Supporting Information

for

Syn-selective silicon Mukaiyama-type aldol reactions of (pentafluoro- λ^6 -sulfanyl)acetic acid esters with aldehydes

Anna-Lena Dreier¹, Andrej V. Matsnev², Joseph S. Thrasher², and Günter Haufe^{1,3*}
Address: ¹Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149
Münster, Germany, ²Department of Chemistry, Advanced Materials Research Laboratory,
Clemson University, 91 Technology Drive, Anderson, South Carolina 29625, United States of
America and ³Cells-in-Motion Cluster of Excellence, Universität Münster, Waldeyerstraße 15,
48149 Münster, Germany

*Corresponding author

Email: Günter Haufe - haufe@uni.muenster.de

General procedure, synthesis of the aldol products, spectroscopic data, and copies of ¹H, ¹³C, and ¹⁹F NMR spectra

Table of contents

Experimental	52
General	S2
General procedure	S2
Spectroscopic data of para-substituted products	S3
Spectroscopic data of meta-substituted products	S10
Spectroscopic data of ortho-substituted products	S12
Spectroscopic data of product of acetaldehyde	S13
Spectroscopic data of SF_5 -acetic acid morpholide (8), its ketene silylaminal, and the Aldol addition product 9 (crude NMR experiment)	S14
References	S16
Copies of spectra of para-substituted compounds	S17
Copies of spectra of meta-substituted compounds	S46
Copies of spectra of ortho-substituted compounds	S55
Copies of spectra of product of acetaldehyde	S58
Copies of spectra of compounds 8 and 9	S61

Experimental

General

All reactions were performed under argon atmosphere applying Schlenk techniques. Dichloromethane was dried and distilled over CaH₂ prior to use. TLC was performed on coated silica gel plates Merck 60 F₂₅₄. The spots were detected with alkaline KMnO₄ solution. For the purification of the compounds by column chromatography silica gel Merck 60 (0.063-0.2 mm) was used. Solvents for chromatography were purified prior to use. The NMR spectra were recorded on Bruker AV300 MHz and AV400 MHz spectrometers. ¹H NMR spectra were referenced to TMS as the internal standard, ¹³C NMR spectra were referenced to the used deuterated solvents, and CFCl₃ was used as the internal standard for the ¹⁹F NMR spectra. The multiplicity of the ¹³C NMR signals (with regard to the C,H-coupling) was determined by DEPT technique. Technically the SF₅ group is an AB₄ spin system, although with high-field NMR spectrometers this pattern moves toward AX₄. In all cases the expected nine lines of the A spectrum are clearly resolved in the ¹⁹F NMR spectra. Conveniently they are marked as quintet (qn). In the B spectrum lines are overlapping and the equatorial fluorine atoms appears as a doublet of multiplets (dm). The coupling between the axial and the equatorial fluorine atoms correlates with doublet coupling constant. ESI mass spectrometry was performed on a MicroTof (Bruker Daltonics, Bremen) spectrometer.

Synthesis of α -SF₅-substituted β -hydroxycarboxylic acid derivatives by silicon-mediated Mukaiyama aldol reaction

General procedure:

In an oven dried pressure vessel under argon atmosphere, $SF_5CH_2C(O)OC_8H_{17}$ (1) (76 mg, 0.25 mmol, 1.0 equiv) was dissolved in CH_2Cl_2 (2 mL) and TMSOTf (84 mg, 0.38 mmol, 1.5 equiv) and Et_3N (38 mg, 0.38 mmol, 1.5 equiv) were added successively. The mixture was refluxed for 4 hours and then cooled down to 0 °C. Under stirring the corresponding aldehyde (1.0 equiv) and $TiCl_4$ (14 mg, 0.075 mmol, 0.3 equiv) were added. The mixture was heated at 40 °C for 15 hours and subsequently quenched with ice-water (10 mL). The phases were separated, and the aqueous was extracted with CH_2Cl_2 (4 × 10 mL). The combined organic layers were dried with CH_2Cl_2 (4 × 10 mL). The reduced pressure. The crude product was analyzed by CH_2Cl_2 (4 × 10 mL). The and CH_2Cl_2 were separated by column chromatography (silica gel) and analyzed. The CH_2Cl_2 had CH_2Cl_2 derivatives and compared to the data of authentic anti-compounds synthesized by the boron mediated aldol reaction [1].

Octyl 3-hydroxy-3-(4-nitrophenyl)-2-(pentafluorosulfanyl)propanoate (2a/3a)

According to the general procedure, octyl 2-(pentafluorosulfanyl)acetate (84 mg, 0.28 mmol, 1.0 equiv) was reacted with 4-nitrobenzaldehyde (44 mg, 0.28 mmol, 1 equiv). Yield: 130 mg (crude; portion of aldol products: 53%; *syn/anti* ratio: 93:7 (¹⁹F NMR)). The crude product was purified by column chromatography (toluene/diethyl ether, 99:1) to give a colorless clear oil. Yield: 51 mg (40%; *syn/anti* ratio: 99:1 (¹⁹F NMR)).

$$O_{2}N^{15} \xrightarrow{14} OH O & 8 & 6 & 4 & 2 \\ O_{2}N^{15} \xrightarrow{14} SF_{5} & 7 & 5 & 3 & 1$$

¹H NMR (300 MHz, CDCl₃): δ 0.88 (t, ${}^3J_{H,H}$ = 6.8 Hz, 3H, 1-CH₃), 1.06 – 1.34 (m, 10H, 2-/3-/4-/5-/6-CH₂), 1.35 – 1.49 (m, 2H, 7-CH₂), 3.20 (s, 1H, OH), 3.92 (t, ${}^3J_{H,H}$ = 6.6 Hz, 2H, 8-CH₂), 4.75 (dqn, ${}^3J_{H,H}$ = 8.5 Hz, ${}^3J_{H,F}$ = 5.8 Hz, 1H, 10-CH), 5.57 (d, ${}^3J_{H,H}$ = 8.5 Hz, 1H, 11-CH), 7.61 (d, ${}^3J_{H,H}$ = 8.7 Hz, 2H, 13-/17-CH), 8.22 (d, ${}^3J_{H,H}$ = 8.8 Hz, 2H, 14-/16-CH). ¹³C NMR (100 MHz, CDCl₃): δ 14.2 (q, C-1), 22.7 (t, C-2), 25.6 (t, C-6), 28.1 (t, C-7), 29.1, 29.2 (t, C-4/-5), 31.8 (t, C-3), 67.7 (t, C-8), 71.9 (dqn, ${}^3J_{C,F}$ = 2.4 Hz, C-11), 85.7 (dqn, ${}^2J_{C,F}$ = 9.5 Hz, C-10), 124.1 (d, C-14/-16), 127.4 (d, C-13/-17), 146.4 (s, C-12), 148.1 (s, C-15), 165.4 (qn, ${}^3J_{C,F}$ = 2.8 Hz, C-9). ¹⁹F NMR (282 MHz, CDCl₃): δ 66.5 (dm, ${}^2J_{F,F}$ = 147.3 Hz, 4F, 10-SF₅), 79.7 (qn, ${}^2J_{F,F}$ = 147.1 Hz, 1F, 10-SF₅). MS-ES(+)-EM: m/z calcd. for C₁₇H₂₄F₅NO₅SNa⁺ 472.1188, found 472.1188 [M+Na]⁺.

$$\begin{array}{c} \text{OH} \quad \text{O} \\ \text{O} \\ \text{O}_{2} \\ \text{N} \\ \text{15} \\ \text{14} \\ \end{array} \begin{array}{c} \text{OH} \quad \text{O} \\ \text{O} \\ \text{O}_{3} \\ \text{N} \\ \text{SF}_{5} \\ \end{array} \begin{array}{c} \text{8} \\ \text{6} \\ \text{7} \\ \text{5} \\ \text{3} \\ \end{array} \begin{array}{c} \text{4} \\ \text{2} \\ \text{7} \\ \text{5} \\ \text{3} \\ \end{array} \begin{array}{c} \text{10} \\ \text{2} \\ \text{3a} \\ \end{array}$$

¹H NMR (300 MHz, CDCl₃): δ 0.88 (t, ³ $J_{H,H}$ = 6.8 Hz, 3H, 1-CH₃), 1.06 – 1.34 (m, 10H, 2-/3-/4-/5-/6-CH₂), 1.49 – 1.58 (m, 2H, 7-CH₂), 1.63 (s, 1H, OH), 4.03 – 4.23 (m, 2H, 8-CH₂), 4.63 (dqn, ³ $J_{H,F}$ = 5.9 Hz, ³ $J_{H,H}$ = 3.4 Hz, 1H, 10-CH), 5.63 (d, ³ $J_{H,H}$ = 3.3 Hz, 1H, 11-CH), 7.55 (d, ³ $J_{H,H}$ = 8.7 Hz, 2H, 13-/17-CH), 8.25 (d, ³ $J_{H,H}$ = 9.0 Hz, 2H, 14-/16-CH). ¹⁹F NMR (282 MHz, CDCl₃): δ 68.0 (dm, ² $J_{F,F}$ = 147.2 Hz, 4F, 10-SF₅), 80.2 (qn, ² $J_{F,F}$ = 147.3 Hz, 1F, 10-SF₅).

Octyl 3-hydroxy-2-(pentafluorosulfanyl)-3-phenylpropanoate (2b/3b)

According to the general procedure, octyl 2-(pentafluorosulfanyl)acetate (86 mg, 0.29 mmol, 1.0 equiv) was reacted with benzaldehyde (31 mg, 0.29 mmol, 1.0 equiv). Yield: 120 mg (crude, portion of aldol products: 44%; *syn/anti*-ratio 86:14 (¹⁹F NMR)). The crude product was purified by column chromatography (silica gel, toluene/diethyl ether, 99:1) to give a colorless oil. Yield: 35 mg (30%; *syn/anti*-ratio 93:7 (¹⁹F NMR)).

