppm; HRMS (EI) m/z calcd. for C₂₀H₃₀ [M-H₂O]⁺: 270.2348, found: 270.2349.

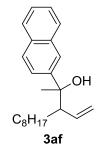
2-(4-Methoxyphenyl)-3-vinylundecan-2-ol (3ac): 1a (120 μ L, 0.6 mmol, 3.0 equiv) and **2c** (27.5 mg,

MeO OF C₈H₁₇ 0.2 mmol, 1.0 equiv) were employed as starting materials. Purification of the crude product by silica-gel column chromatography (eluent: hexane/ethyl acetate, 50:1) afforded **3ac** as colorless oil (29 mg, 96 μ mol, 53%, dr = 1.3:1). IR (neat): 3466, 2925, 2854, 1611, 1510, 1248, 1179, 1036, 912, 832 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 7.35 (d, J = 8.5 Hz, 1H), 7.29 (d, J = 8.5 Hz, 1H), 6.86 (d, J = 8.5 Hz, 2H), 5.61-5.52 (m, 1H), 5.22-5.03 (m, 2H), 3.81 (s, 3H), 2.26-2.20 (m, 1H), 1.51/1.49 (s, 3H), 1.26-1.00 (m, -7.0 Hz, 3H) ppm; ¹³C NMP (100 MHz, CDCl₃) δ : 158.2, 158.0, 139.3, 139.1, 138.7

3ac 5.22-5.03 (m, 2H), 3.81 (s, 3H), 2.26-2.20 (m, 1H), 1.51/1.49 (s, 3H), 1.26-1.00 (m, 14H), 0.85 (t, J = 7.0 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ : 158.2, 158.0, 139.3, 139.1, 138.7, 127.1, 126.4, 118.8, 118.0, 113.1, 113.0, 75.7, 75.2, 56.8, 55.8, 55.2, 31.84, 31.82, 29.5, 29.4, 29.2, 28.82, 28.79, 28.5, 27.8, 27.7, 25.3, 22.6, 14.1 ppm; HRMS (EI) m/z calcd. for C₂₀H₃₀O [M-H₂O]⁺: 286.2297, found: 286.2292.

2-(4-Fluorophenyl)-3-vinylundecan-2-ol (3ad): 1a (120 μL, 0.6 mmol, 3.0 equiv) and **2d** (25.7 mg, 0.2

mmol, 1.0 equiv) were employed as starting materials. Purification of the crude product by silica-gel column chromatography (eluent: hexane/ethyl acetate, 20:1 to 10:1) afforded **3ad** as colorless oil (26 mg, 88 μ mol, 47%, dr = 1.1:1). IR (neat): 3466, 2926, 2855, 1603, 1509, 1226, 1161, 1077, 915, 837 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 7.41-7.31 (m, 2H), 7.04-6.98 (m, 2H), 5.60-5.50 (m, 1H), 5.23-5.03 (m, 2H), 2.25-2.18 (m, 1H), 1.56 (s, 1H), 1.52/1.50 (s, 3H), 1.29-1.00 (m, 14H), 0.86 (t, J = 7.0 Hz, 3H) ppm; ¹³C NMR (100 MHz,


CDCl₃) δ : 161.7 (d, $J_{CF} = 248$ Hz), 161.5 (d, $J_{CF} = 249$ Hz), 142.9 (d, $J_{CF} = 2.8$ Hz), 142.3 (d, $J_{CF} = 2.9$ Hz), 138.8, 138.3, 127.6 (d, $J_{CF} = 7.6$ Hz), 126.9 (d, $J_{CF} = 7.6$ Hz), 119.2, 118.3, 114.52 (d, $J_{CF} = 21$ Hz), 114.46 (d, $J_{CF} = 22$ Hz), 75.7, 75.2, 56.8, 55.7, 31.8, 29.42, 29.40, 29.38, 29.2, 28.9, 28.7, 28.5, 27.7, 27.6, 25.3, 22.6, 14.0 ppm; HRMS (EI) m/z calcd. for $C_{19}H_{27}F$ [M-H₂O]⁺: 274.2097, found: 274.2094.

