Supporting Information

for

Practical tetrafluoroethylene fragment installation through a coupling reaction of (1,1,2,2-tetrafluorobut-3-en-1-yl)zinc bromide with various electrophiles

Ken Tamamoto, Shigeyuki Yamada and Tsutomu Konno*

Address: Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology,
Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

Email: Tsutomu Konno - konno@kit.ac.jp

*Corresponding author

Experimental procedures, characterization data (\(^1\)H, \(^{13}\)C, \(^{19}\)F NMR, IR and HRMS), copies of \(^1\)H, \(^{13}\)C and \(^{19}\)F NMR spectra
1. Experimental section
 General experimental
 Materials
 Preparation of Zn–Ag couple
 Preparation of CH₂=CHCF₂CF₂ZnBr in DMF (2-Zn)
 (1,1,2,2-Tetrafluorobut-3-en-1-yl)zinc bromide in DMF (2-Zn)
 Typical procedure for Cu(I)-catalyzed cross-coupling reaction of organozinc reagent 2-Zn with iodobenzene (3a)
 3,3,4,4-Tetrafluoro-4-phenylbut-1-ene (4a)
 3,3,4,4-Tetrafluoro-4-(4-methoxyphenyl)but-1-ene (4b)
 3,3,4,4-Tetrafluoro-4-(4-methylphenyl)but-1-ene (4c)
 4-(4-Chlorophenyl)-3,3,4,4-tetrafluorobut-1-ene (4d)
 3,3,4,4-Tetrafluoro-4-(4-trifluoromethylphenyl)but-1-ene (4e)
 Ethyl 4-(1,1,2,2-tetrafluorobut-3-en-1-yl)benzoate (4f)
 3,3,4,4-Tetrafluoro-4-(4-nitrophenyl)but-1-ene (4g)
 4-(3-Chlorophenyl)-3,3,4,4-tetrafluorobut-1-ene (4h)
 4-(2-Chlorophenyl)-3,3,4,4-tetrafluorobut-1-ene (4i)
 Typical procedure for improved Cu(I)-catalyzed cross-coupling reaction of organozinc reagent 2-Zn with ethyl 2-iodobenzoate (3j)
 Ethyl 2-(1,1,2,2-tetrafluorobut-3-en-1-yl)benzoate (4j)
 3,3,4,4-Tetrafluoro-4-(2-formylphenyl)but-1-ene (4k)
 3,3,4,4-Tetrafluoro-4-(2-acetylphenyl)but-1-ene (4l)
 3,3,4,4-Tetrafluoro-4-(2-methoxymethylphenyl)but-1-ene (4m)
 3,3,4,4-Tetrafluoro-4-(2-nitrophenyl)but-1-ene (4n)
 3,3,4,4-Tetrafluoro-3-(4-fluoro-2-nitrophenyl)but-1-ene (4o)
 3,3,4,4-Tetrafluoro-4-(4-methoxy-2-nitrophenyl)but-1-ene (4p)
 3,3,4,4-Tetrafluoro-4-(5-methoxy-2-nitrophenyl)but-1-ene (4q)
 3-(1,1,2,2-Tetrafluorobut-3-en-1-yl)pyridine (4r)
 Typical procedure for the amination of 4n
 2-(1,1,2,2-Tetrafluorobut-3-en-1-yl)aniline (4s)
 Typical procedure for the Sandmeyer reaction of 4s
 3,3,4,4-Tetrafluoro-4-(2-iodophenyl)but-1-ene (4t)
 Typical procedure for the Sonogashira cross-coupling reaction of 4s with phenylacetylene
 1-(2-Phenylethynyl)-2-(2,2,3,3-tetrafluorobut-3-en-1-yl)benzene (4u)
 Typical procedure for Cu(I)-catalyzed cross-coupling reaction of organozinc reagent 2-Zn with benzoyl chloride (5a)

Table of Contents

1. Experimental section
 General experimental
 Materials
 Preparation of Zn–Ag couple
 Preparation of CH₂=CHCF₂CF₂ZnBr in DMF (2-Zn)
 (1,1,2,2-Tetrafluorobut-3-en-1-yl)zinc bromide in DMF (2-Zn)
 Typical procedure for Cu(I)-catalyzed cross-coupling reaction of organozinc reagent 2-Zn with iodobenzene (3a)
 3,3,4,4-Tetrafluoro-4-phenylbut-1-ene (4a)
 3,3,4,4-Tetrafluoro-4-(4-methoxyphenyl)but-1-ene (4b)
 3,3,4,4-Tetrafluoro-4-(4-methylphenyl)but-1-ene (4c)
 4-(4-Chlorophenyl)-3,3,4,4-tetrafluorobut-1-ene (4d)
 3,3,4,4-Tetrafluoro-4-(4-trifluoromethylphenyl)but-1-ene (4e)
 Ethyl 4-(1,1,2,2-tetrafluorobut-3-en-1-yl)benzoate (4f)
 3,3,4,4-Tetrafluoro-4-(4-nitrophenyl)but-1-ene (4g)
 4-(3-Chlorophenyl)-3,3,4,4-tetrafluorobut-1-ene (4h)
 4-(2-Chlorophenyl)-3,3,4,4-tetrafluorobut-1-ene (4i)
 Typical procedure for improved Cu(I)-catalyzed cross-coupling reaction of organozinc reagent 2-Zn with ethyl 2-iodobenzoate (3j)
 Ethyl 2-(1,1,2,2-tetrafluorobut-3-en-1-yl)benzoate (4j)
 3,3,4,4-Tetrafluoro-4-(2-formylphenyl)but-1-ene (4k)
 3,3,4,4-Tetrafluoro-4-(2-acetylphenyl)but-1-ene (4l)
 3,3,4,4-Tetrafluoro-4-(2-methoxymethylphenyl)but-1-ene (4m)
 3,3,4,4-Tetrafluoro-4-(2-nitrophenyl)but-1-ene (4n)
 3,3,4,4-Tetrafluoro-3-(4-fluoro-2-nitrophenyl)but-1-ene (4o)
 3,3,4,4-Tetrafluoro-4-(4-methoxy-2-nitrophenyl)but-1-ene (4p)
 3,3,4,4-Tetrafluoro-4-(5-methoxy-2-nitrophenyl)but-1-ene (4q)
 3-(1,1,2,2-Tetrafluorobut-3-en-1-yl)pyridine (4r)
 Typical procedure for the amination of 4n
 2-(1,1,2,2-Tetrafluorobut-3-en-1-yl)aniline (4s)
 Typical procedure for the Sandmeyer reaction of 4s
 3,3,4,4-Tetrafluoro-4-(2-iodophenyl)but-1-ene (4t)
 Typical procedure for the Sonogashira cross-coupling reaction of 4s with phenylacetylene
 1-(2-Phenylethynyl)-2-(2,2,3,3-tetrafluorobut-3-en-1-yl)benzene (4u)
 Typical procedure for Cu(I)-catalyzed cross-coupling reaction of organozinc reagent 2-Zn with benzoyl chloride (5a)
2,2,3,3-Tetrafluoro-1-phenylpent-4-en-1-one (6a) S22
2,2,3,3-Tetrafluoro-1-(4-methylphenyl)pent-4-en-1-one (6b) S23
2,2,3,3-Tetrafluoro-1-(2-methylphenyl)pent-4-en-1-one (6c) S24
1-(tert-Butylphenyl)-2,2,3,3-tetrafluoropent-4-en-1-one (6d) S24
1-(4-Bromophenyl)-2,2,3,3-tetrafluoropent-4-en-1-one (6e) S25
2,2,3,3-Tetrafluoro-1-(4-trifluoromethylphenyl)pent-4-en-1-one (6f) S25
2,2,3,3-Tetrafluoro-1-(furan-2-yl)pent-4-en-1-one (6h) S26
2,2,3,3-Tetrafluoro-1-(thiophen-2-yl)pent-4-en-1-one (6i) S27
4,4,5,5-Tetrafluoro-1-phenylhept-1,6-dien-3-one (6j) S27
3,3,4,4-Tetrafluorododec-1-en-5-one (6k) S28

Typical procedure for improved Cu(I)-catalyzed cross-coupling reaction of organozinc reagent 2-Zn with 4-nitrobenzoyl chloride (5g) S28
2,2,3,3-Tetrafluorobutyrol-(4-nitrophenyl)pent-4-en-1-one (6g) S29

2. Additional scheme and figure.

Figure S1 S30

3 Copies of ¹H, ¹³C, and ¹⁹F NMR spectra for new compounds S31

¹H, ¹³C, and ¹⁹F NMR Spectra of 3,3,4,4-tetrafluoro-4-(4-trifluoromethylphenyl)but-1-ene (4e) S31–S32

¹H, ¹³C, and ¹⁹F NMR Spectra of 4-(3-chlorophenyl)-3,3,4,4-tetrafluorobut-1-ene (4h) S33–S34

¹H, ¹³C, and ¹⁹F NMR Spectra of 4-(2-chlorophenyl)-3,3,4,4-tetrafluorobut-1-ene (4i) S35–S36

¹H, ¹³C, and ¹⁹F NMR Spectra of ethyl 2-(1,1,2,2-tetrafluorobut-3-en-1-yl)benzoate (4j) S37–S38

¹H, ¹³C, and ¹⁹F NMR Spectra of 3,3,4,4-tetrafluoro-4-(2-formylphenyl)but-1-ene (4k) S39–S40

¹H, ¹³C, and ¹⁹F NMR Spectra of 3,3,4,4-tetrafluoro-4-(2-methoxymethylphenyl)but-1-ene (4m) S41–S42

¹H, ¹³C, and ¹⁹F NMR Spectra of 3,3,4,4-tetrafluoro-4-(2-nitrophenyl)but-1-ene (4n) S43–S44

¹H, ¹³C, and ¹⁹F NMR Spectra of 4-(4-fluoro-2-nitrophenyl)-3,3,4,4-tetrafluoro but-1-ene (4o) S45–S46

¹H, ¹³C, and ¹⁹F NMR Spectra of 3,3,4,4-tetrafluoro-4-(4-methoxy-2-nitrophenyl)but-1-ene (4p) S47–S48

¹H, ¹³C, and ¹⁹F NMR Spectra of 3,3,4,4-tetrafluoro-4-(5-methoxy-2-nitrophenyl)but-1-ene (4q) S49–S50

¹H, ¹³C, and ¹⁹F NMR Spectra of 2-(1,1,2,2-tetrafluorobut-3-en-1-yl)aniline (4s) S51–S52

¹H, ¹³C, and ¹⁹F NMR Spectra of 3,3,4,4-tetrafluoro-4-(2-iodophenyl)but-1-ene (4t) S53–S54

¹H, ¹³C, and ¹⁹F NMR Spectra of 1-(2-phenylethynyl)-2-(2,2,3,3-tetrafluoro but-3-en-1-yl)benzene (4u) S55–S56

¹H, ¹³C, and ¹⁹F NMR Spectra of 2,2,3,3-tetrafluoro-1-phenylpent-4-en-1-one (6a) S57–S58

¹H, ¹³C, and ¹⁹F NMR Spectra of 2,2,3,3-tetrafluoro-1-(4-methylphenyl)
pent-4-en-1-one (6b) S59–S60

1H, 13C, and 19F NMR Spectra of 2,2,3,3-tetrafluoro-1-(2-methylphenyl) pent-4-en-1-one (6c) S61–S62

1H, 13C, and 19F NMR Spectra of 1-(4-tert-butylphenyl)-2,2,3,3-tetrafluoropent-4-en-1-one (6d) S63–S64

1H, 13C, and 19F NMR Spectra of 1-(4-bromophenyl)-2,2,3,3-tetrafluoropent-4-en-1-one (6e) S65–S66

1H, 13C, and 19F NMR Spectra of 2,2,3,3-tetrafluoro-1-(4-trifluoromethylphenyl) pent-4-en-1-one (6f) S67–S68

1H, 13C, and 19F NMR Spectra of 2,2,3,3-tetrafluoro-1-(4-nitrophenyl) pent-4-en-1-one (6g) S69–S70

1H, 13C, and 19F NMR Spectra of 2,2,3,3-tetrafluoro-1-(furan-2-yl) pent-4-en-1-one (6h) S71–S72

1H, 13C, and 19F NMR Spectra of 2,2,3,3-tetrafluoro-1-(thiophen-2-yl) pent-4-en-1-one (6i) S73–S74

1H, 13C, and 19F NMR Spectra of 4,4,5,5-tetrafluoro-1-phenylhept-1,6-dien-3-one (6j) S75–S76

1H, 13C, and 19F NMR Spectra of 3,3,4,4-tetrafluorododec-1-en-5-one (6k) S77–S78
1. Experimental section

General experimental

Infrared spectra (IR) were determined in a liquid film on a NaCl plate with a JASCO FT/IR-4100 type A spectrometer and all spectra are reported in wavenumber (cm$^{-1}$). 1H and 13C NMR spectra were measured with a Bruker AVANCE III 400 NMR spectrometer (1H: 400 MHz and 13C: 100 MHz) in a chloroform-d (CDCl$_3$) solution and the chemical shifts are reported in parts per million (ppm) using the residual proton or carbon in the NMR solvent. A Bruker AVANCE III 400 NMR spectrometer was used for determining the yield of the products with hexafluorobenzene (C_6F_6) or benzotrifluoride ($CF_3C_6H_5$). 19F NMR (376.05 MHz) spectra were measured with a Bruker AVANCE III 400 NMR spectrometer in a CDCl$_3$ solution with trichlorofluoromethane ($CFCl_3$, $\delta_F = 0$ ppm) as an internal standard. High-resolution mass spectra (HRMS) were taken on a JEOL JMS-700MS spectrometer by fast atom bombardment (FAB) method.