¹H NMR (300 MHz, CDCl₃): δ 0.89 (t, ${}^{3}J_{H,H}$ = 6.8 Hz, 3H, 1-CH₃), 1.03 – 1.39 (m, 12H, 2-/3-/4-/5-/6-/7-CH₂), 2.67 (s, 1H, OH), 3.69 – 3.91 (m, 2H, 8-CH₂), 4.78 (dqn, ${}^{3}J_{H,H}$ = 9.4 Hz, ${}^{3}J_{H,F}$ = 5.9 Hz, 1H, 10-CH), 5.43 (d, ${}^{3}J_{H,H}$ = 9.5 Hz, 1H, 11-CH), 7.28 – 7.44 (m, 5H, 13-/14-/15-/16-/17-CH). ¹³C NMR (100 MHz, CDCl₃): δ 14.2 (q, C-1), 22.8 (t, C-2), 25.7 (t, C-6), 28.0 (t, C-7), 29.1, 29.2 (t, C-4/-5), 31.9 (t, C-3), 66.6 (t, C-8), 73.7 (dqn, ${}^{3}J_{C,F}$ = 2.4 Hz, C-11), 90.2 (dqn, ${}^{2}J_{C,F}$ = 8.4 Hz, C-10), 127.8 (d, C-13/-17), 128.9 (d, C-14/-16), 129.4 (d, C-15), 138.4 (s, C-12), 163.7 (qn, ${}^{3}J_{C,F}$ = 3.1 Hz, C-9). ¹⁹F NMR (282 MHz, CDCl₃): δ 66.8 (dm, ${}^{2}J_{F,F}$ = 146.5 Hz, 4F, 10-SF₅), 81.6 (qn, ${}^{2}J_{F,F}$ = 147.3 Hz, 1F, 10-SF₅). MS-ES(+)-EM: m/z calcd. for C₁₇H₂₅F₅O₃SNa⁺ 427.1337; found: 427.1338 [M+Na]⁺.

¹H NMR (300 MHz, CDCl₃): δ 0.89 (t, ³J_{H,H} = 6.8 Hz, 3H, 1-CH₃), 1.03 – 1.39 (m, 10H, 2-/3-/4-/5-/6-CH₂), 1.45 – 1.54 (m, 2H, 7-CH₂), 1.60 (s, 1H, OH), 4.06 – 4.13 (m, 2H, 8-CH₂), 4.66 (dqn, ³J_{H,F} = 6.4 Hz, ³J_{H,H} = 3.6 Hz, 1H, 10-CH), 5.50 (d, ³J_{H,H} = 3.5 Hz, 1H, 11-CH), 7.28 – 7.44 (m, 5H, 13-/14-/15-/16-/17-CH). ¹⁹F NMR (282 MHz, CDCl₃): δ 66.0 (dm, ²J_{F,F} = 147.2 Hz, 4F, 10-SF₅), 80.4 (qn, ²J_{F,F} = 147.1 Hz, 1F, 10-SF₅). Spectra agree to those of an authentic sample.¹

Octyl 3-(4-fluorophenyl)-3-hydroxy-2-(pentafluorosulfanyl)propanoate (2c/3c)

According to the general procedure, octyl 2-(pentafluorosulfanyl)acetate (80 mg, 0.27 mmol, 1.0 equiv) was reacted with 4-fluorobenzaldehyde (34 mg, 0.27 mmol, 1.0 equiv). Yield: 115 mg (crude, portion of aldol products: 44%; *syn/anti*-ratio 86:14 (¹⁹F NMR)). The crude product was purified by column chromatography (silica gel, toluene/diethyl ether, 99:1) to give a colorless oil. Yield: 42 mg (37%; *syn/anti*-ratio 91:9 (¹⁹F NMR)).

¹H NMR (300 MHz, CDCl₃): δ 0.89 (t, ${}^{3}J_{H,H}$ = 6.8 Hz, 3H, 1-CH₃), 1.06 – 1.45 (m, 12H, 2-/3-/4-/5-/6-/7-CH₂), 2.73 (s, 1H, OH), 3.75 – 3.94 (m, 2H, 8-CH₂), 4.71 (dqn, ${}^{3}J_{H,H}$ = 9.4 Hz, ${}^{3}J_{H,F}$ = 5.8 Hz, 1H, 10-CH), 5.44 (d, ${}^{3}J_{H,H}$ = 9.4 Hz, 1H, 11-CH), 6.96 – 7.12 (m, 2H, 14-/16-

CH), 7.27 - 7.46 (m, 2H, 13-/17-CH). ¹³**C NMR** (100 MHz, CDCl₃): δ 14.2 (q, C-1), 22.8 (t, C-2), 25.7 (t, C-6), 28.1 (t, C-7), 29.1, 29.2 (t, C-4/-5), 31.9 (t, C-3), 66.7 (t, C-8), 73.0 (dqn, ${}^3J_{\text{C,F}} = 2.2$ Hz, C-11), 90.1 (dqn, ${}^2J_{\text{C,F}} = 8.5$ Hz, C-10), 115.8 (dd, ${}^2J_{\text{C,F}} = 21.7$ Hz, C-14/-16), 129.7 (dd, ${}^3J_{\text{C,F}} = 8.4$ Hz, C-13/-17), 134.2 (qn, ${}^4J_{\text{C,F}} = 1.4$ Hz, C-12), 163.1 (d, ${}^1J_{\text{C,F}} = 248.8$ Hz, C-15), 163.7 (qn, ${}^3J_{\text{C,F}} = 2.8$ Hz, C-9). ¹⁹**F NMR** (282 MHz, CDCl₃): δ -112.3 (tt, ${}^3J_{\text{H,F}} = 8.5$ Hz, ${}^4J_{\text{H,F}} = 5.3$ Hz, 1F, 15-CF), 66.9 (dm, ${}^2J_{\text{F,F}} = 146.6$ Hz, 4F, 10-SF₅), 81.5 (qn, ${}^2J_{\text{F,F}} = 147.0$ Hz, 1F, 10-SF₅). **MS-ES(+)-EM**: m/z calcd. for C₁₇H₂₄F₆O₃SNa⁺ 445.1243, found 445.1237 [M+Na]⁺.

OH O 8 6 4 2

$$17 \times 10^{-17} \times 1$$

¹H NMR (300 MHz, CDCl₃): δ 0.89 (t, ³ $J_{H,H}$ = 6.8 Hz, 3H, 1-CH₃), 1.06 – 1.45 (m, 10H, 2-/3-/4-/5-/6-CH₂), 1.45 – 1.58 (m, 2H, 7-CH₂), 4.06 – 4.18 (m, 2H, 8-CH₂), 4.61 (dqn, ³ $J_{H,F}$ = 6.4 Hz, ³ $J_{H,H}$ = 3.8 Hz, 1H, 10-CH), 5.49 (d, ³ $J_{H,H}$ = 3.8 Hz 1H, 11-CH), 6.96 – 7.12 (m, 2H, 14-/16-CH), 7.27 – 7.46 (m, 2H, 13-/17-CH). ¹⁹F NMR (282 MHz, CDCl₃): δ -113.6 (tt, ³ $J_{H,F}$ = 8.5 Hz, ⁴ $J_{H,F}$ = 5.1 Hz, 1F, 15-CF), 66.2 (dm, ² $J_{F,F}$ = 147.3 Hz, 4F, 10-SF₅), 80.3 (qn, ² $J_{F,F}$ = 147.4 Hz, 1F, 10-SF₅). Spectra agree to those of an authentic sample. ¹

Octyl 3-(4-chlorophenyl)-3-hydroxy-2-(pentafluorosulfanyl)propanoates (2d/3d)

According to the general procedure, octyl 2-(pentafluorosulfanyl)acetate (80 mg, 0.27 mmol, 1.0 equiv) was reacted with 4-chlorobenzaldehyde (38 mg, 0.27 mmol, 1 equiv). Yield: 120 mg (crude, portion of aldol products: 38%; *syn/anti*-ratio 81:19 (¹⁹F NMR)). The crude product was purified by column chromatography (silica gel, toluene/diethyl ether, 99:1) to give a colorless oil. Yield: 22 mg (19%; *syn/anti*-ratio 87:13 (¹⁹F NMR)).

OH O 8 6 4 2

$$CI = 15$$
 13
 SF_5
 $2d$

¹H NMR (300 MHz, CDCl₃): δ 0.89 (t, ${}^{3}J_{H,H}$ = 6.9 Hz, 3H, 1-CH₃), 1.05 – 1.41 (m, 12H, 2-/3-/4-/5-/6-/7-CH₂), 2.74 (s, 1H, OH), 3.77 – 3.94 (m, 2H, 8-CH₂), 4.71 (dqn, ${}^{3}J_{H,H}$ = 9.3 Hz, ${}^{3}J_{H,F}$ = 5.9 Hz, 1H, 10-CH), 5.43 (d, ${}^{3}J_{H,H}$ = 9.3 Hz, 1H, 11-CH), 7.27 – 7.39 (m, 4H, 13-/14-/16-/17-CH). ¹³C NMR (100 MHz, CDCl₃): δ 14.2 (q, C-1), 22.8 (t, C-2), 25.7 (t, C-6), 28.1 (t, C-7), 29.1, 29.2 (t, C-4/-5), 31.9 (t, C-3), 66.8 (t, C-8), 73.1 (dqn, ${}^{3}J_{C,F}$ = 2.2 Hz, C-11), 89.9 (dqn, ${}^{2}J_{C,F}$ = 8.9 Hz, C-10), 129.1 (d, C-14/-16), 129.2 (d, C-13/-17), 135.3 (s, C-15), 136.8 (qn, ${}^{4}J_{C,F}$ = 1.4 Hz, C-12), 163.7 (qn, ${}^{3}J_{C,F}$ = 3.2 Hz, C-9). ¹⁹F NMR (282 MHz, CDCl₃): δ 67.0

(dm, ${}^2J_{F,F}$ = 146.5 Hz, 4F, 10-SF₅), 81.4 (qn, ${}^2J_{F,F}$ = 146.8 Hz, 1F, 10-SF₅). **MS-ES(+)-EM**: m/z calcd. for $C_{17}H_{24}ClF_5O_3SNa^+$ 461.0947; found: 461.0942 [M+Na]⁺.