Methyl 4-(2-Hydroxy-3-vinylundecan-2-yl)benzoate (3ae): 1a (120 $\mu L,~0.6$ mmol, 3.0 equiv) and 2e

MeO₂C OH C₈H₁₇ (36.9 mg, 0.2 mmol, 1.0 equiv) were employed as starting materials. Purification of the crude product by silica-gel column chromatography (eluent: hexane/ethyl acetate, 20:1 to 10:1) afforded **3ae** as colorless oil (46 mg, 139 μ mol, 66%, dr = 1.4:1). IR (neat): 3500, 2926, 2855, 1726, 1609, 1437, 1281, 1191, 1115, 713 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 8.00 (dd, J = 8.6, 1.4 Hz, 2H), 7.51-7.45 (m, 2H), 5.63-5.49 (m, 1H), 5.23-5.06 (m, 2H), 3.91 (s, 3H), 2.30-2.22 (m, 1H), 1.51/1.52 (s, 3H), 1.36-1.03 (m, 2H), ppm: ¹³C NMR (100 MHz, CDCl₃) δ : 167.0, 152.6, 151.9, 138.4, 138.0

(m, 14H), 0.85 (t, J = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ : 167.0, 152.6, 151.9, 138.4, 138.0, 129.2, 129.1, 128.5, 128.2, 126.0, 125.3, 119.2, 118.5, 76.1, 75.6, 56.5, 55.4, 52.0, 31.8, 29.38, 29.36, 29.31, 29.2, 28.9, 28.5, 28.4, 27.7, 27.6, 25.5, 22.6, 14.1 ppm; HRMS (EI) m/z calcd. for C₂₁H₃₃O₃ [M]⁺: 333.2430, found: 333.2423.

2-(Naphthalen-2-yl)-3-vinylundecan-2-ol (3af): 1a (120 μL, 0.6 mmol, 3.0 equiv) and 2f (33.4 mg, 0.2

mmol, 1.0 equiv) were employed as starting materials. Purification of the crude product by silica-gel column chromatography (eluent: hexane/ethyl acetate, 50:1) afforded **3af** as colorless oil (40 mg, 123 μmol, 63%, dr = 1.4:1). IR (neat): 3466, 2925, 2854, 1636, 1464, 1375, 1127, 913, 817, 749 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ: 7.87-7.78 (m, 4H), 7.59-7.41 (m, 3H), 5.69-5.55 (m, 1H), 5.22-5.07 (m, 2H), 2.40-2.33 (m, 1H), 1.62/1.57 (s, 3H), 1.26-1.02 (m, 14H), 0.81 (t, J = 7.0 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ: 144.7, 144.1, 138.9, 138.5, 133.0, 132.9, 132.3, 132.1, 128.2, 128.1, 127.5, 127.44, 127.41,

125.9, 125.8, 125.67, 125.58, 124.56, 124.54, 124.48, 123.8, 123.7, 119.0, 118.2, 76.3, 75.7, 56.4, 55.3, 31.79, 31.78, 29.44, 29.39, 29.3, 29.2, 29.1, 28.7, 28.5, 27.8, 27.7, 25.4, 22.6, 14.1 ppm; HRMS (EI) m/z calcd. for $C_{23}H_{30}$ [M-H₂O]⁺: 306.2348, found: 306.2345.

3-Phenyl-4-vinyldodecan-3-ol (3ag): 1a (120 μL, 0.6 mmol, 3.0 equiv) and **2g** (27 μL, 0.2 mmol, 1.0

3ag

equiv) were employed as starting materials. Purification of the crude product by silica-gel column chromatography (eluent: hexane/ethyl acetate, 50:1) afforded **3ag** as colorless oil (36 mg, 125 μ mol, 62%, dr = 1.2:1). IR (neat): 3495, 2925, 2855, 1637, 1463, 1376, 1002, 968, 913, 701 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 7.38-7.30 (m, 4H), 7.25-7.20 (m, 1H), 5.64-5.43 (m, 1H), 5.21-5.02 (m, 2H), 2.33-2.23 (m, 1H), 2.10-2.02/1.87-1.74 (m, 2H), 0.88, 0.83 (m, 3H), 0.77/0.66 (t. L= 7.5 Hz, 3H) ppm; ¹³C NMP (100 MHz, CDCl₃)

1.25-0.95 (m, 14H), 0.88-0.83 (m, 3H), 0.77/0.66 (t, J = 7.5 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ : 144.7, 144.1, 138.9, 138.7, 127.8, 127.6, 126.5, 126.3, 126.2, 125.8, 117.98, 117.96, 78.6, 78.1, 55.8, 54.8, 33.5, 31.8, 31.0, 29.6, 29.5, 29.4, 29.33, 29.26, 29.2, 28.3, 27.88, 27.78, 27.6, 22.64, 22.62, 14.1, 7.63, 7.58 ppm; HRMS (EI) m/z calcd. for $C_{20}H_{30}$ [M-H₂O]⁺: 270.2348, found: 270.2347.