All reactions were carried out using dried glassware with a magnetic stirrer bar under an atmosphere of argon and routinely monitored by 19F NMR spectroscopy or thin-layer chromatography (TLC).

Materials

All chemicals were of reagent grade and, if necessary, were purified in the usual manner prior to use.
Column chromatography was carried out on silica gel (Wako gel® C-200) and TLC was performed on silica gel TLC plates (Merck, Silica gel 60 F254).

Preparation of Zn–Ag couple

To a stirred solution of silver acetate (10 mg, 0.060 mmol) in glacial acetic acid (20 mL) at reflux temperature was added zinc powder (10 g, 153 mmol) in one portion, and the whole was stirred at that temperature for additional 30 seconds. After refluxing for 30 seconds, the flask was cooled by dipping in an ice-bath. The Zn–Ag couple formed was separated by vacuum filtration in the open-air, which was washed with Et₂O several times, followed by drying under reduced pressure. The Zn–Ag couple separated was stored at room temperature under Ar atmosphere. See Figure S1

Preparation of CH₂=CHCF₂CF₂ZnBr in DMF (2-Zn)

In a two-necked round-bottomed flask, equipped with a teflon-coated stirrer bar, was placed Zn–Ag couple (0.66 g, 10 mmol) in DMF (5.0 mL). To the suspension was slowly dropwise added 4-bromo-3,3,4,4-tetrafluorobut-1-ene (1, 1.0 g, 5.0 mmol) at 0 ºC and the whole was stirred at that temperature for 30 min. The resultant was subjected to a short pad of celite and washed by Et₂O three times. The filtrate was concentrated in vacuo to give the corresponding organozinc reagents 2-Zn in 86% NMR yield as a 0.70 M DMF solution.
(1,1,2,2-Tetrafluorobut-3-en-1-yl)zinc bromide in DMF (2-Zn)

Yield: 86% (determined by 19F NMR); 19F NMR (CDCl$_3$): δ –112.10 (brs, 2F, CF$_2$CH=), –120.23 (brs, 2F, CF$_2$Zn).

Typical procedure for Cu(I)-catalyzed cross-coupling reaction of organozinc reagent 2-Zn with iodobenzene (3a)

In a two-necked round-bottomed flask, equipped with a teflon-coated stirrer bar, were added iodobenzene (3a, 0.40 mL, 3.6 mmol) and Cu$_2$O (0.027 g, 0.18 mmol), and a DMF solution of 2-Zn (0.60 M, 1.0 mL, 0.6 mmol). The whole was heated up at 100 ºC and stirred at that temperature for 24 h. After cooling to room temperature, the resultant was filtered through a short pad of silica gel using hexane as an eluent. The filtrate was concentrated in vacuo to give the crude materials, which was purified by silica gel column chromatography using hexanes as an eluent, leading to the corresponding compound 4a (0.036 g, 0.17 mmol) in 29% isolated yield as a colorless oil.

3,3,4,4-Tetrafluoro-4-phenylbut-1-ene (4a) [S1]

Known compound; Yield: 29% (0.036 g, 0.17 mmol); Colorless oil (hexanes, R$_f$ = 0.57); 1H NMR (CDCl$_3$): δ 5.69 (d, J = 11.6 Hz, 1H, trans-CH$_2$=CHCF$_2$), 5.83 (dt, J = 17.2, 1.6 Hz, 1H, cis-CH$_2$=CHCF$_2$), 6.02 (ddt, J = 17.2, 11.6, 11.5 Hz, 1H, CF$_2$CH=), 7.44–7.58 (m, 5H, ArH); 13C NMR (CDCl$_3$): δ 115.1 (tt, J = 248.8, 37.2 Hz, CF$_2$), 116.4 (tt, J = 252.1, 35.5 Hz, CF$_2$), 124.1 (t, J = 9.9 Hz, CF$_2$).
Hz, CH₂=), 126.7 (t, J = 24.8 Hz, CF₂CH=), 126.9 (td, J = 6.6, 1.7 Hz, Ar), 127.0–127.7 (m, Ar), 128.2 (Ar), 131.0 (t, J = 1.7 Hz, Ar); ¹⁹F NMR (CDCl₃): δ −112.56 (s, 2F, CF₂Ar), −114.95 (d, J = 11.46 Hz, 2F, CF₂CH=); IR (neat): ν 3071, 1653, 1424, 1286, 1243, 1130, 1070, 949 cm⁻¹; HRMS (FAB) calcd for [M⁺] C₁₀H₈F₄: 204.0562, found 204.0558.

3,3,4,4-Tetrafluoro-4-(4-methoxyphenyl)but-1-ene (4b) [S1]

Known compound; Yield: 43% (0.065 g, 0.28 mmol); Colorless oil (hexanes, Rf = 0.20); ¹H NMR (CDCl₃): δ 3.85 (s, 3H, CH₃), 5.67 (d, J = 11.3 Hz, 1H, trans-CH₂=CHCF₂), 5.81 (dt, J = 17.2, 2.0 Hz, 1H, cis-CH₂=CHCF₂), 6.00 (ddt, J = 17.2, 11.4, 11.3 Hz, 1H, CF₂CH=), 6.95 (d, J = 8.8 Hz, 2H, ArH), 7.48 (d, J = 8.8 Hz, 2H, ArH); ¹³C NMR (CDCl₃): δ 55.7 (CH₃), 114.0 (Ar), 115.5 (tt, J = 249.0, 38.2 Hz, CF₂), 116.9 (tt, J = 251.6, 35.1 Hz, CF₂), 123.2 (t, J = 25.4 Hz, Ar), 124.3 (t, J = 9.2 Hz, CH₂=), 127.3 (t, J = 24.9 Hz, CF₂CH=), 128.7 (t, J = 6.3 Hz, Ar), 161.9 (Ar); ¹⁹F NMR (CDCl₃): δ −111.52 (s, 2F, CF₂Ar), −115.01 (d, J = 11.4 Hz, 2F, CF₂CH=); IR (neat): ν 2938, 1519, 1420, 1260, 1181, 1095, 1074, 982, 832 cm⁻¹; HRMS (FAB) calcd for [M⁺] C₁₁H₁₀F₄O: 234.0668, found 234.0672.

3,3,4,4-Tetrafluoro-4-(4-methylphenyl)but-1-ene (4c) [S1]

Known compound; Yield: 36% (0.046 g, 0.21 mmol); Colorless oil (hexanes, Rf = 0.37); ¹H NMR (CDCl₃): δ 2.41 (s, 3H, CH₃), 5.68 (d, J = 11.2 Hz, 1H, trans-CH₂=CHCF₂), 5.82 (dt, J = 17.5, 2.0
Hz, 1H, cis- CH$_2$=CHCF$_2$), 6.01 (ddt, $J = 17.5, 11.4, 11.2$ Hz, 1H, CF$_2$CH=), 7.26 (d, $J = 8.4$ Hz, 2H, ArH), 7.44 (d, $J = 8.4$ Hz, 2H ArH); 13C NMR (CDCl$_3$): δ 21.3 (CH$_3$), 115.1 (tt, $J = 248.4, 37.6$ Hz, CF$_2$), 116.6 (tt, $J = 251.3, 35.1$ Hz, CF$_2$), 124.0 (t, $J = 9.5$ Hz, CH$_2$=), 126.8 (t, $J = 24.8$ Hz, CF$_2$CH=), 126.6–127.1 (m, Ar), 127.9 (t, $J = 24.8$ Hz, Ar), 128.9 (Ar), 141.2 (t, $J = 1.7$ Hz, Ar); 19F NMR (CDCl$_3$): δ –112.24 (s, 2F, CF$_2$Ar), –115.04 (d, $J = 11.4$ Hz, 2F, CF$_2$CH=); IR (neat): ν 3043, 2927, 1617, 1420, 1288, 1074, 818 cm$^{-1}$; HRMS (FAB) calcd for [M]$^+$ C$_{11}$H$_{10}$F$_4$: 218.0719, found 218.0726.

4-(4-Chlorophenyl)-3,3,4,4-tetrafluorobut-1-ene (4d) [S1]

Known compound; Yield: 49% (0.072 g, 0.30 mmol); Colorless oil (hexanes, R$_f$ = 0.50); 1H NMR (CDCl$_3$): δ 5.71 (d, $J = 11.2$ Hz, 1H, trans-CH$_2$=CHCF$_2$), 5.84 (dt, $J = 17.2, 2.0$ Hz, 1H, cis-CH$_2$=CHCF$_2$), 6.01 (ddt, $J = 17.2, 11.2, 11.3$ Hz, 1H, CF$_2$CH=), 7.44 (d, $J = 8.8$ Hz, 2H, ArH), 7.50 (d, $J = 8.8$ Hz, ArH); 13C NMR (CDCl$_3$): δ 115.1 (tt, $J = 249.1, 37.6$ Hz, CF$_2$), 116.2 (tt, $J = 252.1, 35.6$ Hz, CF$_2$), 124.6 (t, $J = 9.2$ Hz, CH$_2$=), 126.5 (t, $J = 24.7$ Hz, CF$_2$CH=), 128.5 (t, $J = 6.3$ Hz, Ar), 128.8 (Ar), 129.4 (t, $J = 25.3$ Hz, Ar), 137.6 (t, $J = 1.7$ Hz, Ar); 19F NMR (CDCl$_3$): δ –112.44 (s, 2F, CF$_2$Ar), –114.80 (d, $J = 11.3$ Hz, 2F, CF$_2$CH=); IR (neat): ν 2925, 2857, 1604, 1491, 1218, 1135, 1095, 1074, 957, 826 cm$^{-1}$; HRMS (FAB) calcd for [M]$^+$ C$_{10}$H$_7$ClF$_4$: 238.0172, found 238.0170.