OH O 8 6 4 2

$$16 \begin{array}{c} 17 \\ 12 \\ 11 \\ \hline \\ 13 \end{array} \begin{array}{c} 17 \\ \hline \\ \hline \\ \hline \\ SF_5 \end{array}$$
3d

¹H NMR (300 MHz, CDCl₃): δ 0.89 (t, ³ $J_{H,H}$ = 6.9 Hz, 3H, 1-CH₃), 1.05 – 1.41 (m, 10H, 2-/3-/4-/5-/6-CH₂), 1.46 – 1.57 (m, 2H, 7-CH₂), 4.06 – 4.18 (m, 2H, 8-CH₂), 4.60 (dqn, ³ $J_{H,F}$ = 6.4 Hz, ³ $J_{H,H}$ = 3.7 Hz, 1H, 10-CH), 5.49 (s, ³ $J_{H,H}$ = 3.7 Hz, 1H, 11-CH), 7.27 – 7.39 (m, 4H, 13-/14-/16-/17-CH). ¹⁹F NMR (282 MHz, CDCl₃): δ 66.2 (dm, ² $J_{F,F}$ = 147.1 Hz, 4F, 10-SF₅), 80.2 (qn, ² $J_{F,F}$ = 147.1 Hz, 1F, 10-SF₅).

Octyl 3-(4-bromophenyl)-3-hydroxy-2-(pentafluorosulfanyl)propanoate (2e/3e)

According to the general procedure, octyl 2-(pentafluorosulfanyl)acetate (80 mg, 0.27 mmol, 1.0 equiv) was reacted with 4-bromobenzaldehyde (50 mg, 0.27 mmol, 1.0 equiv). Yield: 142 mg (crude, portion of aldol products: 39%; *syn/anti*-ratio 83:17 (¹⁹F NMR)). The crude product was purified by column chromatography (silica gel, pentane/toluene, 50:50) to give a colorless oil. Yield: 26 mg (19%; *syn/anti*-ratio 86:14 (¹⁹F NMR)).

¹H NMR (300 MHz, CDCl₃): δ 0.89 (t, ${}^3J_{H,H}$ = 6.8 Hz, 3H, 1-CH₃), 1.08 – 1.44 (m, 12H, 2-/3-/4-/5-/6-/7-CH₂), 2.74 (s, 1H, OH), 3.77 – 3.95 (m, 2H, 8-CH₂), 4.70 (dqn, ${}^3J_{H,H}$ = 9.3 Hz, ${}^3J_{H,F}$ = 5.8 Hz, 1H, 10-CH), 5.42 (d, ${}^3J_{H,H}$ = 9.3 Hz, 1H, 11-CH), 7.18 – 7.31 (m, 2H, 13-/17-CH), 7.44 – 7.55 (m, 2H, 14-/16-CH). ¹³C NMR (100 MHz, CDCl₃): δ 14.2 (q, C-1), 22.8 (t, C-2), 25.7 (t, C-6), 28.1 (t, C-7), 29.2, 29.2 (t, C-4/-5), 31.9 (t, C-3), 66.8 (t, C-8), 73.1 (dqn, ${}^3J_{C,F}$ = 2.4 Hz, C-11), 89.8 (dqn, ${}^2J_{C,F}$ = 8.7 Hz, C-10), 123.5 (s, C-15), 129.5 (d, C-13/-17), 132.0 (d, C-14/-16), 137.3 (s, C-12), 163.7 (qn, ${}^3J_{C,F}$ = 3.2 Hz, C-9). ¹⁹F NMR (282 MHz, CDCl₃): δ 67.0 (dm, ${}^2J_{F,F}$ = 146.8 Hz, 4F, 10-SF₅), 81.4 (qn, ${}^2J_{F,F}$ = 148.5 Hz, 1F, 10-SF₅). MS-ES(+)-EM: m/z calcd. for C₁₇H₂₄[⁷⁹Br]F₅O₃SNa⁺ 505.0442; found: 505.0456 [M+Na]⁺.

¹H NMR (300 MHz, CDCl₃): δ 0.89 (t, ³J_{H,H} = 6.8 Hz, 3H, 1-CH₃), 1.08 – 1.44 (m, 10H, 2-/3-/4-/5-/6-CH₂), 1.47 – 1.56 (m, 2H, 7-CH₂), 1.58 (s, 1H, OH), 4.08 – 4.16 (m, 2H, 8-CH₂), 4.60 (dqn, ³J_{H,F} = 6.4 Hz, ³J_{H,H} = 3.6 Hz, 1H, 10-CH), 5.49 (d, ³J_{H,H} = 3.6 Hz, 1H, 11-CH), 7.18 – 7.31 (m, 2H, 13-/17-CH), 7.44 – 7.55 (m, 2H, 14-/16-CH). ¹⁹F NMR (282 MHz, CDCl₃): δ 66.2 (dm, ²J_{F,F} = 149.8 Hz, 4F, 10-SF₅), 80.2 (qn, ²J_{F,F} = 149.9 Hz, 1F, 10-SF₅). Spectra agree to those of an authentic sample.¹

Octyl 3-hydroxy-2-(pentafluorosulfanyl)-3-[4-(pentafluorosulfanyl)phenyl]propanoate (2f/3f)

According to the general procedure, octyl 2-(pentafluorosulfanyl)acetate (80 mg, 0.27 mmol, 1.0 equiv) was reacted with 4-(pentafluorosulfanyl)benzaldehyde (63 mg, 0.27 mmol, 1 equiv). Yield: 155 mg (crude, portion of aldol products: 42%; *syn/anti-*ratio 95:5 (¹⁹F NMR)). The crude product was purified by column chromatography (silica gel, pentane/toluene, 50:50) to give a colorless oil. Yield: 34 mg (22%; *syn/anti-*ratio 95:5 (¹⁹F NMR)).

¹H NMR (300 MHz, CDCl₃): δ 0.88 (t, ${}^3J_{\text{H,H}}$ = 7.0 Hz, 3H, 1-CH₃), 1.07 – 1.45 (m, 12H, 2-/3-/4-/5-/6-/7-CH₂), 2.98 (s, 1H, OH), 3.82 – 3.93 (m, 2H, 8-CH₂), 4.73 (dqn, ${}^3J_{\text{H,H}}$ = 8.8 Hz, ${}^3J_{\text{H,F}}$ = 5.7 Hz, 1H, 10-CH), 5.51 (d, ${}^3J_{\text{H,H}}$ = 8.8 Hz, 1H, 11-CH), 7.52 (d, ${}^3J_{\text{H,H}}$ = 8.4 Hz, 2H, 13-/17-CH). 7.70 – 7.81 (m, 2H, 14-/16-CH). ¹³C NMR (100 MHz, CDCl₃): δ 14.2 (q, C-1), 22.7 (t, C-2), 25.6 (t, C-6), 28.0 (t, C-7), 29.0, 29.2 (t, C-4/-5), 31.8 (t, C-3), 67.1 (t, C-8), 72.8 (dqn, ${}^3J_{\text{C,F}}$ = 1.9 Hz, C-11), 89.4 (dqn, ${}^2J_{\text{C,F}}$ = 8.9 Hz, C-10), 126.5 (dqn, ${}^3J_{\text{C,F}}$ = 4.3 Hz, C-14/-16), 128.2 (d, C-13/-17), 142.0 (s, C-12), 154.2 (qn, ${}^2J_{\text{C,F}}$ = 16.6 Hz, C-15), 163.9 (qn, ${}^3J_{\text{C,F}}$ = 3.2 Hz, C-9). ¹⁹F NMR (282 MHz, CDCl₃): δ 62.2 (dm, ${}^2J_{\text{F,F}}$ = 150.4 Hz, 4F, 15-SF₅), 67.6 (dm, ${}^2J_{\text{F,F}}$ = 147.1 Hz, 4F, 10-SF₅), 81.0 (qn, ${}^2J_{\text{F,F}}$ = 146.8 Hz, 1F, 10-SF₅), 83.1 (qn, ${}^2J_{\text{F,F}}$ = 149.9 Hz, 1F, 15-SF₅). MS-ES(+)-EM: m/z calcd. for C₁₇H₂₄F₁₀O₃S₂Na⁺ 553.0899; found: 553.0901 [M+Na]⁺.

¹H NMR (300 MHz, CDCl₃): δ 0.88 (t, ³ $J_{H,H}$ = 7.0 Hz, 3H, 1-CH₃), 1.07 – 1.45 (m, 10H, 2-/3-/4-/5-/6-CH₂), 1.46 – 1.58 (qn, 2H, 7-CH₂), 1.59 (s, 1H, OH), 4.02 – 4.27 (m, 2H, 8-CH₂), 4.63 (dqn, ³ $J_{H,F}$ = 6.2 Hz, ³ $J_{H,H}$ = 3.7 Hz, 1H, 10-CH), 5.57 (s, 1H, ³ $J_{H,H}$ = 3.7 Hz, 11-CH), 7.45 (d,

 $^{3}J_{H,H}$ = 8.4 Hz, 2H, 13-/17-CH). 7.70 – 7.81 (m, 2H, 14-/16-CH). ¹⁹**F NMR** (282 MHz, CDCl₃): δ 62.3 (dm, $^{2}J_{F,F}$ = 150.4 Hz, 4F, 15-SF₅), 66.3 (dm, $^{2}J_{F,F}$ = 147.4 Hz, 4F, 10-SF₅), 79.8 (qn, $^{2}J_{F,F}$ = 147.7 Hz, 1F, 10-SF₅), 83.6 (qn, $^{2}J_{F,F}$ = 150.3 Hz, 1F, 15-SF₅). Spectra agree with those of an authentic sample.¹

Octyl (E)-3-(4-methylphenyl)-2-(pentafluorosulfanyl)acrylate (4g)

According to the general procedure, octyl 2-(pentafluorosulfanyl)acetate (75 mg, 0.25 mmol, 1.0 equiv) was reacted with 4-methylbenzaldehyde (30 mg, 0.25 mmol, 1.0 equiv). Instead of the expected aldol addition product, the corresponding condensation product was found exclusively. The product was purified by column chromatography (silica gel, pentane/diethyl ether, 30:1) and a second chromatography (pentane/toluene, 5:1) to give a colorless oil. Yield: 31 mg (32%).