(C-2) Examination of alkenes

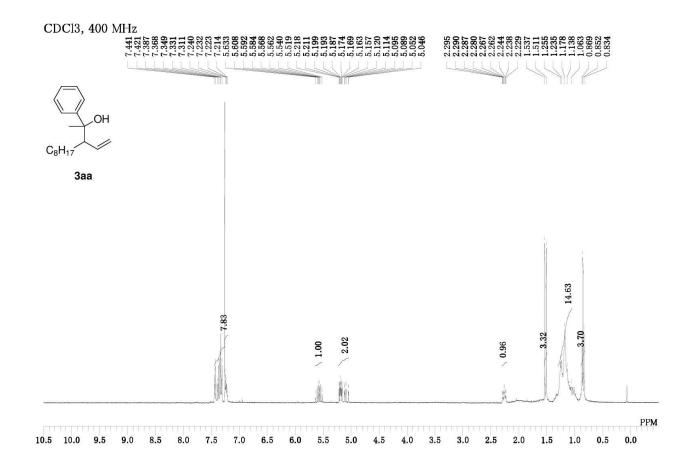
To an oven-dried test tube was placed Co(acac)₂ (5.2 mg, 20 µmol, 10 mol %) and Xantphos (23.1 mg, 40 umol, 20 mol %) in DMA (2 mL). The resulting mixture was stirred at room temperature until the materials had been completely dissolved. After the solution had been cooled to 0 °C, it was stirred for 1 minute, and then AlMe₃ (2 M in toluene, 0.15 mL, 0.3 mmol, 1.5 equiv) was added. The dark green solution was stirred for another 1 minute, and then alkene 1 (0.6 mmol, 3.0 equiv) was added followed by the addition of acetophenone (2a, 0.2 mmol, 23 µL, 1.0 equiv). The resulting mixture was stirred at 90 °C for 16 h. After cooling the mixture to 0 °C, the reaction was quenched by 1 M HCl ag and extracted with ethyl acetate (3 times). The combined organic layer was washed with brine and dried over Na₂SO₄. After the solids had been filtered off, the solvent was removed under reduced pressure and the residue was dried under vacuum to afford the crude mixture. The approximate yield of 3xa was determined at this stage using 1,1,2,2-tetrachloroethane ($\delta = 6.1$ ppm in CDCl₃, 2H) as an internal standard. If acetophenone (2a) remained, NaBH₄ was added to convert it into the corresponding 1-phenylethyl alcohol, which could be easily separated from 3xa by silica-gel column chromatography. It was then purified by silica-gel column chromatography to afford the product 3xa.

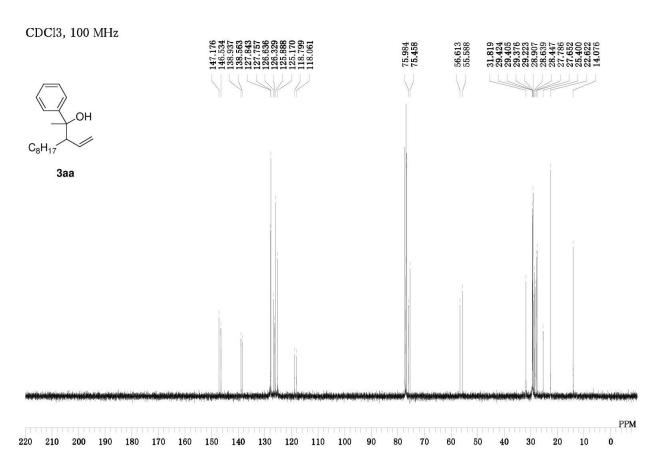
2-Phenyl-3-vinyloctadecan-2-ol (3ba): 1b (190 μL, 0.6 mmol, 3.0 equiv) and **2a** (24 μL, 0.2 mmol, 1.0