S9
3,3,4,4-Tetrafluoro-4-(4-trifluoromethylphenyl)but-1-ene (4e)

Yield: 13% (0.036 g, 0.13 mmol); Colorless oil (hexanes, Rf = 0.57); \(^1\)H NMR (CDCl\(_3\)): \(\delta \) 5.74 (d, \(J = 11.1 \text{ Hz}, 1\)H, trans-\(CH_2=\text{CHCF}_2\)), 5.86 (dt, \(J = 17.3, 2.1 \text{ Hz}, 1\)H, cis-\(CH_2=\text{CHCF}_2\)), 6.03 (ddt, \(J = 17.3, 11.2, 11.1 \text{ Hz}, 1\)H, CF\(_2\)H=), 7.70 (d, \(J = 8.6 \text{ Hz}, 2\)H, ArH), 7.74 (d, \(J = 8.6 \text{ Hz}, 2\)H, ArH); \(^13\)C NMR (CDCl\(_3\)): \(\delta \) 115.1 (tt, \(J = 248.9, 36.9 \text{ Hz}, \text{CF}_2\)), 116.0 (tt, \(J = 252.4, 36.1 \text{ Hz}, \text{CF}_2\)), 123.7 (q, \(J = 272.6 \text{ Hz}, \text{CF}_3\)), 124.9 (t, \(J = 9.3 \text{ Hz}, \text{CH}_2=\)), 125.5 (q, \(J = 3.7 \text{ Hz}, \text{Ar}\)), 126.3 (t, \(J = 24.6 \text{ Hz}, \text{CF}_2\)H=), 127.7 (t, \(J = 6.5 \text{ Hz}, \text{Ar}\)), 133.3 (q, \(J = 33.0 \text{ Hz}, \text{Ar}\)), 134.5 (t, \(J = 25.0 \text{ Hz}, \text{Ar}\)); \(^19\)F NMR (CDCl\(_3\)): \(\delta \) −63.57 (s, 3F, \(\text{CF}_3\)), −112.81 (s, 2F, \(\text{CF}_2\)Ar), −114.57 (d, \(J = 11.2 \text{ Hz}, 2\)F, \(\text{CF}_2\)H=); IR (neat): \(\nu \) 2923, 2870, 1416, 1329, 1220, 1174, 1018, 924, 840 cm\(^{-1}\); HRMS (FAB) calcd for [M]+ \(\text{C}_{11}\text{H}_7\text{F}_7\): 272.0436, found 272.0428.

Ethyl 4-(1,1,2,2-tetrafluorobut-3-en-1-yl)benzoate (4f) [S1]

Known compound; Yield: 56% (0.095 g, 0.34 mmol); Colorless oil (hexanes/AcOEt = 20/1, Rf = 0.34); \(^1\)H NMR (CDCl\(_3\)): \(\delta \) 1.41 (t, \(J = 7.2 \text{ Hz}, 3\)H, \(\text{CH}_2\text{CH}_3\)), 4.41 (q, \(J = 7.2 \text{ Hz}, 2\)H, \(\text{CH}_2\text{CH}_3\)), 5.71 (d, \(J = 11.2 \text{ Hz}, 1\)H, trans-\(CH_2=\text{CHCF}_2\)), 5.83 (dt, \(J = 17.2, 2.0 \text{ Hz}, 1\)H, cis-\(CH_2=\text{CHCF}_2\)), 6.01 (ddt, \(J = 17.2, 11.5, 11.2 \text{ Hz}, 1\)H, CF\(_2\)H=), 7.63 (d, \(J = 8.0 \text{ Hz}, 2\)H, ArH), 8.13 (d, \(J = 8.0 \text{ Hz}, 2\)H, ArH); \(^13\)C NMR (CDCl\(_3\)): \(\delta \) 14.6 (CH\(_2\)CH\(_3\)), 61.7 (CH\(_2\)CH\(_3\)), 115.3 (tt, \(J = 249.4, 36.9 \text{ Hz}, \text{CF}_2\)), 116.4 (tt, \(J = 252.3, 35.7 \text{ Hz}, \text{CF}_2\)), 124.8 (t, \(J = 9.3 \text{ Hz}, \text{CH}_2=\)), 126.7 (t, \(J = 24.7 \text{ Hz}, \text{CF}_2\)H=),
127.3 (t, \(J = 6.4 \) Hz, Ar), 129.7 (Ar), 133.4 (Ar), 135.2 (t, \(J = 24.8 \) Hz, Ar), 166.0 (C=O); \(^{19}\)F NMR (CDCl\(_3\)): \(\delta = 112.88 \) (s, 2F, C\(_2\)F\(_2\)Ar), \(-114.70 \) (d, \(J = 11.5 \) Hz, 2F, CF\(_2\)CH=); IR (neat): \(\nu = 2985, 1725, 1412, 1279, 1218, 1136, 1076, 981, 855 \) cm\(^{-1}\); HRMS (FAB) calcd for [M+H]\(^+\) C\(_{13}\)H\(_{13}\)F\(_4\)O\(_2\): 277.0852, found 277.0853.

3,3,4,4-Tetrafluoro-4-(4-nitrophenyl)but-1-ene (4g) [S1]

Known compound; This compound could not be obtained in a pure form, and included the remaining iodoarene; Yield: 65% (determined by \(^{19}\)F NMR); Colorless oil (hexanes/AcOEt = 5/1, \(R_f = 0.57 \); \(^1\)H NMR (CDCl\(_3\)): \(\delta = 5.77 \) (d, \(J = 11.2 \) Hz, 1H, trans-CH\(_2\)=CHCF\(_2\)), 5.88 (dt, \(J = 17.3, 2.0 \) Hz, 1H, cis-CH\(_2\)=CHCF\(_2\)), 6.04 (ddt, \(J = 17.3, 11.2, 11.4 \) Hz, 1H, CF\(_2\)CH=), 7.77 (d, \(J = 8.7 \) Hz, 2H, ArH), 8.32 (d, \(J = 8.7 \) Hz, 2H, ArH); \(^{13}\)C NMR (CDCl\(_3\)): \(\delta = 115.0 \) (tt, \(J = 249.5, 37.1 \) Hz, CF\(_2\)), 115.8 (tt, \(J = 252.9, 36.5 \) Hz, CF\(_2\)), 123.6 (Ar), 125.2 (t, \(J = 9.4 \) Hz, CH\(_2\)=), 126.0 (t, \(J = 24.5 \) Hz, CF\(_2\)CH=), 128.5 (t, \(J = 6.4 \) Hz, Ar), 137.0 (t, \(J = 25.0 \) Hz, Ar), 149.8 (Ar); \(^{19}\)F NMR (CDCl\(_3\)): \(\delta = -112.72 \) (s, 2F, CF\(_2\)Ar), \(-114.25 \) (d, \(J = 11.4 \) Hz, 2F, CF\(_2\)CH=); IR (neat): \(\nu = 3121, 1613, 1533, 1421, 1284, 1242, 1139, 1077, 945, 849 \) cm\(^{-1}\); HRMS (FAB) calcd for [M]\(^+\) C\(_{10}\)H\(_{12}\)F\(_4\)NO\(_2\): 249.0413, found 249.0422.

4-(3-Chlorophenyl)-3,3,4,4-tetrafluorobut-1-ene (4h)

Yield: 60% (0.142 g, 0.60 mmol); Colorless oil (hexanes, \(R_f = 0.50 \); \(^1\)H NMR (CDCl\(_3\)): \(\delta = 5.72 \) (d, \(J
= 11.2 Hz, 1H, \textit{trans-CH}_2=\text{CHCF}_2), 5.90 (dt, \(J = 17.3, 2.0 \text{ Hz, 1H, cis- CH}_2=\text{CHCF}_2), 6.00 (ddt, \(J = 17.3, 11.2 \text{ Hz, 1H, CF}_2\text{CH})), 7.40 (dd, \(J = 7.8, 7.8 \text{ Hz, 1H, ArH}), 7.46 (d, \(J = 7.8 \text{ Hz, 1H, ArH}) 7.50 (d, \(J = 7.8 \text{ Hz, 1H, ArH}); ^1\text{C} \text{ NMR (CDCl}_3; \delta 115.1 (tt, \(J = 249.2, 37.3 \text{ Hz, CF}_2), 115.8 (tt, \(J = 252.5, 35.7 \text{ Hz, CF}_2), 124.7 (t, \(J = 9.2 \text{ Hz, CH}_2)), 125.3 (t, \(J = 6.5 \text{ Hz, Ar}), 126.5 (t, \(J = 24.8 \text{ Hz, CF}_2\text{CH})), 127.4 (t, \(J = 6.7 \text{ Hz, Ar}), 129.8 (Ar), 131.4 (Ar), 132.8 (t, \(J = 25.3 \text{ Hz, Ar}), 134.6 (Ar); ^19\text{F} \text{ NMR (CDCl}_3; \delta -112.47 (s, 2\text{F, CF}_2\text{Ar}), -114.70 (d, \(J = 11.2 \text{ Hz, 2F, CF}_2\text{CH})); \text{IR (neat): } \nu 2925, 1475, 1216, 1154, 1094, 939 \text{ cm}^{-1}; \text{HRMS (FAB) calcd for [M]}^+ \text{C}_{10}\text{H}_7\text{ClF}_4; 238.0172, \text{found 238.0176.}

\textbf{4-(2-Chlorophenyl)-3,3,4,4-tetrafluorobut-1-ene (4i)}

Yield: 64\% (0.095 g, 0.40 mmol); Colorless oil (hexanes, \(R_f = 0.50); ^1\text{H} \text{ NMR (CDCl}_3; \delta 5.73 (d, \(J = 11.3 \text{ Hz, 1H, trans-CH}_2=\text{CHCF}_2), 5.87 (dt, \(J = 17.3, 2.2 \text{ Hz, 1H, cis- CH}_2=\text{CHCF}_2), 6.09 (ddtm, \(J = 17.3, 11.3, 11.4 \text{ Hz, 1H, CF}_2\text{CH})), 7.35 (tm, \(J = 7.7 \text{ Hz, 1H, ArH}), 7.42 (tm, \(J = 7.7 \text{ Hz, 1H, ArH}), 7.48 (d, \(J = 7.7 \text{ Hz, 1H, ArH}), 7.59 (dm, \(J = 7.7 \text{ Hz, 1H, ArH}); ^1\text{C} \text{ NMR (CDCl}_3; \delta 115.6 (tt, \(J = 250.0, 37.3 \text{ Hz, CF}_2), 116.4 (tt, \(J = 254.4, 37.0 \text{ Hz, CF}_2), 124.4 (t, \(J = 9.4 \text{ Hz, CH}_2)), 126.6 (Ar), 126.7 (t, \(J = 24.6 \text{ Hz, CF}_2\text{CH})), 128.4 (t, \(J = 23.7 \text{ Hz, Ar}), 130.4 (t, \(J = 8.4 \text{ Hz, Ar), 132.0 (Ar), 132.2 (Ar), 133.4 (t, \(J = 2.8 \text{ Hz, Ar); } ^19\text{F} \text{ NMR (CDCl}_3; \delta -108.47 (s, 2\text{F, CF}_2\text{Ar}), -113.75 (d, \(J = 11.4 \text{ Hz, 2F, CF}_2\text{CH})); \text{IR (neat): } \nu 2929, 1475, 1216, 1154, 1094, 939 \text{ cm}^{-1}; \text{HRMS (FAB) calcd}
for \([M]^+ \text{C}_\text{10} \text{H}_\text{7} \text{ClF}_\text{4}\): 238.0172, found 238.0174.

Typical procedure for improved Cu(I)-catalyzed cross-coupling reaction of organozinc reagent 2-Zn with ethyl 2-iodobenzoate (3j)

In a two-necked round-bottomed flask, equipped with a teflon-coated stirrer bar and reflux condenser, was added ethyl 2-iodobenzoate (3j, 0.14 g 0.50 mmol), Cu\(_2\)O (0.060 g, 0.42 mmol), and a DMF solution of 2-Zn (0.65 M, 1.54 mL, 1.0 mmol), and the mixture was stirred at 100 °C for 24 h. After being cooled to room temperature, the resulting solution was subjected to a short pad of silica gel using hexanes as an eluent. The filtrate was concentrated in vacuo to give the crude materials, which was purified by silica gel column chromatography to provide the corresponding compound 4j (0.13 g, 0.48 mmol) in 96% yield as an yellow oil.