¹H NMR (400 MHz, CDCl₃): δ 0.88 (t, ${}^3J_{H,H}$ = 7.0 Hz, 3H, 1-CH₃), 1.10 – 1.33 (m, 10H, 2-/3-/4-/5-/6-CH₂), 1.50 – 1.60 (m, 2H, 7-CH₂), 2.37 (s, 3H, 18-CH₃), 4.18 (t, ${}^3J_{H,H}$ = 6.6 Hz, 2H, 8-CH₂), 7.17 – 7.25 (m, 4H, 13-/14-/16-/17-CH), 7.45 (s, 1H, 11H). ¹³C NMR (100 MHz, CDCl₃): δ 14.2 (q, C-1), 21.6 (q, C-18), 22.8 (t, C-2), 25.8 (t, C-6), 28.1 (t, C-7), 29.2, 29.2 (t, C-4/-5), 31.9 (t, C-3), 67.2 (t, C-8), 128.3 (s, C-12), 128.9 (d, C-13/-17), 129.8 (d, C-14/-16), 136.9 (dqn, ${}^3J_{C,F}$ = 5.9 Hz, C-11), 146.0 (qn, ${}^2J_{C,F}$ = 17.5 Hz, C-10), 141.2 (s, C-15), 163.0 (qn, ${}^3J_{C,F}$ = 2.1 Hz, C-9). ¹⁹F NMR (282 MHz, CDCl₃): δ 64.5 (dm, ${}^2J_{F,F}$ = 150.9 Hz, 4F, 10-SF₅), 81.7 (qn, ${}^2J_{F,F}$ = 151.0 Hz, 1F, 10-SF₅). MS-ES(+)-EM: m/z calcd. for C₁₈H₂₅F₅O₃SNa⁺ 423.1388; found: 423.1386 [M+Na]⁺.

Octyl (E)-3-(4-methoxyphenyl)-2-(pentafluorosulfanyl)acrylate (4h)

According to the general procedure, octyl 2-(pentafluorosulfanyl)acetate (80 mg, 0.27 mmol, 1.0 equiv) was reacted with 4-methoxybenzaldehyde (37 mg, 0.27 mmol, 1.0 equiv). Instead of the expected aldol addition product, the corresponding condensation product was found exclusively. The product was purified by column chromatography (silica gel, pentane/diethyl ether, 30:1) to give a colorless oil. Yield: 40 mg (36%).

¹H NMR (300 MHz, CDCl₃): δ 0.87 (t, ³ $J_{H,H}$ = 6.8 Hz, 3H, 1-CH₃), 1.14 – 1.34 (m, 10H, 2-/3-/4-/5-/6-CH₂), 1.51 – 1.66 (m, 2H, 7-CH₂), 3.83 (s, 3H, 18-CH₃), 4.21 (t, ³ $J_{H,H}$ = 6.6 Hz, 2H, 8-CH₂), 6.84 – 6.94 (m, 2H, 14-/16-CH), 7.25 – 7.33 (m, 2H, 13-/17-CH), 7.41 (s, 1H, 11-CH). ¹³C NMR (100 MHz, CDCl₃): δ 14.2 (q, C-1), 22.8 (t, C-2), 25.8 (t, C-6), 28.2 (t, C-7), 29.2, 29.2 (t, C-4/-5), 31.9 (t, C-3), 55.5 (q, C-18), 67.1 (t, C-8), 114.5 (d, C-14/-16), 123.4 (s, C-12), 130.8 (d, C-13/-17), 136.5 (dqn, ³ $J_{C,F}$ = 6.0 Hz, C-11), 144.8 (qn, ² $J_{C,F}$ = 17.6 Hz, C-10), 161.7 (s, C-15), 163.3 (qn, ³ $J_{C,F}$ = 3.0 Hz, C-9). ¹⁹F NMR (282 MHz, CDCl₃): δ 64.8 (dm, ² $J_{F,F}$ = 151.0 Hz, 4F, 10-SF₅), 82.2 (qn, ² $J_{F,F}$ = 151.6 Hz, 1F, 10-SF₅). MS-ES(+)-EM: m/z calcd. for C₁₈H₂₅F₅O₃SNa⁺ 439.1337; found: 439.1337 [M+Na]⁺.

Octyl (E)-3-(4-ethoxyphenyl)-2-(pentafluorsulfanyl)acrylate (4i)

According to the general procedure, octyl 2-(pentafluorosulfanyl)acetate (80 mg, 0.27 mmol, 1.0 equiv) was reacted with 4-ethoxybenzaldehyde (41 mg, 0.27 mmol, 1.0 equiv). Instead of the expected aldol addition product, the corresponding condensation product was found exclusively. The product was purified by column chromatography (silica gel, pentane/diethyl ether, 30:1) and a second chromatography (pentane/toluene, 5:1) to give a colorless oil. Yield: 42 mg (36%).

¹H NMR (300 MHz, CDCl₃): δ 0.87 (t, ³ $J_{H,H}$ = 6.8 Hz, 3H, 1-CH₃), 1.12 – 1.35 (m, 10H, 2-/3-/4-/5-/6-CH₂), 1.46 (t, ³ $J_{H,H}$ = 7.0 Hz, 19-CH₃), 1.52 – 1.66 (m, 2H, 7-CH₂), 4.05 (q, ³ $J_{H,H}$ = 7.0 Hz, 18-CH₂), 4.20 (t, ³ $J_{H,H}$ = 6.6 Hz, 2H, 8-CH₂), 6.87 (d, ³ $J_{H,H}$ = 8.8 Hz, 2H, 14-/16-CH), 7.28 (d, ³ $J_{H,H}$ = 8.7 Hz, 2H, 13-/17-CH), 7.41 (s, 1H, 11-CH). ¹³C NMR (100 MHz, CDCl₃): δ 14.2 (q, C-1), 14.8 (q, C-19), 22.8 (t, C-2), 25.8 (t, C-6), 28.2 (t, C-7), 29.21, 29.24 (t, C-4/-5), 31.9 (t, C-3), 63.8 (t, C-18), 67.1 (t, C-8), 115.0 (d, C-14/-16), 123.1 (s, C-12), 130.9 (d, C-13/-17), 136.6 (dqn, ³ $J_{C,F}$ = 5.8 Hz, C-11), 144.6 (qn, ² $J_{C,F}$ = 17.0 Hz, C-10), 161.1 (s, C-15), 163.3 (qn, ³ $J_{C,F}$ = 1.9 Hz, C-9). ¹⁹F NMR (282 MHz, CDCl₃): δ 64.8 (dm,

 $^{2}J_{F,F}$ = 151.0 Hz, 4F, 10-SF₅), 82.3 (qn, $^{2}J_{F,F}$ = 150.3 Hz, 1F, 10-SF₅). **MS-ES(+)-EM**: m/z calcd. for C₁₉H₂₇F₅O₃SNa⁺ 453.1493; found: 453.1482 [M+Na]⁺.

Octyl 3-hydroxy-3-(3-nitrophenyl)-2-(pentafluorosulfanyl)propanoate (2j/3j)

According to the general procedure, octyl 2-(pentafluorosulfanyl)acetate (80 mg, 0.27 mmol, 1.0 equiv) was reacted with 3-nitrobenzaldehyde (41 mg, 0.27 mmol, 1.0 equiv). Yield: 129 mg (crude, portion of aldol products: 61%; *syn/anti*-ratio 90:10 (¹⁹F NMR)). The crude product was purified by column chromatography (silica gel, toluene/diethyl ether, 99:1) and second chromatography (cyclohexane/ethyl acetate, 2:1) to give a colorless oil. Yield: 52 mg (44%; *syn/anti*-ratio 90:10 (¹⁹F NMR)).

¹H NMR (300 MHz, CDCl₃): δ 0.87 (t, ${}^{3}J_{H,H}$ = 6.7 Hz, 3H, 1-CH₃), 1.04 – 1.48 (m, 12H, 2-/3-/4-/5-/6-/7-CH₂), 2.96 (s, 1H, OH), 3.91 (t, ${}^{3}J_{H,H}$ = 6.7 Hz, 2H, 8-CH₂), 4.76 (dqn, ${}^{3}J_{H,H}$ = 8.7 Hz, ${}^{3}J_{H,F}$ = 5.8 Hz, 1H, 10-CH), 5.58 (d, ${}^{3}J_{H,H}$ = 8.7 Hz, 1H, 11-CH), 7.56 (m, 1H, 16-CH), 7.77 (m, 1H, 17-CH), 8.21 (m, 1H, 15-CH), 8.31 (t, ${}^{4}J_{H,H}$ = ${}^{4}J_{H,H}$ = 2.0 Hz, 1H, 13-CH). ¹³C NMR (100 MHz, CDCl₃): δ 14.2 (q, C-1), 22.7 (t, C-2), 25.6 (t, C-6), 28.0 (t, C-7), 29.1, 29.2 (t, C-4/-5), 31.8 (t, C-3), 67.2 (t, C-8), 72.7 (d, C-11), 89.3 (dqn, ${}^{2}J_{C,F}$ = 9.1 Hz, C-10), 122.8 (d, C-13), 124.1 (d, C-15), 129.8 (d, C-16), 133.9 (d, C-17), 140.5 (s, C-12), 148.3 (s, C-14), 163.9 (qn, ${}^{3}J_{C,F}$ = 3.0 Hz, C-9). ¹⁹F NMR (282 MHz, CDCl₃): δ 67.9 (dm, ${}^{2}J_{F,F}$ = 146.8 Hz, 4F, 10-SF₅), 80.9 (qn, ${}^{2}J_{F,F}$ = 147.3 Hz, 1F, 10-SF₅). MS-ES(+)-EM: m/z calcd. for C₁₇H₂₄F₅NO₅SNa⁺ 472.1188; found: 472.1184 [M+Na]⁺.

