Supporting Information
for
and its efficient complexation and sensitive
fluorescence enhancement towards palmatine
and berberine
Xiyang Huang,¹,² Xinghua Zhang,*¹ Tianxin Qian,² Junwei Ma,² Lei Cui²
and Chunju Li*¹,²

Address: ¹School of Chemical and Environmental Engineering, Shanghai
Institute of Technology, 100 Hai-Quan Road, Shanghai 201418, P. R. China
and ²Department of Chemistry, Center for Supramolecular Chemistry and
Catalysis, Shanghai University, Shanghai 200444, P. R. China

Email: Xinghua Zhang - xhzhang@sit.edu.cn; Chunju Li - cjli@shu.edu.cn
*Corresponding author

Experimental details and the ¹H and ¹³C NMR spectra of
2,2’-biphen[4]arene derivatives, additional ¹H NMR spectra of host–guest
mixture, job plots, and the determination of the association constants.

1. Synthesis.
2. ¹H NMR and ¹³C NMR spectra of new 2,2’-biphen[4]arene compounds.
3. ¹H NMR spectra of P in the absence and presence of 2,2’-CBP4.
4. 2D NOESY spectra of host-guest mixture of P/B with 2,2’-CBP4.
5. Determination of the association constants.
1. Synthesis

2,2′-CBP4 was synthesized in a similar manner to a procedure of water-soluble 4,4′-biphenarene [Ref 46 in the manuscript: Org. Lett. 2016, 18, 5740–5743].

Synthetic route of 2,2′-CBP4.

2,2′-OHBP4. To a solution of 2,2′-OEtBP4 (510 mg, 0.50 mmol) in chloroform (30 mL) was added excess boron tribromide (2.5 g, 10 mmol). The reaction mixture was stirred at room temperature for 6 h. Then the mixture was poured into ice water. The resulting precipitate was collected by filtration and washed with cold water to quantitatively obtain 2,2′-OHBP4 (390 mg). 2,2′-OHPB4. m.p. 229–230 °C. 1H NMR (500 MHz, acetone-δ6): δ (ppm): 8.26 (d, J = 2.16 Hz, 8H), 7.18 (d, J = 2.12 Hz, 8H), 7.06 (dd, J = 8.25, 2.23 Hz, 8H), 6.88 (d, 8.25Hz, 8H), 3.90 (s, 8H). 13C NMR (125 MHz, Acetone-δ6): δ (ppm): 152.93, 134.66, 132.92, 129.87, 127.18, 117.42, 40.73. HRMS (ESI): C52H40O8H+, calcd m/z 793.2796; found m/z 793.2796.

2,2′-COOEtBP4. 2,2′-OHPB4 (1.58 g, 2.0 mmol) was dissolved in CH₃CN (50 mL), and K₂CO₃ (4.10 g, 30 mmol) was added. The reaction mixture was stirred for 1 h under nitrogen atmosphere. Then ethyl bromoacetate (3.40 g, 20
(3 mmol) was added. The mixture was heated at 80 °C for 24 hours. The reaction mixture was cooled to room temperature and filtered. The filter cake was washed with dichloromethane (60 mL x 2). The solvent was removed under vacuum. The resulting residue was dissolved in dichloromethane (60 mL), and extracted with water (30 mL x 2). The organic layer was dried using anhydrous Na₂SO₄ and concentrated. The residue was purified by recrystallization in n-pentane and chloroform to afford 2,2'-COOEtBP₄ as a white solid (2.60 g, 88%). m.p. 183–184 °C ¹H NMR (500 MHz, CD₂Cl₂): δ (ppm): 7.18 (dd, J = 2.23, 8.35 Hz, 8H), 7.08 (d, J = 2.13 Hz, 8H), 6.78 (d, J = 8.51 Hz, 8H), 4.60 (s, 16H), 4.18 (q, J = 6.99, 14.28 Hz, 16H), 4.07 (s, 8H), 1.25 (t, J = 6.99, 13.98 Hz, 24H). ¹³C NMR (125 MHz, CD₂Cl₂): δ (ppm): 170.42, 154.52, 135.25, 132.61, 129.25, 128.21, 112.72, 66.51, 61.28, 40.51, 15.02. HRMS (ESI): C₈₄H₈₈O₂₄N₄⁺, calcd m/z 1498.5982; found m/z 1498.5970.

2,2'-COOHBP₄. A solution of 2,2'-COOEtBP₄ (1.48 g, 1.0 mmol) in THF (20 mL) was stirred with 40% aqueous sodium hydroxide (20 mL) at 65 °C for 10 h. THF was then removed by evaporation under vacuum. The residue was diluted with deionized water (20 mL) and acidified with hydrochloric acid. The white cotton-like precipitate was collected by filtration, washed with cold water (10 mL x 3) and dried under vacuum to get 2,2'-COOHBP₄ as white solid (1.09 g, 87%). m.p. > 320 °C. ¹H NMR (500 MHz, DMSO): δ (ppm): 13.02 (br, 8H), 7.24 (d, J = 8.42 Hz, 8H), 7.07 (s, 8H), 6.7 (d, J = 8.42 Hz, 8H), 4.69 (s, 16H), 3.97 (s, 8H). ¹³C NMR (125 MHz, DMSO): δ (ppm): 170.58, 153.72, 133.68, 131.73, 128.33, 127.14, 112.48, 65.57. C₆₈H₅₆O₂₄NH₄⁺, calcd m/z 1257.3235; found m/z 1257.3237.