Ethyl 2-(1,1,2,2-tetrafluorobut-3-en-1-yl)benzoate (4j)

Yield: 96% (0.13 g, 0.48 mmol); Yellow oil (hexanes/AcOEt = 15/1, \(R_f = 0.29\)); \(^1\)H NMR (CDCl\(_3\)):
\[
\delta 1.35 (t, J = 7.1 \text{ Hz}, 3\text{H}, \text{CH}_2\text{C}_\text{H}_3), 4.36 (q, J = 7.1 \text{ Hz}, 2\text{H}, \text{CH}_2\text{CH}_3), 5.70 (d, J = 11.0 \text{ Hz}, 1\text{H}, trans-CH\text{H}_2=\text{CHCF}_2), 5.86 (dt, J = 17.3, 2.2 \text{ Hz}, 1\text{H}, cis-CH\text{H}_2=\text{CHCF}_2), 6.07 (ddt, J = 17.3, 11.4, 11.0 \text{ Hz}, 1\text{H}, CF\text{H}_2\text{CH}=), 7.47–7.62 (m, 4\text{H}, ArH); \(^{13}\)C NMR (CDCl\(_3\)): \(\delta 14.1 (\text{CH}_2\text{CH}_3), 61.9 (\text{CH}_2\text{CH}_3), 115.2 (tt, J = 250.2, 37.2 \text{ Hz}, \text{CF}_2), 116.6 (tt, J = 253.4, 36.1 \text{ Hz}, \text{CF}_2), 124.2 (t, J = 9.3 \text{ Hz}, \text{CH}_2=), 126.8 (t, J = 24.4 \text{ Hz}, \text{CF}_2\text{CH}=), 127.7 (t, J = 24.5 \text{ Hz}, \text{Ar}), 128.5 (\text{Ar}), 128.7–128.9 (\text{m, Ar}), 129.7
(Ar), 131.1 (Ar), 133.8 (t, J = 3.3 Hz, Ar), 168.6 (C=O); 19F NMR (CDCl$_3$): δ –106.44 (s, 2F, CF$_2$Ar), –113.42 (d, J = 11.4 Hz, 2F, CF$_2$CH=); IR (neat): ν 3076, 2988, 2903, 1739, 1578, 1415, 1370, 1269, 1152 cm$^{-1}$; HRMS (FAB) calcd for [M+H]$^+$ C$_{13}$H$_{13}$F$_4$O$_2$: 277.0852, found 277.0847.

3,3,4,4-Tetrafluoro-4-(2-formylphenyl)but-1-ene (4k)

Yield: 83% (0.096 g, 0.41 mmol); Pale yellow oil (hexanes/AcOEt = 15/1, R$_f$ = 0.40); 1H NMR (CDCl$_3$): δ 5.78 (d, J = 11.5 Hz, 1H, trans-CH$_2$=CHCF$_2$), 5.90 (dt, J = 17.3, 2.1 Hz, 1H, cis-CH$_2$=CHCF$_2$), 6.09 (ddtm, J = 17.3, 11.5, 11.4 Hz, 1H, CF$_2$CH=), 7.63–7.71 (m, 3H, ArH), 8.11–8.13 (m, 1H, ArH), 10.36 (t, J = 1.7 Hz, 1H, CHO); 13C NMR (CDCl$_3$): δ 115.1 (tt, J = 249.1 Hz, CF$_2$), 117.5 (tt, J = 253.3, 37.7 Hz, CF$_2$), 125.3 (t, J = 9.2 Hz, Ar), 126.0 (t, J = 24.7 Hz, CF$_2$CH=), 128.7 (t, J = 9.5 Hz, CH$_2$=), 128.8 (Ar), 131.3 (t, J = 24.8 Hz, Ar), 131.7 (Ar), 133.1 (Ar), 135.7 (t, J = 1.4 Hz, Ar), 191.0 (tt, J = 7.3, 3.9 Hz, C=O); 19F NMR (CDCl$_3$): δ –103.57 (s, 2F, CF$_2$Ar), –114.28 (d, J = 11.4 Hz, 2F, CF$_2$CH=); IR (neat): ν 3075, 2925, 1699, 1597 1417, 1213, 1128, 922 cm$^{-1}$; HRMS (FAB) calcd for [M+H]$^+$ C$_{11}$H$_9$F$_4$O: 233.0590, found 233.0593.

3,3,4,4-Tetrafluoro-4-(2-acetylphenyl)but-1-ene (4l)

Yield: 81% (0.123 g, 0.50 mmol); Yellow oil (hexane/AcOEt = 5/2, R$_f$ = 0.37); 1H NMR (CDCl$_3$): δ 2.52 (s, 3H, CH$_3$), 5.71 (d, J = 11.4 Hz, 1H, trans-CH$_2$=CHCF$_2$), 5.86 (dtm, J = 17.3, 2.3 Hz, 1H, cis-CH$_2$=CHCF$_2$), 6.04 (ddtm, J = 17.3, 11.36, 11.42 Hz, 1H, CF$_2$CH=), 7.23–7.25 (m, 1H, ArH),
7.47–7.60 (m, 3H, ArH); 13C NMR (CDCl3): δ 31.8 (CH3), 115.2 (tt, $J = 249.8$, 37.5 Hz, CF2), 116.9 (tt, $J = 253.0$, 36.3 Hz, CF2), 124.6 (t, $J = 9.3$ Hz, CH2=), 125.8 (Ar), 126.1 (t, $J = 24.7$ Hz, Ar), 126.4 (t, $J = 24.4$ Hz, CF2CH=), 128.8 (tt, $J = 7.1$, 2.6 Hz, Ar), 129.0 (Ar), 131.3 (Ar), 142.6 (t, $J = 2.9$ Hz, Ar), 203.8 (C=O); 19F NMR (CDCl3, CFCl3): δ −105.50 (s, 2F, C=CF2Ar), −113.53 (d, $J = 11.4$ Hz, 2F, C=CF2CH); IR (neat): ν 3415, 3072, 2989, 2942, 1709, 1569, 1412, 1250, 1208, 1143, 1108, 1086, 1054, 941, 922 cm$^{-1}$; HRMS (FAB) calcd for $[M+H]^+$ C12H11F4O: 247.0746, Found 247.0749.

3,3,4,4-Tetrafluoro-4-(2-methoxymethylphenyl)but-1-ene (4m)

Yield: 58% (0.069 g, 0.28 mmol); Yellow oil (hexanes/AcOEt = 40/1, $R_f = 0.31$); 1H NMR (CDCl3): δ 3.43 (s, 3H, CH3), 4.65 (s, 2H, ArCH2), 5.72 (d, $J = 11.24$ Hz, 1H, trans-CH2=CHCF2), 5.86 (dt, $J = 17.34$, 2.15 Hz, 1H, cis-CH2=CHCF2), 6.05 (dtd, $J = 17.34$, 11.24, 11.37 Hz, 1H, CF2CH=), 7.36 (t, $J = 7.37$ Hz, 1H, ArH), 7.49 (d, $J = 7.37$ Hz, 1H, ArH), 7.52 (t, $J = 7.37$ Hz, 1H, ArH), 7.70 (d, $J = 7.37$ Hz, 1H, ArH); 13C NMR (CDCl3): δ 58.5 (CH3), 71.3 (tt, $J = 6.56$, 3.28 Hz, ArCH2), 115.6 (tt, $J = 249.3$, 38.1 Hz, CF2), 117.9 (tt, $J = 252.98$, 36.54 Hz, CF2), 124.4 (t, $J = 9.28$ Hz, CH2=), 126.8 (t, $J = 24.97$ Hz, CF2CH=), 127.0 (Ar), 127.7 (t, $J = 23.77$ Hz, Ar), 128.5 (t, $J = 8.09$ Hz, Ar), 128.6 (Ar), 131.3 (Ar), 138.6 (Ar); 19F NMR (CDCl3, CFCl3): δ −106.44 (s, 2F, CF2Ar), −114.28 (d, $J = 11.37$ Hz, 2F, CF2CH=); IR (neat): ν 2987, 2931, 2897, 2827, 1452, 1420, 1213, 1196, 1116, 1097, 1054, 941, 922 cm$^{-1}$; HRMS (FAB) calcd for $[M+H]^+$ C12H11F4O: 247.0746, Found 247.0749.
1061, 960, 938, 918, 765, 687 cm\(^{-1}\); HRMS (FAB) calcd for [M+Na]\(^+\) \(C_{12}H_{12}F_4NaO\): 271.0722, found 271.0715.

3,3,4,4-Tetrafluoro-4-(2-nitrophenyl)but-1-ene (4n)

Yield: 78% (1.3 g, 5.2 mmol); Yellow oil (hexanes/AcOEt = 5/1, \(R_f = 0.51\)); \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 5.76 (d, \(J = 11.4\) Hz, 1H, \(\text{trans-}CH_2=\text{CHCF}_2\)), 5.91 (dt, \(J = 17.0, 2.0\) Hz, 1H, \(\text{cis-}CH_2=\text{CHCF}_2\)), 6.1 (ddtm, \(J = 17.0, 11.4, 11.4\) Hz, 1H, \(\text{CF}_2\text{CH}=\)), 7.55–7.59 (m, 1H, Ar\(H\)), 7.63–7.72 (m, 3H, Ar\(H\)); \(^{13}\)C NMR (CDCl\(_3\)): \(\delta\) 115.1 (tt, \(J = 250.5, 36.9\) Hz, \(\text{CF}_2\)), 115.5 (tt, \(J = 254.4, 37.3\) Hz, \(\text{CF}_2\)), 122.6 (t, \(J = 25.7\) Hz, \(\text{CF}_2\text{CH}=\)), 123.9 (Ar), 125.1 (t, \(J = 9.3\) Hz, \(\text{CH}_2=\)), 125.9 (t, \(J = 24.4\) Hz, Ar), 130.1 (tt, \(J = 6.9, 2.6\) Hz, Ar), 131.0 (Ar), 132.6 (Ar), 149.8 (Ar); \(^{19}\)F NMR (CDCl\(_3\)): \(\delta\) –107.35 (s, 2F, \(\text{CF}_2\text{Ar}\)), –113.02 (d, \(J = 11.4\) Hz, 2F, \(\text{CF}_2\text{CH}=\)); IR (neat): \(\nu\) 3086, 2904, 1609, 1540, 1420, 1372, 1220, 1163, 1119, 980, 851 cm\(^{-1}\); HRMS (FAB) calcd for [M+Na]\(^+\) \(C_{10}H_7F_4NNaO_2\): 272.0311, found 272.0313.

3,3,4,4-Tetrafluoro-4-(4-fluoro-2-nitrophenyl)but-1-ene (4o)

Yield: 73% (0.390 g, 1.46 mmol); Yellow oil (hexanes/AcOEt = 5/1, \(R_f = 0.43\)); \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 5.74 (d, \(J = 11.18\) Hz, 1H, \(\text{trans-}CH_2=\text{CHCF}_2\)), 5.87 (dt, \(J = 17.31, 1.84\) Hz, 1H, \(\text{cis-}CH_2=\text{CHCF}_2\)), 6.03 (dtd, \(J = 17.31, 11.32, 11.18\) Hz, 1H, \(\text{CF}_2\text{CH}=\)), 7.29 (dd, \(J = 7.56, 2.52\) Hz, 1H, Ar\(H\)), 7.33–7.37 (m, 1H, Ar\(H\)), 7.70 (dd, \(J = 8.92, 5.24\) Hz, 1H, Ar\(H\)); \(^{13}\)C NMR (CDCl\(_3\)): \(\delta\) 111.99 (d, \(J =
27.06 Hz, Ar), 115.09 (tt, J = 250.37, 36.98, CF₂), 115.37 (tt, J = 254.39, 37.51 Hz, CF₂), 118.48 (d, J = 21.43 Hz, Ar), 118.70 (Ar), 125.28 (t, J = 9.83 Hz, CH₂=), 125.63 (t, J = 24.44 Hz, CF₂CH=), 132.27 to 132.51 (m, Ar), 150.66 (Ar), 163.86 (d, J = 257.69 Hz, Ar); ¹⁹F NMR (CDCl₃, CFCl₃): δ –104.18 to –104.23 (m, 1F, ArF), –106.94 (s, 2F, CF₂Ar), –112.82 (d, J = 11.32 Hz, 2F, CF₂CH=); IR (neat): ν 3087, 2908, 2351, 1929, 1717, 1621, 1550, 1508, 1421, 1369, 1230, 1117, 953, 729 cm⁻¹; HRMS (FAB) calcd for [M]⁺ C₁₀H₇F₃NO₂: 267.0139, found 267.0134.