OH O 8 6 4 2

$$15 \frac{17}{13} \frac{12}{11} \frac{10}{5} \frac{9}{5} 0 \frac{8}{7} \frac{6}{5} \frac{4}{3} \frac{2}{3}$$

NO₂

3i

¹H NMR (300 MHz, CDCl₃): δ 0.88 (t, ${}^{3}J_{H,H}$ = 6.7 Hz, 3H, 1-CH₃), 1.04 – 1.48 (m, 10H, 2-/3-/4-/5-/6-CH₂), 1.48 – 1.60 (m, 2H, 7-CH₂), 4.16 (m, 2H, 8-CH₂), 4.66 (dqn, ${}^{3}J_{H,F}$ = 6.2 Hz, ${}^{3}J_{H,H}$ = 4.2 Hz, 1H, 10-CH), 5.62 (d, ${}^{3}J_{H,H}$ = 4.2 Hz, 1H, 11-CH), 7.50- 7.64 (m, 1H, 16-CH), 7.69 – 7.82 (m, 1H, 17-CH), 8.16 – 8.27 (m, 1H, 15-CH), 8.31 (t, ${}^{4}J_{H,H}$ = ${}^{4}J_{H,H}$ = 2.0 Hz, 1H, 13-CH). ¹⁹F NMR (282 MHz, CDCl₃): δ 66.6 (dm, ${}^{2}J_{F,F}$ = 147.3 Hz, 4F, 10-SF₅), 79.8 (qn, ${}^{2}J_{F,F}$ = 147.3 Hz, 1F, 10-SF₅).

Octyl 3-hydroxy-3-(3-methylyphenyl)-2-(pentafluorosulfanyl)propanoate (2k/3k)

According to the general procedure, octyl 2-(pentafluorosulfanyl)acetate (80 mg, 0.27 mmol, 1.0 equiv) was reacted with 3-methylbenzaldehyde (32 mg, 0.27 mmol, 1.0 equiv). Yield: 125 mg (crude, portion of aldol products: 57%; *syn/anti*-ratio 73:27 (¹⁹F NMR)). The crude product was purified by column chromatography (silica gel, toluene/diethyl ether, 99:1) to give a colorless oil. Yield: 45 mg (41%, *syn/anti*-ratio 84:16 (¹⁹F NMR)).

¹H NMR (300 MHz, CDCl₃): δ 0.89 (t, ${}^3J_{H,H}$ = 6.9 Hz, 3H, 1-CH₃), 1.04 – 1.39 (m, 12H, 2-/3-/4-/5-/6-/7-CH₂), 2.36 (s, 3H, 18-CH₃), 2.62 (s, 1H, OH), 3.70 – 3.91 (m, 2H, 8-CH₂), 4.77 (dqn, ${}^3J_{H,H}$ = 9.5 Hz, ${}^3J_{H,F}$ = 5.9 Hz, 1H, 10-CH), 5.39 (d, ${}^3J_{H,H}$ = 9.6 Hz, 1H, 11-CH), 7.07 – 7.30 (m, 4H, 13-/15-/16/-17-CH). ¹³C NMR (100 MHz, CDCl₃): δ 14.2 (q, C-1), 21.5 (q, C-18), 22.8 (t, C-2), 25.7 (t, C-6), 28.0 (t, C-7), 29.2, 29.2 (t, C-4/-5), 31.9 (t, C-3), 66.6 (t, C-8), 73.7 (dqn, ${}^3J_{C,F}$ = 2.4 Hz, C-11), 90.2 (dqn, ${}^2J_{C,F}$ = 8.2 Hz, C-10), 124.9 (d, C-17), 128.4 (d, C-13), 128.8 (d, C-16), 130.2 (d, C-15), 138.3 (s, C-12), 138.6 (s, C-14), 163.7 (qn, ${}^3J_{C,F}$ = 3.2 Hz, C-9). ¹⁹F NMR (282 MHz, CDCl₃): δ 66.7 (dm, ${}^2J_{F,F}$ = 146.5 Hz, 4F, 10-SF₅), 81.7 (qn, ${}^2J_{F,F}$ = 145.8 Hz, 1F, 10-SF₅). MS-ES(+)-EM: m/z calcd. for C₁₈H₂₇F₅O₃SNa⁺ 441.1493; found: 441.1485 [M+Na]⁺.

¹H NMR (300 MHz, CDCl₃): δ 0.89 (t, ³J_{H,H} = 6.9 Hz, 3H, 1-CH₃), 1.04 – 1.39 (m, 10H, 2-/3-/4-/5-/6-CH₂), 1.39 – 1.57 (m, 2H, 7-CH₂), 2.34 (s, 3H, 18-CH₃), 4.10 (t, ³J_{H,H} = 6.6 Hz, 2H, 8-CH₂), 4.65 (dqn, ³J_{H,F} = 6.5 Hz, ³J_{H,H} = 3.5 Hz, 1H, 10-CH), 5.47 (s, ³J_{H,H} = 3.5 Hz, 1H, 11-CH), 7.07 – 7.30 (m, 4H, 13-/15-/16/-17-CH). ¹⁹F NMR (282 MHz, CDCl₃): δ 66.0 (dm, ²J_{F,F} = 147.2 Hz, 4F, 10-SF₅), 80.5 (qn, ²J_{F,F} = 147.2 Hz, 1F, 10-SF₅).

Octy 3-hydroxy-3-(3-methoxyphenyl)-2-(pentafluorosulfanyl)propanoate (2l/3l)

According to the general procedure, octyl 2-(pentafluorosulfanyl)acetate (80 mg, 0.27 mmol, 1.0 equiv) was reacted with 3-methoxybenzaldehyd (37 mg, 0.27 mmol, 1.0 equiv). Yield: 143 mg (crude, portion of aldol products: 35%; *syn/anti*-ratio 88:12 (¹⁹F NMR)). The crude product was purified by column chromatography (silica gel, toluene/diethyl ether, 99:1) to give a colorless oil. Yield: 31 mg (26%, *syn/anti*-ratio 99:1 (¹⁹F NMR)).

¹H NMR (300 MHz, CDCl₃): δ 0.89 (t, ³ $J_{H,H}$ = 6.9 Hz, 3H, 1-CH₃), 1.06 – 1.43 (m, 12H, 2-/3-/4-/5-/6-/7-CH₂), 2.65 (s, 1H, OH), 3.76 – 3.92 (m, 2H, 8-CH₂), 3.80 (s, 3H, 18-CH₃), 4.77 (dqn, ³ $J_{H,H}$ = 9.4 Hz, ³ $J_{H,F}$ = 5.9 Hz, 1H, 10-CH), 5.41 (d, ³ $J_{H,H}$ = 9.5 Hz, 1H, 11-CH), 6.86 (ddd, ³ $J_{H,H}$ = 8.2 Hz, ⁴ $J_{H,H}$ = 2.6 Hz, ⁴ $J_{H,H}$ = 1.0 Hz, 1H, 15-CH), 6.90 – 6.98 (m, 2H, 13-/17-CH), 7.21 – 7.30 (m, 1H, 16-CH). ¹³C NMR (100 MHz, CDCl₃): δ 14.2 (q, C-1), 22.8 (t, C-2), 25.7 (t, C-6), 28.0 (t, C-7), 29.2, 29.2 (t, C-4/-5), 31.9 (t, C-3), 55.4 (q, C-18), 66.6 (t, C-8), 73.6 (dqn, ³ $J_{C,F}$ = 2.4 Hz, C-11), 90.1 (dqn, ² $J_{C,F}$ = 8.4 Hz, C-10), 113.2 (d, C-13), 115.1 (d, C-15), 120.0 (d, C-17), 129.9 (d, C-16), 139.8 (s, C-12), 159.9 (s, C-14), 163.7 (qn, ³ $J_{C,F}$ = 3.1 Hz, C-9). ¹⁹F NMR (282 MHz, CDCl₃): δ 66.8 (dm, ² $J_{F,F}$ = 146.6 Hz, 4F, 10-SF₅), 81.6 (qn, ² $J_{F,F}$ = 146.8 Hz, 1F, 10-SF₅). MS-ES(+)-EM: m/z calcd. for C₁₈H₂₇F₅O₄SNa⁺ 457.1442; found: 457.1446 [M+Na]⁺.

¹H NMR (300 MHz, CDCl₃): δ 0.89 (t, ${}^{3}J_{H,H}$ = 6.9 Hz, 3H, 1-CH₃), 1.06 – 1.43 (m, 12H, 2-/3-/4-/5-/6-/7-CH₂), 1.60 (s, 1H, OH), 3.80 (s, 3H, 18-CH₃), 4.08 – 4.14 (m, 2H, 8-CH₂), 4.66 (dqn, ${}^{3}J_{H,F}$ = 6.4 Hz, ${}^{3}J_{H,H}$ = 3.3 Hz, 1H, 10-CH), 5.47 (d, ${}^{3}J_{H,H}$ = 3.3 Hz, 1H, 11-CH), 6.86 (ddd, ${}^{3}J_{H,H}$ = 8.2 Hz, ${}^{4}J_{H,H}$ = 2.6 Hz, ${}^{4}J_{H,H}$ = 1.0 Hz, 1H, 15-CH), 6.90 – 6.98 (m, 2H, 13-/17-CH), 7.21 – 7.30 (m, 1H, 16-CH). ¹⁹F NMR (282 MHz, CDCl₃): δ 65.9 (dm, ${}^{2}J_{F,F}$ = 146.4 Hz, 4F, 10-SF₅), 80.4 (qn, ${}^{2}J_{F,F}$ = 146.4 Hz, 1F, 10-SF₅).