2,2'-CBP₄. 2,2'-COOHBP₄ (1.27 g, 1.0 mmol) and 20 mL of ammonium hydroxide solution (25–28%) were stirred at room temperature for 4 h. The solvent was then removed by rotary evaporation to quantitatively obtain 2,2'-CBP₄ as a white solid (1.40 g, 100%). m.p. >320 °C. ¹H NMR (500 MHz, D₂O): δ (ppm): 7.22 (s, 8H), 7.07 (s, 8H), 6.81 (s, 8H), 4.17 (s, 16H), 3.83 (s,
8H). 13C NMR (125 MHz, D$_2$O): δ (ppm): 176.39, 153.58, 134.57, 131.73, 129.18, 127.19, 113.45, 67.87, 39.16.
2. 1H NMR and 13C NMR spectra of new 2,2'-biphen[4]arene compounds.

Figure S1 1H NMR spectrum (500 MHz) of 2,2'-OHBP4 in (CD$_3$)$_2$CO.

Figure S2 13C NMR spectrum (125 MHz) of 2,2'-OHBP4 in (CD$_3$)$_2$CO.
Figure S3 1H NMR spectrum (500 MHz) of 2,2'-COOEtBP4 in CD$_2$Cl$_2$.

Figure S4 13C NMR spectrum (125 MHz) of 2,2'-COOEtBP4 in CD$_2$Cl$_2$.
Figure S5 1H NMR spectrum (500 MHz) of 2,2'-COOHBP4 in DMSO-d_6.

Figure S6 13C NMR spectrum (125 MHz) of 2,2'-COOHBP4 in DMSO-d_6.
Figure S7 1H NMR spectrum (500 MHz) of 2,2'-CBP4 in D$_2$O.

Figure S8 13C NMR spectrum (125 MHz) of 2,2'-CBP4 in D$_2$O.
3. 1H NMR spectra of P in the absence and presence of 2,2'-CBP4.

Figure S9 1H NMR spectra (500 MHz, 293 K) of (A) P (2.0 mM), (B) P (2.0 mM) + 2,2'-CBP4 (2.0 mM) and (C) 2,2'-CBP4 (2.0 mM) in deuterated phosphate buffer (pD = 7.4).
4. 2D NOESY spectra of host-guest mixture of P/B with 2,2’-CBP4.

Figure S10 2D NOESY analysis (600 MHz, 293 K) of P (7.5 mM) with 2,2’-CBP4 (5.0 mM) in deuterated phosphate buffer (pD = 7.4) with a mixing time of 600 ms.

Figure S11 2D NOESY analysis (600 MHz, 293 K) of B (7.5 mM) with 2,2’-CBP4 (5.0 mM) in deuterated phosphate buffer (pD = 7.4) with a mixing time of 600 ms.
5. Determination of the association constants

The present of 2,2’-CBP4 could enhance P or B’s fluorescence, so the association constants \(K_a \) could be calculated by analyzing the fluorescence emission changes of the guest that occurred with changes in host concentration. Using the nonlinear curve-fitting method, the association constant was obtained for host–guest combination from the following equation:

\[
I = I_0 - 0.5\left(\frac{G_0}{2} + [\text{host}] + \frac{1}{K_a}\right) - \sqrt{\left(\frac{G_0}{2} + [\text{host}] + \frac{1}{K_a}\right)\left(\frac{G_0}{2} + [\text{host}] + \frac{1}{K_a}\right) - 4 \frac{G_0}{2X}}
\]

Where \(I \) is the fluorescence intensity of the system, \(I_0 \) is the intensity of the guest in the absence of 2,2’-CBP4, [host] is the initial concentration of 2,2’-CBP4.

Figure S12 Fluorescence spectra of B in the absence and presence of 2,2’-CBP4 in aqueous phosphate buffer solution at pH 7.4 at 298 K. The excitation wavelength is at 352.0 nm. Inset: the nonlinear least-squares analysis to calculate the association constant.
Figure S13 Job plot showing the 1:1 stoichiometry of the complex between P and 2,2'-CBP4 in pH 7.4 buffer by plotting the ΔI_F values against the molar fraction of P ([P]+[2,2'-CBP4]= 1.0 × 10^{-5} M) at 298 K.
Figure S14 Job plot showing the 1:1 stoichiometry of the complex between B and 2,2'-CBP4 in pH 7.4 buffer by plotting the ΔI_F values against the mole fraction of B ([B]+[2,2'-CBP4]= 1.0 × 10^{-5} M) at 298 K.