3,3,4,4-Tetrafluoro-4-(4-methoxy-2-nitrophenyl)but-1-ene (4p)

Yield: 90% (0.510 g, 1.83 mmol); Yellow oil (hexanes/AcOEt = 5/1, Rf = 0.37); ¹H NMR (CDCl₃): δ 3.83 (s, 3H, CH₃), 5.70 (d, J = 11.24 Hz, 1H, trans-CH₂=CHCF₂), 5.83 (dt, J = 17.33, 1.80 Hz, 1H, cis-CH₂=CHCF₂), 6.00 (dtd, J = 17.33, 11.67, 11.24 Hz, 1H, CF₂CH=), 7.00 (d, J = 2.52 Hz, 1H, ArH), 7.08 (dm, J = 8.94 Hz, 1H, ArH), 7.54 (d, J = 8.94 Hz, 1H, ArH); ¹³C NMR (CDCl₃): δ 55.99 (CH₃), 109.47 (Ar), 113.77 (t, J = 26.23 Hz, Ar), 115.14 (tt, J = 250.09, 37.36 Hz, CF₂), 115.65 (tt, J = 253.52, 36.90 Hz, CF₂), 116.30 (Ar), 124.78 (t, J = 9.31 Hz, CH₂=), 125.98 (t, J = 24.43 Hz, CF₂CH=), 131.25 (t, J = 7.05 Hz, Ar), 150.68 (Ar), 162.28 (Ar); ¹⁹F NMR (CDCl₃, CFCl₃): δ –106.74 (s, 2F, CF₂Ar), –113.17 (d, J = 11.67 Hz, 2F, CF₂CH=); IR (neat): ν 3095, 2935, 2850, 2370, 2313, 1621, 1546, 1421, 1371, 1098, 1055, 795 cm⁻¹; HRMS (FAB) calcd for [M+Na]⁺ C₁₁H₀F₄NaO₃: 302.0417, found 302.0418.
3,3,4,4-Tetrafluoro-4-(5-methoxy-2-nitrophenyl)but-1-ene (4q)

Yield: 83% (0.21 g, 0.75 mmol); Yellow oil (hexanes/AcOEt = 5/1, R_f = 0.29); \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 3.87 (s, 3H, \(CH_3\)), 5.73 (d, \(J = 11.22\) Hz, 1H, trans-\(CH_2=CHCF_2\)), 5.87 (d, \(J = 17.29\) Hz, 1H, cis-\(CH_2=CHCF_2\)), 6.05 (dtd, \(J = 17.29, 11.40, 11.22\) Hz, 1H, \(CHCF_2\)), 7.06 (dd, \(J = 8.92, 2.50\) Hz, 1H, \(ArH\)), 7.12 (d, \(J = 2.50\) Hz, 1H, \(ArH\)), 7.59 (d, \(J = 8.92\) Hz, 1H, \(ArH\)); \(^1^3\)C NMR (CDCl\(_3\)): \(\delta\) 56.1 (\(CH_3\)), 115.2 (tt, \(J = 250.8, 36.6\) Hz, \(CF_2\)), 115.4 (tt, \(J = 254.5, 37.1\) Hz, \(CF_2\)), 115.7 (tt, \(J = 7.8, 2.4\) Hz, \(Ar\)), 116.5 (\(Ar\)), 142.8 (t, \(J = 21.48\) Hz, \(CHCF_2\)), 125.0 (t, \(J = 8.96\) Hz, \(CH_2\)), 126.0 (t, \(J = 24.29\) Hz, \(Ar\)), 126.5 (\(Ar\)), 143.1 (\(Ar\)), 161.2 (\(Ar\)); \(^1^9\)F NMR (CDCl\(_3\), CFCl\(_3\)): \(\delta\) –106.19 (s, 2F, \(CF_2Ar\)), –112.46 (d, \(J = 11.40\) Hz, 2F, \(CF_2\)), IR (neat): \(\nu\) 2947, 2849, 1588, 1538, 1498, 1421, 1364, 1302, 1248, 1117, 963, 859 cm\(^{-1}\); HRMS (FAB) calcd for [M+H]\(^+\) \(C_{11}H_{10}F_4NNaO_3\): 280.0597, found 280.0599.

3-(1,1,2,2-Tetrafluorobut-3-en-1-yl)pyridine (4r) [S1]

Known compound: Yield: 57% (0.070 g, 0.34 mmol); Yellow oil (hexanes/AcOEt = 5/1, R_f = 0.29); \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 5.74 (d, \(J = 11.3\) Hz, 1H, trans-\(CH_2=CHCF_2\)), 5.86 (dt, \(J = 17.2, 2.1\) Hz, 1H, cis-\(CH_2=CHCF_2\)), 6.04 (ddt, \(J = 17.2, 11.5, 11.3\) Hz, 1H, \(CF_2CH\)), 7.41 (dd, \(J = 8.0, 4.5\) Hz, 1H, \(ArH\)), 7.87 (d, \(J = 8.0\) Hz, 1H, \(ArH\)), 8.76 (d, \(J = 4.5\) Hz, 1H, \(ArH\)), 8.80 (s, 1H, \(ArH\)); \(^1^3\)C NMR (CDCl\(_3\)): \(\delta\) 115.0 (tt, \(J = 249.2, 37.4\) Hz, \(CF_2\)), 115.8 (tt, \(J = 252.4, 36.6\) Hz, \(CF_2\)), 123.2 (\(Ar\)), 125.1
(t, \(J = 9.4 \) Hz, \(\text{CH}_2 \)), 126.1 (t, \(J = 24.6 \) Hz, \(\text{CF}_2\text{CH} \)), 127.0 (t, \(J = 24.9 \) Hz, Ar), 134.8 (t, \(J = 6.2 \) Hz, Ar), 148.2 (t, \(J = 6.8 \) Hz, Ar), 152.0 (Ar); \(^{19}\text{F NMR (CDCl}_3\)): \(\delta = 113.14 \) (s, 2F, \(\text{C}_\text{F}_2 \text{Ar} \)), \(\delta = 114.62 \) (s, 2F, \(\text{C}_\text{F}_2\text{CH} \)).

\[\text{IR (neat): } \nu = 2928, 2858, 1728, 1424, 1292, 1114, 1094, 965 \text{ cm}^{-1}; \]

HRMS (FAB) calcd for \([\text{M+H}^+]\text{C}_9\text{H}_8\text{F}_4\text{N}: 206.0593, \text{found 206.0586.} \]

Typical procedure for the Amination of \(4n\)

To a solution of \(4n\) (0.90 g, 3.6 mmol) in EtOH (5.4 mL) and \(\text{H}_2\text{O}\) (1.8 mL) was added \(\text{NH}_4\text{Cl}\) (0.58 g, 11 mmol) and Fe (1.4 g, 25 mmol). The mixture was heated to reflux (bath temp. 85 °C) and stirred for 16 h. The reaction mixture was cooled to room temperature. Next, the mixture was filtered through silica gel with ethyl acetate, and then concentrated. The \(4s\) was purified by silica gel column chromatography (0.68 g, 3.11 mmol, 87%).

2-(1,1,2,2-Tetafluorobut-3-en-1-yl)aniline (4s)

Yield: 87% (0.682 g, 3.11 mmol); Yellow oil (hexanes/AcOEt = 5/1, \(R_f = 0.50 \)); \(^1\text{H NMR (CDCl}_3\)): \(\delta = 4.17 \) (s, 2H, \(\text{NH}_2 \)), 5.70 (d, \(J = 11.2 \) Hz, 1H, \(\text{trans-CH}_2\text{=CHCF}_2 \)), 5.87 (dtd, \(J = 17.4, 2.1, 0.7 \) Hz, 1H, \(\text{cis-CH}_2\text{=CHCF}_2 \)), 6.03 (dtd, \(J = 17.4, 11.3, 11.2 \) Hz, 1H, \(\text{CHCF}_2 \)), 6.69 (dd, \(J = 7.9, 0.6 \) Hz, 1H, \(\text{ArH} \)), 6.77 (tm, \(J = 7.9 \) Hz, 1H, \(\text{ArH} \)); \(^{13}\text{C NMR (CDCl}_3\)): \(\delta = 113.3 \) (t, \(J = 22.9 \) Hz, \(\text{=CHCF}_2 \)), 116.3 (tt, \(J = 249.7, 37.9 \) Hz, \(\text{CF}_2 \)), 117.57 (Ar), 117.64 (Ar), 118.3 (tt, \(J = 252.1, 35.9 \) Hz, \(\text{CF}_2 \)), 124.2 (t, \(J = 9.3 \) Hz, \(\text{CH}_2 \)), 126.9 (t, \(J = 24.6 \) Hz, Ar), 129.2 (t, \(J = 8.4 \) Hz, Ar).
Ar), 132.2 (Ar), 145.7 (t, $J = 2.2$ Hz, Ar); 19F NMR (CDCl$_3$): δ –110.60 (s, 2F, CF$_2$Ar), –115.03 (d, $J = 11.3$ Hz, 2F, CF$_2$CH=); IR (neat): ν 3522, 3421, 3236, 3042, 1925, 1582, 1495, 1467, 1420, 1322 cm$^{-1}$; HRMS (FAB) calcd for C$_{10}$H$_9$F$_4$N $[M]^+$: 219.0671, found 219.0668.

Typical procedure for the Sandmayer reaction of 4s

Under an argon atmosphere, to concentrated aqueous HCl (0.75 mL) was slowly added aniline derivative 4s (0.11 g, 0.49 mmol) and distilled water (0.75 mL) at 0 ºC and stirring for 30 min at the same temperature. Then, to this mixture was added a solution of NaNO$_2$ dissolved in H$_2$O (1.5 mL) at the 0 ºC. After stirring for 10 min at the same temperature, to this mixture was added a solution of KI dissolved in H$_2$O (1.5 mL) at 0 ºC. After gradually warming to room temperature, the mixture was quenched with saturated aqueous sodium thiosulfate and then whole was extracted with ethyl acetate three times. The combined organic layers were dried over anhydrous Na$_2$SO$_4$, then filtered, and concentrated in *vacuo*. The residue was purified by silica gel column chromatography to give the corresponding iodide 4t (0.11 g, 0.33 mmol) in 67% yield as a pale yellow oil.

3,3,4,4-Tetrafluoro-4-(2-iodophenyl)but-1-ene (4t)

Yield: 67% (0.11 g, 0.33 mmol); pale yellow oil (hexanes only, $R_f = 0.50$); 1H NMR (CDCl$_3$): δ 5.73 (d, $J = 11.2$ Hz, 1H, trans-CH_2=CHCF$_2$), 5.87 (dt, $J = 17.3$, 2.1 Hz, 1H, cis-CH_2=CHCF$_2$), 6.07 (dtd, $J = 17.3$, 11.7, 11.2 Hz, 1H, CHCF$_2$=), 7.11–7.15 (m, 1H, ArH), 7.41–7.46 (m, 1H, ArH),
7.54 (d, J = 7.9 Hz, 1H, ArH), 8.06 (d, J = 7.9 Hz, 1H, ArH); \(^1\)C NMR (CDCl\(_3\)): δ 91.4 (Ar), 115.49 (tt, J = 250.4, 37.4 Hz, CF\(_2\)), 115.54 (tt, J = 254.9, 36.8 Hz, CF\(_2\)), 124.6 (t, J = 9.4 Hz, CH\(_2\)), 126.8 (t, J = 24.5 Hz, =CHCF\(_2\)), 115.54 (tt, J = 254.9, 36.8 Hz, CF\(_2\)), 124.6 (t, J = 9.4 Hz, CH\(_2\)), 126.8 (t, J = 24.5 Hz, =CHCF\(_2\)), 115.54 (tt, J = 254.9, 36.8 Hz, CF\(_2\)), 124.6 (t, J = 9.4 Hz, CH\(_2\)), 126.8 (t, J = 24.5 Hz, =CHCF\(_2\)), 115.54 (tt, J = 254.9, 36.8 Hz, CF\(_2\)), 124.6 (t, J = 9.4 Hz, CH\(_2\)), 126.8 (t, J = 24.5 Hz, =CHCF\(_2\)); \(^{19}\)F NMR (CDCl\(_3\)): δ −107.37 (s, 2F, C\(_F\)\(_2\)Ar), −112.46 (d, J = 11.7 Hz, 2F, C\(_F\)\(_2\)CH=); IR (neat): ν 3086, 2928, 2850, 1934, 1818, 1716, 1650, 1589, 1567, 1467, 1420 cm\(^{-1}\); HRMS (FAB) calcd for [M]+ C\(_{10}\)H\(_7\)F\(_4\)I: 329.9529, found 329.9520.