Octyl 3-(2-fluorophenyl)-3-hydroxy-2-(pentafluorosulfanyl)propanoate (2m/3m)

According to the general procedure, octyl 2-(pentafluorosulfanyl)acetate (80 mg, 0.27 mmol, 1.0 equiv) was reacted with 2-fluorbenzaldehyde (34 mg, 0.27 mmol, 1.0 equiv). Yield: 138 mg (crude, portion of aldol products: 69%; *syn/anti*-ratio 83:17 (¹⁹F NMR)). The crude product was purified by column chromatography (silica gel, toluene/diethyl ether, 99:1) to give a colorless oil. Yield: 62 mg (56%, *syn/anti*-ratio 90:10 (¹⁹F NMR)).

¹H NMR (300 MHz, CDCl₃): δ 0.88 (t, ${}^3J_{\text{H,H}} = 6.9$ Hz, 3H, 1-CH₃), 1.11 – 1.34 (m, 10H, 2-/3-/4-/5-/6-CH₂), 1.38 – 1.51 (m, 2H, 7-CH₂), 3.16 (s, 1H, OH), 3.84 – 3.99 (m, 2H, 8-CH₂), 4.96 (dqn, ${}^3J_{\text{H,H}} = 8.3$ Hz, ${}^3J_{\text{H,F}} = 5.9$ Hz, 1H, 10-CH), 5.68 (d, ${}^3J_{\text{H,H}} = 8.3$ Hz, 1H, 11-CH), 6.99 – 7.10 (m, 1H, 16-CH), 7.12 – 7.21 (m, 1H, 14-CH), 7.27 – 7.39 (m, 1H, 15-CH), 7.40 – 7.48 (m, 1H, 13-CH). ¹³C NMR (75 MHz, CDCl₃): δ 14.2 (q, C-1), 22.8 (t, C-2), 25.7 (t, C-6), 28.0 (t, C-7), 29.1, 29.2 (t, C-4/-5), 31.9 (t, C-3), 66.9 (t, C-8), 68.3 – 68.6 (m, C-11), 88.2 (dqn, ${}^2J_{\text{C,F}} = 8.6$ Hz, ${}^4J_{\text{C,F}} = 2.3$ Hz, C-10), 116.0 (dd, ${}^2J_{\text{C,F}} = 21.8$ Hz, C-16), 124.7 (dd, ${}^4J_{\text{C,F}} = 3.5$ Hz, C-14), 125.5 – 125.8 (m, C-12), 129.3 (dd, ${}^3J_{\text{C,F}} = 3.5$ Hz, C-13), 130.9 (dd, ${}^3J_{\text{C,F}} = 8.6$ Hz, C-15), 160.0 (d, ${}^1J_{\text{C,F}} = 248.2$ Hz, C-17), 164.3 (qn, ${}^3J_{\text{C,F}} = 3.1$ Hz, C-9). ¹⁹F NMR (282 MHz, CDCl₃): δ [ppm] -117.1 (ddd, ${}^3J_{\text{H,F}} = 10.7$ Hz, ${}^4J_{\text{H,F}} = 7.3$ Hz, ${}^4J_{\text{H,F}} = 5.3$ Hz, 17-CF), 67.7 (d, ${}^2J_{\text{F,F}} = 147.5$ Hz, 4F, 10-SF₅), 81.2 (qn, ${}^2J_{\text{F,F}} = 146.6$ Hz, 1F, 10-SF₅). MS-ES(+)-EM: m/z calcd. for C₁₇H₂₄F₆O₃SNa⁺ 445.1243; found: 445.1252 [M+Na]⁺.

¹H-NMR (300 MHz CDCl₃): δ 0.89 (t, ${}^3J_{\text{H,H}}$ = 6.9 Hz, 3H, 1-CH₃), 1.06 – 1.36 (m, 10H, 2-/3-/4-/5-/6-CH₂), 1.37 – 1.54 (m, 2H, 7-CH₂), 1.63 (s, 1H, OH), 3.99 – 4.21 (m, 2H, 8-CH₂), 4.75 (dqn, ${}^3J_{\text{H,F}}$ = 6.3 Hz, ${}^3J_{\text{H,H}}$ = 3.3 Hz, 1H, 10-CH), 5.75 (d, ${}^3J_{\text{H,H}}$ = 3.3 Hz, 1H, 11-CH), 6.99 – 7.10 (m, 1H, 16-CH), 7.12 – 7.21 (m, 1H, 14-CH), 7.27 – 7.39 (m, 1H, 15-CH), 7.40 – 7.48 (m, 1H, 13-CH). ¹⁹**F NMR** (282 MHz, CDCl₃): δ -118.4 – -118.2 (m, 1F, 17-CF), 66.1 (d, ${}^2J_{\text{F,F}}$ = 148.2 Hz, 4F, 10-SF₅), 80.0 (qn, ${}^2J_{\text{F,F}}$ = 147.2 Hz, 1F, 10-SF₅). See spectra of an authentic sample.¹

Octyl 3-hydroxy-2-(pentafluorosulfanyl)butanoate (2q/3q)

According to the general procedure, octyl 2-(pentafluorosulfanyl)acetate (80 mg, 0.27 mmol, 1.0 equiv) was reacted with acetaldehyde (16 mg, 0.27 mmol, 1.0 equiv). Yield: 54 mg (crude, portion of aldol products: 58%; *syn/anti*-ratio 87:13 (¹⁹F NMR)). The crude product was purified by column chromatography (silica gel, toluene/diethyl ether, 99:1) to give a colorless oil. Yield: 34 mg (37%, *syn/anti*-ratio 89:11 (¹⁹F NMR)).

¹H NMR (400 MHz, CDCl₃): δ 0.89 (t, ³ $J_{H,H}$ = 6.8 Hz, 3H, 1-CH₃), 1.22 – 1.40 (m, 10H, 2-/3-/4-/5-/6-CH₂), 1.35 (d, ³ $J_{H,H}$ = 6.3 Hz, 3H, 12-CH₃), 1.62 – 1.73 (m, 2H, 7-CH₂), 2.69 (s, 1H, OH), 4.13 – 4.28 (m, 2H, 8-CH₂), 4.40 (dqn, ³ $J_{H,H}$ = 7.7 Hz, ³ $J_{H,F}$ = 6.1 Hz, 1H, 10-CH), 4.51 – 4.63

(m, 1H, 11-CH). ¹³**C NMR** (100 MHz, CDCl₃): δ 14.2 (q, C-1), 20.8 (dqn, ${}^4J_{\text{C,F}}$ = 2.0 Hz, C-12), 22.8 (t, C-2), 25.8 (t, C-6), 28.2 (t, C-7), 29.2, 29.2 (t, C-4/-5), 31.9 (t, C-3), 67.0 (t, C-8), 67.4 (dqn, ${}^3J_{\text{C,F}}$ = 2.4 Hz, C-11), 90.3 (dqn, ${}^2J_{\text{C,F}}$ = 8.3 Hz, C-10), 164.9 (qn, ${}^3J_{\text{C,F}}$ = 3.2 Hz, C-9). ¹⁹**F NMR** (282 MHz, CDCl₃): δ 67.2 (dm, ${}^2J_{\text{F,F}}$ = 146.2 Hz, 4F, 10-SF₅), 82.0 (qn, ${}^2J_{\text{F,F}}$ = 146.0 Hz, 1F, 10-SF₅). **MS-ES(+)-EM**: m/z calcd. for C₁₂H₂₃F₅O₃SNa⁺ 365.1180; found: 365.1188 [M+Na]⁺.

¹H NMR (400 MHz, CDCl₃): δ 0.89 (t, ³ $J_{H,H}$ = 6.8 Hz, 3H, 1-CH₃), 1.22 – 1.40 (m, 10H, 2-/3-/4-/5-/6-CH₂), 1.35 (d, ³ $J_{H,H}$ = 6.3 Hz, 3H, 12-CH₃), 1.62 – 1.73 (m, 2H, 7-CH₂), 2.69 (s, 1H, OH), 4.24 – 4.34 (m, 3H, 8-CH₂ and 10-CH), 4.51 – 4.63 (m, 1H, 11-CH). ¹⁹F NMR (282 MHz, CDCl₃): δ 66.0 (dm, ² $J_{E,E}$ = 146.5 Hz, 4F, 10-SF₅), 81.1 (qn, ² $J_{E,E}$ = 146.5 Hz, 1F, 10-SF₅).

2-(Pentafluorosulfanyl)acetic acid morpholide (8)

In an oven-dried pressure vessel under argon atmosphere, morpholine (1.1 equiv) was dissolved in dry CH_2Cl_2 (1 mL), and cooled down to $-10\,^{\circ}C$. Then 2-(pentafluorosulfanyl)acetic acid chloride (7) (215 mg, 1.05 mmol, 1.0 equiv) was added dropwise. The mixture was allowed to warm up to room temperature and stirred at this temperature for 15 hours. The solution was then diluted with CH_2Cl_2 (7 mL) and washed with 2 M HCl (5 mL), saturated bicarbonate solution (5 mL), and brine (5 mL). The combined organic phases were dried with MgSO₄, and the solvent was evaporated under reduced pressure. The product was isolated as a pure white solid. Additional purification was not needed. Yield: 159 mg (59%). Mp 84 – 85 °C.

$$F_5S = \begin{cases} 0 & 2 \\ 1 & N \\ 0 & 4 \end{cases}$$

¹H NMR (300 MHz, CDCl₃): δ 3.54 – 3.74 (m, 8H, 2-/3-/4-/5-CH₂), 4.45 (qn, ${}^{3}J_{H,F}$ = 7.6 Hz, 2H, 6-CH₂). ¹³C NMR (75 MHz, CDCl₃): δ 42.7* and 47.1* (t, C-2 and C-5), 66.0* and 66.3* (t, C-3 and C-4), 69.1 (qn, ${}^{2}J_{C,F}$ = 7.6 Hz, 2H, C-6), 159.9 (qn, ${}^{3}J_{C,F}$ = 4.0 Hz, C-1). ¹⁹F NMR (282 MHz, CDCl₃): δ 70.3 (dm, ${}^{2}J_{F,F}$ = 147.2 Hz, 4F, 6-SF₅), 80.7 (qn, ${}^{2}J_{F,F}$ = 147.2 Hz, 1F, 6-SF₅). MS-ES(+)-EM: m/z calcd. for C₆H₁₀F₅NO₂SNa⁺ 278.0245; found: 278.0241 [M+Na]⁺.