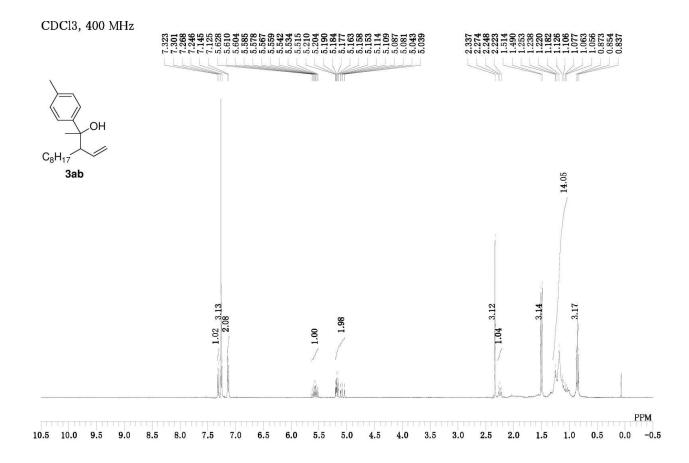
3ba

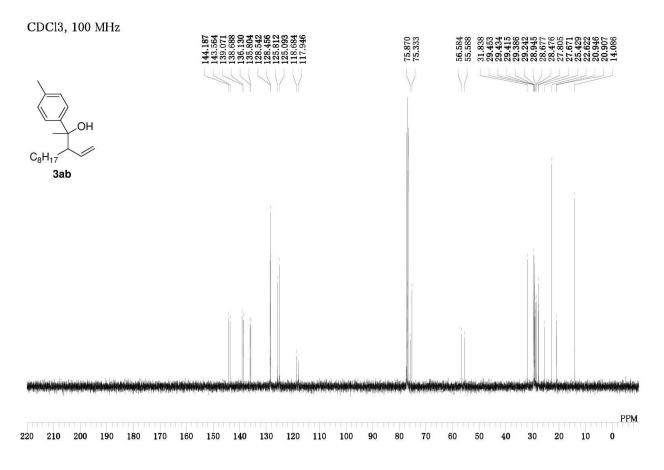
equiv) were employed as starting materials. Purification of the crude product by silica-gel column chromatography (eluent: hexane/ethyl acetate, 50:1) afforded 3ba as colorless oil (58 mg, 155 µmol, 74%, dr = 1.2:1). IR (neat): 3467, 2924, 2853, 1637, 1465, 1375, 1065, 913, 759, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ: 7.44-7.21 (m, 5H), 5.64-5.52 (m, 1H), 5.21-5.05 (m, 2H), 2.29-2.23 (m, 1H), 1.54/1.51 (s, 3H), 1.34-1.02 (m, 28H), 0.88 (t, J =7.0 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ: 147.2, 146.5, 138.9, 138.6, 127.84, 127.76, 126.6, 126.3, 126.0, 125.2, 118.8, 118.1, 76.0, 75.5, 56.6, 55.6, 31.9, 29.7, 29.64, 29.60, 29.57,

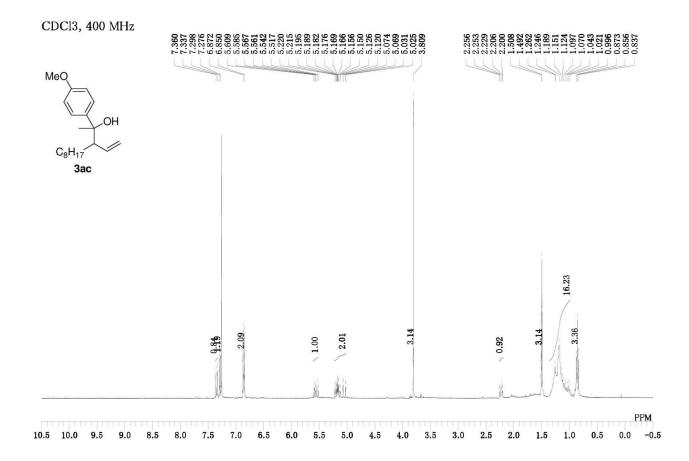
29.52, 29.49, 29.48, 29.41, 29.38, 29.35, 28.9, 28.6, 28.5, 27.8, 27.7, 25.4, 22.7, 14.1 ppm; HRMS (EI) m/z calcd. for $C_{26}H_{42}$ [M-H₂O]⁺: 354.3287, found: 354.3282.


2,6-Diphenyl-3-vinylhexan-2-ol (3ca): 1c (96 mg, 0.6 mmol, 3.0 equiv) and **2a** (23 µL, 0.2 mmol, 1.0




equiv) were employed as starting materials. Purification of the crude product by silica-gel column chromatography (eluent: hexane/ethyl acetate, 40:1 to 10:1) afforded 3ca as colorless oil (36 mg, 140 µmol, 67%, dr = 1.4:1). IR (neat): 3466, 3025, 2930, 2857, 1602, 1494, 1446, 914, 749, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 7.44-7.04 (m, 1H), 5.66-5.51 (m, 1H), 5.21-5.05 (m, 2H), 2.56-2.49 (m,


1H), 2.43-2.36 (m, 1H), 2.35-2.29 (m, 1H), 1.54/1.51 (s, 3H), 1.47-1.24 (m, 4H) ppm; 13 C NMR (100 MHz, CDCl₃) δ : 147.0, 146.4, 142.6, 142.5, 138.6, 138.3, 128.3, 128.2, 127.9, 127.8, 126.7, 126.4, 125.9, 125.5, 125.2, 119.1, 118.3, 76.0, 75.5, 56.5, 55.5, 35.7, 35.6, 29.8, 29.7, 28.9, 28.4, 28.2, 25.5 ppm; HRMS (ESI) m/z calcd. for $C_{20}H_{24}ONa$ [M+Na]⁺: 303.1719, found: 303.1727.


(D) Copies of ¹H NMR and ¹³C NMR spectra