Typical procedure for the Sonogashira cross-coupling reaction of 4s with phenylacetylene

To a solution of 4t (0.15 g, 0.45 mmol) in Et\(_3\)N (0.66 mL) was added Cl\(_2\)Pd(PPh\(_3\))\(_2\) (0.016 g, 0.0225 mmol), CuI (0.043 g, 0.225 mmol) and ethynylbenzene (0.15 mL 1.35 mmol). The mixture was stirred overnight at the same temperature. Next, the mixture was filtered through silica gel with hexane, and then concentrated. The crude mixture was purified by silica gel column chromatography to afford the corresponding 4u in a pure form (0.094 g, 0.31 mmol, 69%).

1-(2-Phenylethynyl)-2-(2,2,3,3-tetrafluorobut-3-en-1-yl)benzene (4u)

Yield: 69% (0.094 g, 0.31 mmol); Yellow oil (hexanes/AcOEt = 20/1, R\(_f\) = 0.41); \(^1\)H NMR (CDCl\(_3\)): δ 5.70 (d, J = 11.3 Hz, 1H, trans-CH\(_2\)=CHCF\(_2\)), 5.87 (dt, J = 16.9, 1.6 Hz, 1H, cis-CH\(_2\)=CHCF\(_2\)), 6.13 (ddt, J = 16.9, 11.3, 11.2 Hz, 1H, CHCF\(_2\)=), 7.37–7.68 (m, 9H, ArH); \(^1\)C NMR (CDCl\(_3\)): δ 87.5 (C≡), 93.6 (C≡), 115.7 (tt, J = 250.4, 36.8 Hz, CF\(_2\)), 116.8 (tt, J = 254.5, 35.7 Hz, CF\(_2\)), 122.7
(t, J = 3.5 Hz, Ar), 123.4 (Ar), 124.1 (t, J = 9.3 Hz, CH$_2$=CH-), 127.1 (t, J = 24.5 Hz, CF$_2$CH=),
127.9 (Ar), 128.5 (Ar), 128.6 (Ar), 128.7 (Ar), 130.8 (Ar), 131.61 (Ar), 131.62 (t, J = 22.8 Hz, Ar),
134.3 (Ar); 19F NMR (CDCl$_3$): δ −109.39 (s, 2F, CF$_2$Ar), −114.24 (d, J = 11.2 Hz, 2F, CF$_2$CH=); IR
(neat): ν 3064, 2957, 2926, 2857, 2338, 2224, 1971, 1947, 1918, 1883, 1831, 1725, 1647, 1603,
1498, 1126 cm$^{-1}$; HRMS (FAB) calcd for [M]$^+$ C$_{18}$H$_{12}$F$_4$: 304.0875, found 304.0866.

Typical procedure for Cu(I)-catalyzed cross-coupling reaction of organozinc reagent 2-Zn

with benzoyl chloride (5a)

In a two-necked round-bottomed flask, equipped with a teflon-coated stirrer bar, were placed
benzoyl chloride (5a, 0.17 mL, 1.5 mmol), Cu$_2$O (0.027 g, 0.18 mmol), 2,2'-bipyridyl (0.019 g, 0.12
mmol), and a DMF solution of 2-Zn (0.61 M, 1.0 mL, 0.61 mmol), and the whole were stirred at
room temperature for 20 h. The resultant was poured into water and the organic products were
extracted with Et$_2$O three times. The combined organic layers were dried over anhydrous Na$_2$SO$_4$,
then filtered, and concentrated in vacuo. The residue was purified by silica gel column
chromatography to give the corresponding 6a (0.13 g, 0.56 mmol) in 92% yield as a colorless oil.

2,2,3,3-Tetrafluoro-1-phenylpent-4-en-1-one (6a)

Yield: 92% (0.13 g, 0.56 mmol); Colorless oil (hexanes/AcOEt = 5/1, R$_f$ = 0.70); 1H NMR (CDCl$_3$):
δ 5.76 (d, J = 10.4 Hz, 1H, cis-CH$_2$=CH), 5.93 (dt, J = 17.6, 2.4 Hz, 1H, trans-CH$_2$=CH), 6.06–6.19
(m, 1H, CH₂=CH), 7.50–7.54 (m, 2H, Ar-H), 7.67 (t, J = 7.6 Hz 1H, Ar-H), 8.09 (d, J = 6.5 Hz 2H, Ar-H); ¹³C NMR (CDCl₃): δ 112.3 (tt, J = 264.5, 36.3 Hz, CF₂), 115.0 (tt, J = 250.4, 31.4 Hz, CF₂), 125.1 (t, J = 12.0 Hz, CH₂=), 126.6 (t, J = 24.0 Hz, CH₂=CH), 129.1 (Ar), 130.6 (m, Ar), 132.6 (m, Ar), 135.2 (Ar), 186.4 (t, J = 26.4 Hz, C=O); ¹⁹F NMR (CDCl₃): δ −114.76 (s, 2F, CF₂-C=O), −113.90 (d, J = 12.0 Hz, 2F, =CH-CF₂); IR (neat): ν 3066, 2929, 1704, 1450, 1308, 1239, 1153, 1012, 965, 848 cm⁻¹; HRMS (FAB) calcd for C₁₁H₉F₄O [M+H]^+: 233.0590, found 233.0595.

2,2,3,3-Tetrafluoro-1-(4-methylphenyl)pent-4-en-1-one (6b)

Yield: 97% (0.15 g, 0.59 mmol); Colorless oil (hexanes/AcOEt = 5/1, Rf = 0.70); ¹H NMR (CDCl₃): δ 2.42 (s, 3H, CH₃), 5.73 (d, J = 11.1 Hz, 1H, cis-CH₂=CH), 5.92 (dt, J = 17.1, 2.2 Hz, 1H, trans-CH₂=CH), 6.11 (ddt, J = 17.1, 11.6, 11.1 Hz, 1H, CH₂=CH), 7.29 (d, J = 8.1 Hz, 2H, Ar-H), 8.00 (d, J = 8.1 Hz, 2H, Ar-H); ¹³C NMR (CDCl₃): δ 21.8 (CH₃), 112.2 (tt, J = 265.3, 35.5 Hz, CF₂), 114.8 (tt, J = 250.4, 31.0 Hz, CF₂), 124.7 (t, J = 9.5 Hz, CH₂=), 126.5 (t, J = 23.6 Hz, CH₂=CH), 129.6 (Ar), 129.9 (Ar), 130.5 (t, J = 3.3 Hz, Ar), 146.6 (Ar), 185.6 (t, J = 26.9 Hz, C=O); ¹⁹F NMR (CDCl₃): δ −114.71 (s, 2F, CF₂-C=O), −113.96 (d, J = 11.6 Hz, 2F, =CH-CF₂); IR (neat): ν 2925, 1699, 1420, 1308, 1232, 1153, 1112, 1012, 856 cm⁻¹; HRMS (FAB) calcd for C₁₂H₁₁F₄O [M+H]^+: 247.0746, found 247.0741.
2,2,3,3-Tetrafluoro-1-(2-methylphenyl)pent-4-en-1-one (6c)

Yield: 83% (0.13 g, 0.53 mmol); Pale yellow oil (hexanes/AcOEt = 20/1, Rf = 0.60); 1H NMR (CDCl$_3$): δ 2.46 (s, 3H, CH$_3$), 5.75 (d, $J = 11.3$ Hz, 1H, cis-CH$_2$=CH), 5.91 (dt, $J = 17.4$, 2.2 Hz, 1H, trans-CH$_2$=CH), 6.12 (ddtm, $J = 17.4$, 11.6, 11.3 Hz, 1H, CH$_2$=CH), 7.29–7.33 (m, 2H, Ar-H), 7.45–7.49 (m, 1H, Ar-H), 7.79–7.81 (m, 1H, Ar-H); 13C NMR (CDCl$_3$): δ 20.8 (C$_H$$_3$), 115.1 (tt, $J = 266.6$, 35.8 Hz, CHF$_2$), 114.9 (tt, $J = 250.5$, 31.5 Hz, CHF$_2$), 124.6 (t, $J = 9.6$ Hz, CH$_2$=), 125.5 (Ar), 126.4 (t, $J = 23.9$ Hz, CH$_2$=CH), 129.3 (t, $J = 5.6$ Hz, Ar), 132.0 (Ar), 132.8 (m, 2C, Ar), 139.0 (Ar), 189.6 (t, $J = 26.8$ Hz, C=O); 19F NMR (CDCl$_3$): δ –113.76 (m, 2F, CF$_2$-C=O), –115.08 (s, 2F, =CH-CF$_2$); IR (neat): ν 3030, 2966, 1715, 1420, 1292, 1247, 1156, 1111, 1013, 860 cm$^{-1}$; HRMS (FAB) calcd for C$_{12}$H$_{10}$F$_4$O [M]$^+$: 246.0663, found 246.0668.

1-(4-tert-Butylphenyl)-2,2,3,3-tetrafluoropent-4-en-1-one (6d)

Yield: 98% (0.17 g, 0.59 mmol); Pale yellow oil (hexanes/AcOEt = 20/1, Rf = 0.60); 1H NMR (CDCl$_3$): δ 1.35 (s, 9H, CH$_3$), 5.74 (d, $J = 11.3$ Hz, 1H, cis-CH$_2$=CH), 5.92 (dt, $J = 17.4$, 2.2 Hz, 1H, trans-CH$_2$=CH), 6.12 (ddt, $J = 17.4$, 11.4, 11.3 Hz, 1H, CH$_2$=CH), 7.53 (dt, $J = 8.7$, 2.1 Hz, 2H, Ar-H), 8.05 (d, $J = 8.7$ Hz, 2H, Ar-H); 13C NMR (CDCl$_3$): δ 31.1 (CH$_3$), 35.5 (C(CH$_3$)$_3$), 112.2 (tt, $J = 265.2$, 35.7 Hz, CF$_2$), 114.8 (tt, $J = 250.5$, 31.1 Hz, CF$_2$), 124.8 (t, $J = 9.5$ Hz, CH$_2$=), 125.9 (Ar), 126.5 (t, $J = 23.9$ Hz, CH$_2$=CH), 129.8 (Ar), 130.5 (t, $J = 3.4$ Hz, Ar), 159.2 (Ar), 185.7 (t, $J =
26.8 Hz, C=O); 19F NMR (CDCl$_3$): δ –113.98 (dd, J = 11.4, 2.2 Hz, 2F, CF$_2$C=O), –114.76 (s, 2F, =CH-CF$_2$); IR (neat): ν 2970, 1700, 1600, 1415, 1304, 1114, 888 cm$^{-1}$; HRMS (FAB) calcd for C$_{13}$H$_{17}$F$_4$O [M+H]$^+$: 289.1216, found 289.1208.