* Because of hindered C-N amide bond rotation at ambient temperature, C-2 and C-5 as well as C-3 and C-4 show different chemical shifts. This phenomenon id known in the literature for other N-acyl morpholides [2].

Attempts to use 2-(pentafluorosulfanyl)acetic acid morpholide (8) as methylene component in aldol reaction with *p*-nitrobenzaldehyde

Varination A:

According to the general procedure, 2-(pentafluorosulfanyl)acetic acid morpholide (**8**) (55 mg, 0.22 mmol, 1.0 equiv) was reacted with *p*-nitrobenzaldehyde. Besides the starting materials, minor amounts of a SF₅-containing compound were found. Yield: 115 mg (crude product, composition: 87% of **8** and 13% of the unknown SF₅-containing compound, ¹⁹F NMR spectrum. The product could not be isolated.

Variation B:

In a Young NMR tube under argon, 2-(pentafluorsulfanyl)acetic acid morpholide ($\mathbf{8}$, 30 mg, 0.12 mmol, 1.0 equiv) was dissolved in CD₂Cl₂ (0.5 mL), and TMSOTf (40 mg, 0.18 mmol, 1.5 equiv) and triethylamine (18 mg, 0.18 mmol, 1.5 equiv) were added at room temperature. The formation of the (Z)-enolate was followed by NMR spectroscopy. After a couple of minutes, when the enolate formation was complete (see NMR spectra at pages S64–S67), p-nitobenzaldehyde (19 mg, 0,12 mmol, 1.0 equiv) and TiCl₄ (7 mg, 0.04 mmol, 0.3 equiv) were added. After 3 days at room temperature (NMR spectra are shown at pages S68 and S69), the reaction was stopped by addition of ice water (5 mL). The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (4 × 5 mL). The combined organic phases were dried with MgSO₄, and the solvent was evaporated under reduced pressure to give 76 mg of a crude mixture. The proposed product could not be isolated, and its structure remains to be further elucidated.

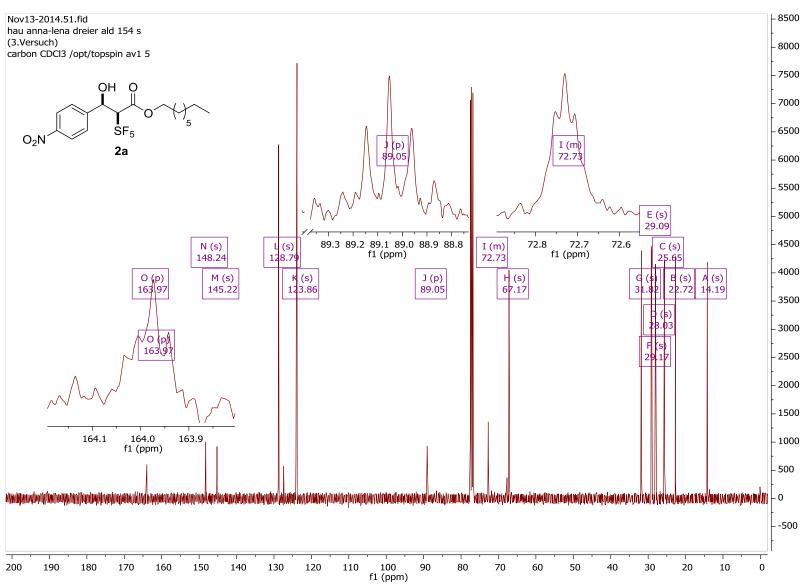
Ketene silylaminal of 2-(pentafluorosulfanyl)acetic acid morpholide

$$\mathsf{F}_{5}\mathsf{S} \underbrace{\overset{\mathsf{OTMS}}{\underset{6}{\overset{\mathsf{TMS}}{\underset{5}{\overset{\mathsf{C}}{\overset{\mathsf{CMS}}{\underset{6}{\overset{\mathsf{CS}}{\underset{5}{\overset{\mathsf{CS}}{\underset{6}{\overset{\mathsf{CS}}{\underset{5}{\overset{\mathsf{CS}}{\underset{6}{\overset{\mathsf{CS}}{\underset{5}{\overset{\mathsf{CS}}{\underset{6}{\overset{\mathsf{CS}}{\underset{5}{\overset{\mathsf{CS}}{\underset{6}{\overset{\mathsf{CS}}{\underset{5}{\overset{\mathsf{CS}}{\underset{6}{\overset{\mathsf{CS}}{\underset{5}{\overset{\mathsf{CS}}{\underset{6}{\overset{\mathsf{C}}}{\underset{6}{\overset{\mathsf{C}}{\underset{6}}{\overset{\mathsf{C}}{\underset{6}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\underset{6}}{\overset{\mathsf{C}}{\underset{6}}{\overset{\mathsf{C}}{\underset{6}}{\overset{\mathsf{C}}{\underset{6}}{\overset{\mathsf{C}}{\underset{6}}{\overset{\mathsf{C}}{\underset{6}}{\overset{\mathsf{C}}{\underset{6}}{\overset{\mathsf{C}}{\underset{6}}{\overset{\mathsf{C}}{\underset{6}}}{\overset{\mathsf{C}}{\underset{6}}{\overset{\mathsf{C}}}{\underset{6}}{\overset{\mathsf{C}}{\underset{6}}{\overset{\mathsf{C}}}{\underset{6}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\underset{6}}}{\overset{\mathsf{C}}{\underset{6}}{\overset{\mathsf{C}}{\underset{6}}}{\overset{\mathsf{C}}{\underset{6}}}{\overset{\mathsf{C}}{\underset{6}}{\overset{\mathsf{C}}}{\underset{6}}{\overset{\mathsf{C}}}{\underset{6}}{\overset{\mathsf{C}}}{\underset{6}}{\overset{C}}}{\overset{\mathsf{C}}}{\underset{6}}}{\overset{\mathsf{C}}{\underset{6}}}}{\overset{\mathsf{C}}{\underset{6}}}}{\overset{\mathsf{C}}}{\overset{C}}{\underset{6}}}{\overset{C}}{\underset{6}}{\overset{\mathsf{C}}{\underset{6}}{\overset{\mathsf{C}}{\overset{C}}{\underset{6}}}}{\overset{C}}{\underset{6}}}{\overset{C}}{\underset{6}}}}{\overset{C}}{\underset{6}}}}{\overset{C}}{\underset{6}}}}{\overset{C}}{\underset{6}}}{\overset{C}}{\underset{6}}}}}{\overset{C}}{\overset{C}}{\overset{C}}{\underset{6}}}}{\overset{C}}{\overset{C}}{\underset{6}}}}}{\overset{C}{\underset{C}}}{\overset{C}}{\underset{C}}{\overset{C}}{\underset{C}}}{\overset{C}}{\underset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\underset{C}}}}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\underset{C}}}{\overset{C}}{\underset{C}}}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}}$$

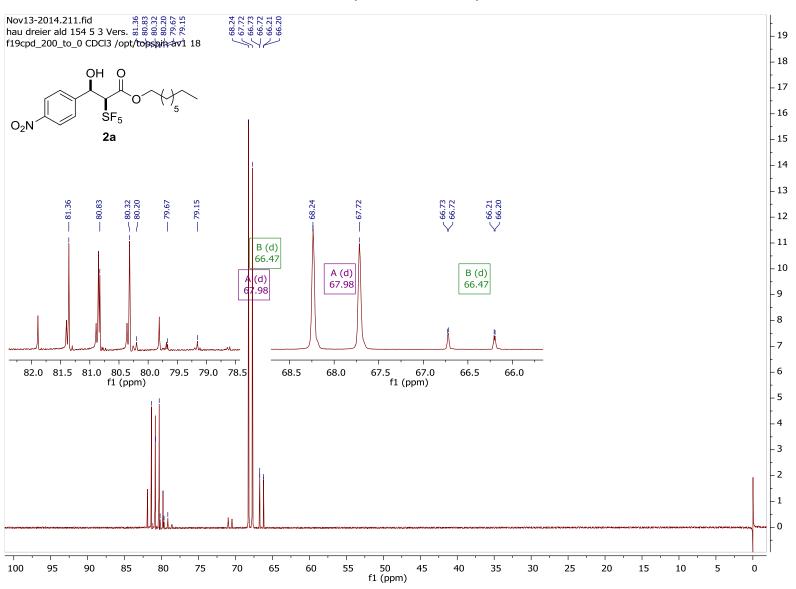
¹**H NMR** (600 MHz, CD₂Cl₂): δ 2.91 (m, 4H, 2-/5-CH₂), 3.69 (m, 4H, 3-/4-CH₂), 5.15 (qn, ${}^{3}J_{H,F}$ = 7.0 Hz, 1H, 6-CH). ¹³**C NMR** (150 MHz, CD₂Cl₂): δ 1.3 (q, SiMe₃), 48.5 (t, C-2 and C-5), 66.2 (t, C-3 and C-5), 106.1 (qn, ${}^{2}J_{C,F}$ = 19.4 Hz, C-6), 156.9 (qn, ${}^{3}J_{C,F}$ = 4.8 Hz, C-1). ¹⁹**F NMR** (566 MHz, CD₂Cl₂): δ 74.1 (dm, 4 F, ${}^{2}J_{F,F}$ = 151.6 Hz, SF₅), 91.7 (qn, 1F, ${}^{2}J_{F,F}$ = 151.6 Hz, SF₅) (extracted from a crude reaction mixture).