1-(4-Bromophenyl)-2,2,3,3-tetrafluoropent-4-en-1-one (6e)

Yield: 50% (0.095 g, 0.31 mmol); Colorless oil (hexanes/AcOEt = 20/1, R_f = 0.50); 1H NMR (CDCl$_3$): δ 5.77 (d, J = 11.2 Hz, 1H, cis-CH=CH), 5.93 (dt, J = 17.3, 2.1 Hz, 1H, trans-CH$_2$=CH), 6.10 (ddt, J = 17.3, 11.4, 11.2 Hz, 1H, CH$_2$=CH), 7.64–7.70 (m, 2H, Ar-CH), 7.95 (d, J = 8.6 Hz, 2H, Ar-CH); 13C NMR (CDCl$_3$): δ 111.9 (tt, J = 265.1, 36.3 Hz, CF$_2$), 114.6 (tt, J = 250.5, 31.2 Hz, CF$_2$), 125.0 (t, J = 9.5 Hz, CH$_2$=), 126.0 (t, J = 23.9 Hz, CH$_2$=CH), 130.7 (Ar), 131.0 (Ar), 131.7 (t, J = 3.5 Hz, Ar), 132.2 (Ar), 185.1 (t, J = 27.3 Hz, C=O); 19F NMR (CDCl$_3$): δ –114.89 (s, 2F, CF$_2$C=O), –113.80 (dd, J = 11.4, 2.1 Hz, 2F, =CH-CF$_2$); IR (neat): ν 3125, 1701, 1584, 1420, 1284, 1112, 1012, 883 cm$^{-1}$; HRMS (FAB) calcd for C$_{11}$H$_8$BrF$_4$O [M+H]$^+$: 310.9695, found 310.9689.

2,2,3,3-Tetrafluoro-1-(4-trifluoromethylphenyl)pent-4-en-1-one (6f)

Yield: 86% (0.15 g, 0.50 mmol), Pale yellow oil (hexanes/AcOEt = 20/1, R_f = 0.40); 1H NMR (CDCl$_3$): δ 5.79 (d, J = 11.1 Hz, 1H, cis-CH$_2$=CH), 5.95 (dt, J = 17.3, 2.2 Hz, 1H, trans-CH$_2$=CH), 6.11 (ddt, J = 17.3, 11.9, 11.1 Hz, 1H, CH$_2$=CH), 7.78 (d, J = 8.2 Hz, 2H, Ar-CH), 8.20 (d, J = 8.2
Hz, 2H, Ar-H); 13C NMR (CDCl$_3$): δ 111.9 (tt, $J = 265.2$, 36.4 Hz, CF$_2$), 114.8 (tt, $J = 250.6$, 31.2 Hz, CF$_2$), 123.4 (q, $J = 272.9$ Hz, CF$_3$), 125.5 (t, $J = 9.7$ Hz, CH$_2$=), 126.95 (t, $J = 23.2$ Hz, CH$_2$=CH), 125.96 (q, $J = 3.6$ Hz, Ar), 130.8 (t, $J = 3.7$ Hz, Ar), 135.1 (Ar), 136.1 (q, $J = 27.6$ Hz, Ar), 185.6 (t, $J = 27.56$ Hz, C=O); 19F NMR (CDCl$_3$): δ −115.05 (s, 2F, CF$_2$-C=O), −113.63 (dd, $J = 11.9$, 2.2 Hz, 2F, =CH-CF$_2$), −64.01 (s, 3F, CF$_3$); IR (neat): ν 3125, 3075, 1714, 1414, 1330, 1234, 1136, 1069, 965, 852 cm$^{-1}$; HRMS (FAB) calcd for C$_{12}$H$_7$F$_7$O $[M]^+$: 300.0385, found 300.0393.

2,2,3,3-Tetrafluoro-1-(furan-2-yl)pent-4-en-1-one (6h)

Yield: 83% (0.11 g, 0.50 mmol); Pale yellow oil (hexanes/AcOEt = 5/1, $R_f = 0.40$); 1H NMR (CDCl$_3$): δ 5.69 (d, $J = 11.0$ Hz, 1H, cis-CH$_2$=CH), 5.83 (dt, $J = 17.0$, 2.2 Hz, 1H, trans-CH$_2$=CH), 5.97 (ddt, $J = 17.0$, 11.8, 11.0 Hz, 1H, CH$_2$=CH), 6.59 (dd, $J = 3.8$, 1.7 Hz, 1H, Ar-H), 7.43–7.45 (m, 1H, Ar-H), 7.74 (dd, $J = 1.7$, 0.6 Hz, 1H, Ar-H); 13C NMR (CDCl$_3$): δ 111.4 (tt, $J = 263.3$, 36.7 Hz, CF$_2$), 113.2 (Ar), 114.5 (tt, $J = 250.5$, 32.0 Hz, CF$_2$), 124.7 (t, $J = 5.8$ Hz, Ar), 125.1 (t, $J = 9.5$ Hz, CH$_2$=), 125.6 (t, $J = 23.8$ Hz, CH$_2$=CH), 148.6 (Ar), 149.6 (Ar), 173.3 (t, $J = 28.0$ Hz, C=O); 19F NMR (CDCl$_3$): δ −118.56 (s, 2F, CF$_2$-C=O), −114.19 (d, $J = 11.8$ Hz, 2F, =CH-CF$_2$); IR (neat): ν 3150, 1692, 1560, 1461, 1397, 1186, 1041, 931, 844 cm$^{-1}$; HRMS (FAB) calcd for C$_9$H$_7$F$_4$O$_2$ [M+H]$^+$: 223.0382, found 223.0392.
2,2,3,3-Tetrafluoro-1-(thiophen-2-yl)pent-4-en-1-one (6i)

Yield: 87% (0.13 g, 0.55 mmol); Colorless oil (hexanes/AcOEt = 20/1, \(R_f = 0.34\)); \(^1\)H NMR (CDCl\(_3\)): \(\delta \) 5.76 (d, \(J = 11.1 \) Hz, 1H, cis-\(CH_2=CH \)), 5.92 (dt, \(J = 17.3, 2.1 \) Hz, 1H, trans-\(CH_2=CH \)), 6.08 (ddt, \(J = 17.3, 11.4, 11.1 \) Hz, 1H, \(CH_2=CH \)), 7.21–7.23 (m, 1H, Ar-H), 7.85 (dd, \(J = 4.9, 1.0 \) Hz, 1H, Ar-H), 8.00–8.01 (m, 1H, Ar-H); \(^{13}\)C NMR (CDCl\(_3\)): \(\delta \) 114.7 (tt, \(J = 263.3, 36.4 \) Hz, CF\(_2\)), 114.6 (tt, \(J = 250.8, 30.8 \) Hz, CF\(_2\)), 125.1 (t, \(J = 9.5 \) Hz, \(CH_2= \)), 125.9 (t, \(J = 23.9 \) Hz, \(CH_2= \)), 129.1 (Ar), 136.8 (t, \(J = 5.5 \) Hz, Ar), 137.6 (Ar), 138.8 (Ar), 178.8 (t, \(J = 27.8 \) Hz, C=O); \(^{19}\)F NMR (CDCl\(_3\)): \(\delta \) –114.03 to –113.99 (m, 2F, CF\(_2\)-C=O), –116.59 (s, 2F, =CH-CF\(_2\)); IR (neat): \(\nu \) 3104, 1676, 1411, 1359, 1238, 1165, 1115, 1065, 820 cm\(^{-1}\); HRMS (FAB) calcd for C\(_9\)H\(_7\)F\(_4\)OS [M+H\(^+\)]: 239.0153, found 239.0154.

4,4,5,5-Tetrafluoro-1-phenylhept-1,6-diene-3-one (6j)

Yield: 70% (0.11 g, 0.43 mmol); Pale yellow oil (hexanes/AcOEt = 40/1, \(R_f = 0.37\)); \(^1\)H NMR (CDCl\(_3\)): \(\delta \) 5.76 (d, \(J = 10.4 \) Hz, 1H, cis-\(CH_2=CH \)), 5.89–5.95(m, 1H, trans-\(CH_2=CH \)), 6.05 (ddtm, \(J = 15.5, 13.1, 10.4 \) Hz, 1H, \(CH_2=CH \)), 7.15 (d, \(J = 15.6 \) Hz, 1H), 7.42–7.50 (m, 3H, Ar-H), 7.63–7.66 (m, 2H, Ar-H), 7.92 (d, \(J = 15.9 \) Hz, 1H); \(^{13}\)C NMR (CDCl\(_3\)): \(\delta \) 111.1 (tt, \(J = 262.9, 36.8 \) Hz, CF\(_2\)), 114.9 (tt, \(J = 249.7, 32.2 \) Hz, CF\(_2\)), 118.4, 125.1 (t, \(J = 9.5 \) Hz, \(CH_2= \)), 125.9 (t, \(J = 24.0 \) Hz, \(CH_2= \)), 129.28, 129.34, 132.1, 133.8, 148.5, 185.1 (t, \(J = 26.5 \) Hz, C=O); \(^{19}\)F NMR (CDCl\(_3\)): \(\delta \) –
114.48 (d, J = 13.1 Hz, 2F, CF$_2$-C=O), –122.74 (s, 2F, =CH-CF$_2$); IR (neat): ν 3068, 2926, 1707, 1608, 1577, 1420, 1147, 1066, 980 cm$^{-1}$; HRMS (FAB) calcd for C$_{13}$H$_{11}$F$_4$O [M+H]$^+$: 259.0744, found 259.0746.

3,3,4,4-Tetrafluorododec-1-en-5-one (6k)

Yield: 84% (0.13 g, 0.84 mmol); Colorless oil (hexanes/AcOEt = 20/1, R$_f$ = 0.57); 1H NMR (CDCl$_3$): δ 0.85 (brs, 3H, CH$_3$), 1.27 (brs, 8H, -(CH$_2$)$_4$), 1.61 (brs, 2H, COCH$_2$CH$_2$), 2.70 (t, J = 6.7 Hz, 2H, COCH$_2$CH$_2$), 5.69 (d, J = 10.5 Hz, 1H, cis-CH$_2$=CH), 5.84 (d, J = 17.3 Hz, 1H, trans-CH$_2$=CH), 5.96 (dt, J = 17.3, 11.4, 10.5 Hz, 1H, CH$_2$=CH); 13C NMR (CDCl$_3$): δ 14.0 (CH$_3$), 22.6 (CH$_2$), 22.7 (CH$_2$), 28.9 (CH$_2$), 29.1 (CH$_2$), 31.8 (CH$_2$), 38.3 (CH$_2$), 110.5 (tt, J = 263.6, 37.3 Hz, CF$_2$), 114.9 (tt, J = 249.4, 32.4 Hz, CF$_2$), 124.8 (t, J = 9.6 Hz, CH$_2$=CH), 125.9 (t, J = 23.9 Hz, =CH-CF$_2$), 197.2 (t, J = 26.7 Hz, C=O); 19F NMR (CDCl$_3$): δ –122.10 (s, 2F, CF$_2$-C=O), –114.52 (d, J = 11.4 Hz, 2F, =CH-CF$_2$); IR (neat): ν 2931, 2859, 1751, 1420, 1153, 1117, 1012, 962 cm$^{-1}$; HRMS (FAB) calcd for C$_{12}$H$_{19}$F$_4$O [M+H]$^+$: 255.1372, found 255.1364.

Typical procedure for improved Cu(I)-catalyzed cross-coupling reaction of organozinc reagent 2-Zn with 4-nitrobenzoyl chloride (5g)

In a two-necked round-bottomed flask, equipped with a teflon-coated stirrer bar, were placed 4-nitrobenzoyl chloride (5g, 0.50 g 2.7 mmol), Cu$_2$O (0.030 g, 0.21 mmol), 2,2'-bipyridyl (0.020 g,
0.13 mmol), and a DMF solution of 2-Zn (0.66 M, 1.0 mL, 0.66 mmol), and the whole were stirred at 100 °C for 20 h. The resultant was poured into water and the organic products were extracted with Et₂O three times. The combined organic layers were dried over anhydrous Na₂SO₄, then filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography to give the corresponding 6g (0.14 g, 0.51 mmol) in 77% yield as a pale yellow oil.

2,2,3,3-Tetrafluoro-1-(4-nitrophenyl)pent-4-en-1-one (6g)

Yield: 77% (0.14 g, 0.51 mmol); Pale yellow oil (hexanes/AcOEt = 5/1, Rf = 0.50); ¹H NMR (CDCl₃): δ 5.78 (d, J = 11.0 Hz, 1H, cis-CH₂=CH), 5.91 (dt, J = 17.31, 1.68 Hz, 1H, trans-CH₂=CH), 6.07 (dtd, J = 17.3, 11.9, 11.0 Hz, 1H, CH₂=CH), 8.21 (d, J = 8.4 Hz, 2H, Ar-H), 8.30–8.33 (m, 2H, Ar-H); ¹³C NMR (CDCl₃): δ 111.7 (tt, J = 264.9, 37.4 Hz, CF₂), 114.7 (tt, J = 250.6, 31.4 Hz, CF₂), 123.9 (Ar), 125.6 (t, J = 23.9 Hz, CH₂=CH), 125.6 (t, J = 9.4 Hz, CH₂=), 131.4 (t, J = 3.4 Hz, Ar), 136.7 (Ar), 151.2 (Ar), 185.1 (t, J = 28.0 Hz, C=O); ¹⁹F NMR (CDCl₃): δ -115.04 (s, 2F, CF₂-C=O), -113.37 (d, J = 11.9 Hz, 2F, =CH-CF₂); IR (neat): ν 3057, 1715, 1604, 1531, 1351, 1156, 1014, 834 cm⁻¹; HRMS (FAB) calcd for C₁₁H₈F₄NO₃ [M+H]⁺: 278.0440, found 278.0435.
2. Additional scheme and Figure

Scheme S1:

<table>
<thead>
<tr>
<th>Condition</th>
<th>^{19}F NMR Yield/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshly prepared</td>
<td>quant.</td>
</tr>
<tr>
<td>1.5 year after the zinc reagent was prepared</td>
<td>quant.</td>
</tr>
</tbody>
</table>

Figure S1: Preparation of Zn-Ag couple

![Scheme S1](image)

Reference

3. Copies of 1H, 13C, and 19F NMR spectra for new compounds

1H NMR Spectrum of 3,3,4,4-tetrafluoro-4-(4-trifluoromethylphenyl)but-1-ene (4e)

13C NMR Spectrum of 3,3,4,4-tetrafluoro-4-(4-trifluoromethylphenyl)but-1-ene (4e)
19F NMR Spectrum of 3,3,4,4-tetrafluoro-4-(4-trifluoromethylphenyl)but-1-ene (4e)
1H NMR Spectrum of 4-(3-chlorophenyl)-3,3,4,4-tetrafluorobut-1-ene (4h)

13C NMR Spectrum of 4-(3-chlorophenyl)-3,3,4,4-tetrafluorobut-1-ene (4h)
19F NMR Spectrum of 4-(3-chlorophenyl)-3,3,4,4-tetrafluorobut-1-ene (4h)
1H NMR Spectrum of 4-(2-chlorophenyl)-3,3,4,4-tetrafluorobut-1-ene (4i)

13C NMR Spectrum of 4-(2-chlorophenyl)-3,3,4,4-tetrafluorobut-1-ene (4i)
19F NMR Spectrum of 4-(2-chlorophenyl)-3,3,4,4-tetrafluorobut-1-ene (4i)
1H NMR Spectrum of ethyl 2-(1,1,2,2-tetrafluorobut-3-en-1-yl)benzoate (4j)

13C NMR Spectrum of ethyl 2-(1,1,2,2-tetrafluorobut-3-en-1-yl)benzoate (4j)
19F NMR Spectrum of ethyl 2-(1,1,2,2-tetrafluorobut-3-en-1-yl)benzoate (4j)
1H NMR Spectrum of 3,3,4,4-tetrafluoro-4-(2-formylphenyl)but-1-ene (4k)

13C NMR Spectrum of 3,3,4,4-tetrafluoro-4-(2-formylphenyl)but-1-ene (4k)
$^{19}\text{F NMR Spectrum of 3,3,4,4-tetrafluoro-4-(2-formylphenyl)but-1-ene (4k)}$
1H NMR Spectrum of 3,3,4,4-tetrafluoro-4-(2-methoxymethylphenyl)but-1-ene (4m)

13C NMR Spectrum of 3,3,4,4-tetrafluoro-4-(2-methoxymethylphenyl)but-1-ene (4m)
$^{19}\text{F NMR Spectrum of 3,3,4,4-tetrafluoro-4-(2-methoxymethylphenyl)but-1-ene (4m)}$
1H NMR Spectrum of 3,3,4,4-tetrafluoro-4-(2-nitrophenyl)but-1-ene (4n)

13C NMR Spectrum of 3,3,4,4-tetrafluoro-4-(2-nitrophenyl)but-1-ene (4n)
19F NMR Spectrum of 3,3,4,4-tetrafluoro-4-(2-nitrophenyl)but-1-ene (4n)
1H NMR Spectrum of 4-(4-fluoro-2-nitrophenyl)-3,3,4,4-tetrafluorobut-1-ene (4o)

13C NMR Spectrum of 4-(4-fluoro-2-nitrophenyl)-3,3,4,4-tetrafluorobut-1-ene (4o)
19F NMR Spectrum of 4-(4-fluoro-2-nitrophenyl)-3,3,4,4-tetrafluorobut-1-ene (4o)

X : parts per Million : 19F
1H NMR Spectrum of 3,3,4,4-tetrafluoro-4-(4-methoxy-2-nitrophenyl)but-1-ene (4p)

13C NMR Spectrum of 3,3,4,4-tetrafluoro-4-(4-methoxy-2-nitrophenyl)but-1-ene (4p)
19F NMR Spectrum of 3,3,4,4-tetrafluoro-4-(4-methoxy-2-nitrophenyl)but-1-ene (4p)
1H NMR Spectrum of 3,3,4,4-tetrafluoro-4-(5-methoxy-2-nitrophenyl)but-1-ene (4q)

13C NMR Spectrum of 3,3,4,4-tetrafluoro-4-(5-methoxy-2-nitrophenyl)but-1-ene (4q)
19F NMR Spectrum of 3,3,4,4-tetrafluoro-4-(5-methoxy-2-nitrophenyl)but-1-ene (4q)
1H NMR Spectrum of 2-(1,1,2,2-tetrafluorobut-3-en-1-yl)aniline (4s)

13C NMR Spectrum of 2-(1,1,2,2-tetrafluorobut-3-en-1-yl)aniline (4s)
19F NMR Spectrum of 2-(1,1,2,2-tetrafluorobut-3-en-1-yl)aniline (4s)
1H NMR Spectrum of 3,3,4,4-tetrafluoro-4-(2-iodophenyl)but-1-ene (4t)

13C NMR Spectrum of 3,3,4,4-tetrafluoro-4-(2-iodophenyl)but-1-ene (4t)
13C NMR Spectrum of 3,3,4,4-tetrafluoro-4-(2-iodophenyl)but-1-ene (4t)
1H NMR Spectrum of 1-(2-phenylethynyl)-2-(2,2,3,3-tetrafluorobut-3-en-1-yl)benzene (4u)

13C NMR Spectrum of 1-(2-phenylethynyl)-2-(2,2,3,3-tetrafluorobut-3-en-1-yl)benzene (4u)
19F NMR Spectrum of 1-(2-phenylethynyl)-2-(2,2,3,3-tetrafluorobut-3-en-1-yl)benzene (4u)
1H NMR Spectrum of 2,2,3,3-tetrafluoro-1-phenylpent-4-en-1-one (6a)

13C NMR Spectrum of 2,2,3,3-tetrafluoro-1-phenylpent-4-en-1-one (6a)
19F NMR Spectrum of 2,2,3,3-tetrafluoro-1-phenylpent-4-en-1-one (6a)
1H NMR Spectrum of 2,2,3,3-tetrafluoro-1-(4-methylphenyl)pent-4-en-1-one (6b)

13C NMR Spectrum of 2,2,3,3-tetrafluoro-1-(4-methylphenyl)pent-4-en-1-one (6b)
19F NMR Spectrum of 2,2,3,3-tetrafluoro-1-(4-methylphenyl)pent-4-en-1-one (6b)
1H NMR Spectrum of 2,2,3,3-tetrafluoro-1-(2-methylphenyl)pent-4-en-1-one (6c)

13C NMR Spectrum of 2,2,3,3-tetrafluoro-1-(2-methylphenyl)pent-4-en-1-one (6c)
19F NMR Spectrum of 2,2,3,3-tetrafluoro-1-(2-methylphenyl)pent-4-en-1-one (6c)
1H NMR Spectrum of 1-(4-tert-butylphenyl)-2,2,3,3-tetrafluoropent-4-en-1-one (6d)

13C NMR Spectrum of 1-(4-tert-butylphenyl)-2,2,3,3-tetrafluoropent-4-en-1-one (6d)
19F NMR Spectrum of 1-(4-tert-butylphenyl)-2,2,3,3-tetrafluoropent-4-en-1-one (6d)
1H NMR Spectrum of 1-(4-bromophenyl)-2,2,3,3-tetrafluoropent-4-en-1-one (6e)

13C NMR Spectrum of 1-(4-bromophenyl)-2,2,3,3-tetrafluoropent-4-en-1-one (6e)
19F NMR Spectrum of 1-(4-bromophenyl)-2,2,3,3-tetrafluoropent-4-en-1-one (6e)

![F NMR Spectrum of 1-(4-bromophenyl)-2,2,3,3-tetrafluoropent-4-en-1-one (6e)](image_url)
1H NMR Spectrum of 2,2,3,3-tetrafluoro-1-(4-trifluoromethylphenyl)pent-4-en-1-one (6f)

13C NMR Spectrum of 2,2,3,3-tetrafluoro-1-(4-trifluoromethylphenyl)pent-4-en-1-one (6f)
19F NMR Spectrum of 2,2,3,3-tetrafluoro-1-(4-trifluoromethylphenyl)pent-4-en-1-one (6f)
1H NMR Spectrum of 2,2,3,3-tetrafluoro-1-(4-nitrophenyl)pent-4-en-1-one (6g)

13C NMR Spectrum of 2,2,3,3-tetrafluoro-1-(4-nitrophenyl)pent-4-en-1-one (6g)
19F NMR Spectrum of 2,2,3,3-tetrafluoro-1-(4-nitrophenyl)pent-4-en-1-one (6g)
1H NMR Spectrum of 2,2,3,3-tetrafluoro-1-(furan-2-yl)pent-4-en-1-one (6h)

13C NMR Spectrum of 2,2,3,3-tetrafluoro-1-(furan-2-yl)pent-4-en-1-one (6h)
^{19}F NMR Spectrum of 2,2,3,3-tetrafluoro-1-(furan-2-yl)pent-4-en-1-one (6h)
1H NMR Spectrum of 2,2,3,3-tetrafluoro-1-(thiophen-2-yl)pent-4-en-1-one (6i)

13C NMR Spectrum of 2,2,3,3-tetrafluoro-1-(thiophen-2-yl)pent-4-en-1-one (6i)
\(^{19}\)F NMR Spectrum of 2,2,3,3-tetrafluoro-1-(thiophen-2-yl)pent-4-en-1-one (6i)
\(^1\)H NMR Spectrum of 4,4,5,5-tetrafluoro-1-phenylhept-1,6-dien-3-one (6j)

\(^{13}\)C NMR Spectrum of 4,4,5,5-tetrafluoro-1-phenylhept-1,6-dien-3-one (6j)
19F NMR Spectrum of 4,4,5,5-tetrafluoro-1-phenylhept-1,6-dien-3-one (6j)
1H NMR Spectrum of 3,3,4,4-tetrafluorododec-1-en-5-one (6k)

13C NMR Spectrum of 3,3,4,4-tetrafluorododec-1-en-5-one (6k)
\(^{19}\text{F}\) NMR Spectrum of 3,3,4,4-tetrafluorododec-1-en-5-one (6k)