3-Hydroxy-3-(4-nitrophenyl)-2-(pentafluorosulfanyl)propanoic acid morpholide trimethylsilyl aminal (9)

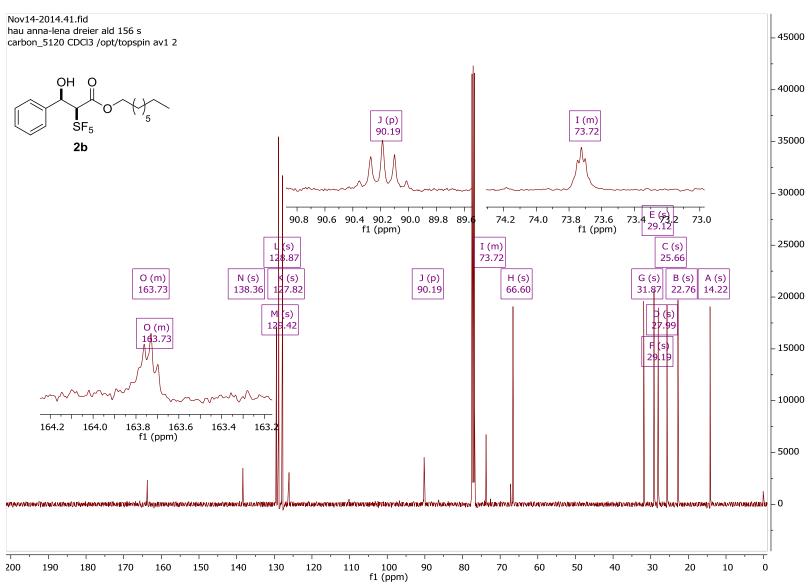
¹H NMR (600 MHz, CD₂Cl₂): δ 0.4 (s, 9H, OTMS), 3.27 (dq, 4H, $^2J_{H,H}$ and $^3J_{H,H}$ = 14.5 Hz, $^3J_{H,H}$ = 7.3 Hz, 2-/5-CH₂), 3.37 (dq, 4H, $^2J_{H,H}$ and $^3J_{H,H}$ = 14.5 Hz, $^3J_{H,H}$ = 7.3 Hz, 3-/4-CH₂), 4.62 (qm, 1H, $^3J_{H,H}$ = 7.2 Hz, $^4J_{H,F}$ = 0.5 Hz, 7-CH), 6.30 (brs, 1H, OH), 7.96 (d, 2H, 9-/13-CH), 8.32 (d, 2H, 10-/12-CH). ¹⁹F NMR (282 MHz, CD₂Cl₂): δ 57.6 (dm, $^2J_{F,F}$ = 147.3 Hz, 4F, SF₅), 74.7 (pn, $^2J_{F,F}$ = 147.3 Hz, 1F, SF₅) (extracted from a crude reaction mixture).

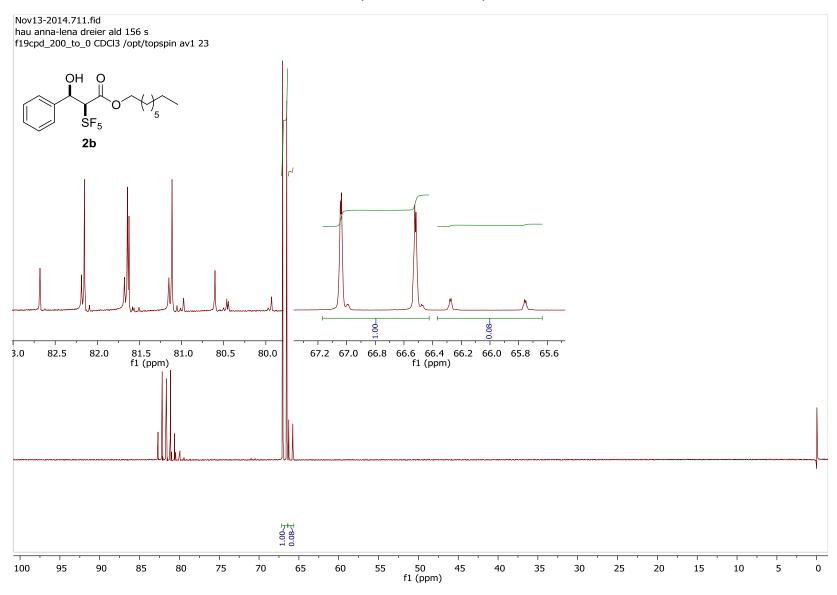

References

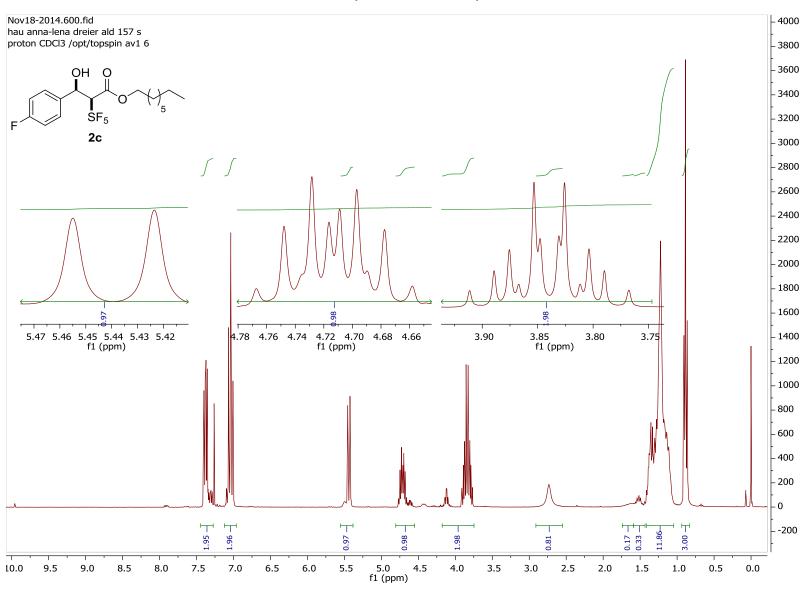
- 1. Friese, F.W.; Dreier, A.-L.; Matsnev, A. V.; Daniliuc, C.-G.; Thrasher, J. S.; Haufe, G. *Org. Lett.* **2016**, *18*, 1012-1015.
- 2. Salman, S. R.; Farrant, R. D.; Glen, R. C.; Lindon, J. C. Spectroscopy Lett. 1998, 31, 269-274 and references cited therein.

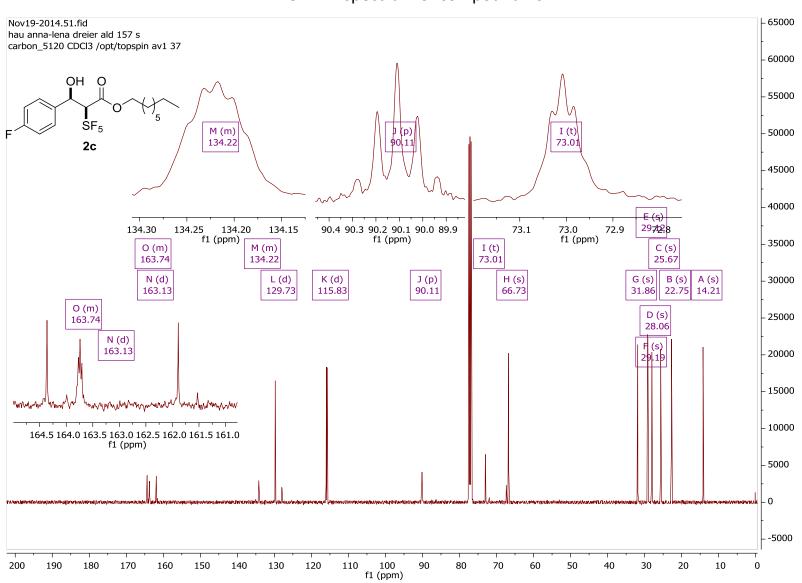

¹H NMR spectrum of compound **2a**

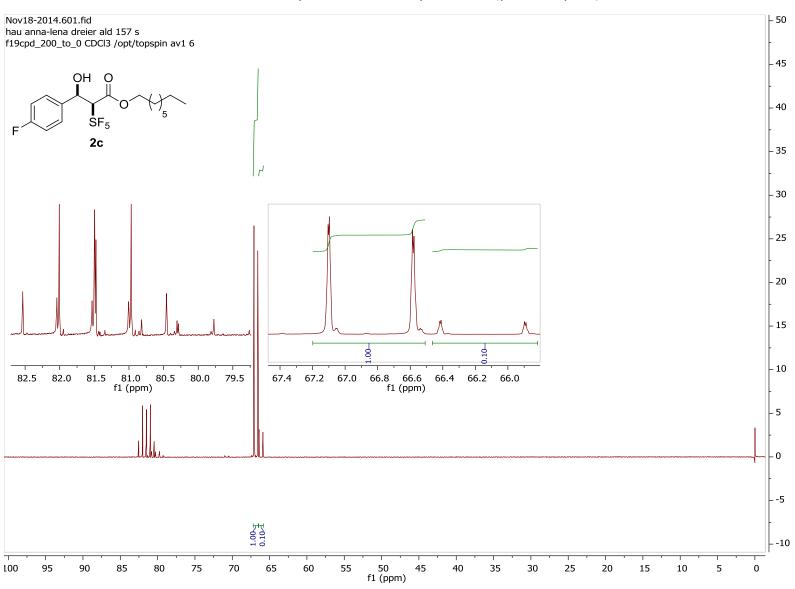
¹³C NMR spectrum of compound **2a**

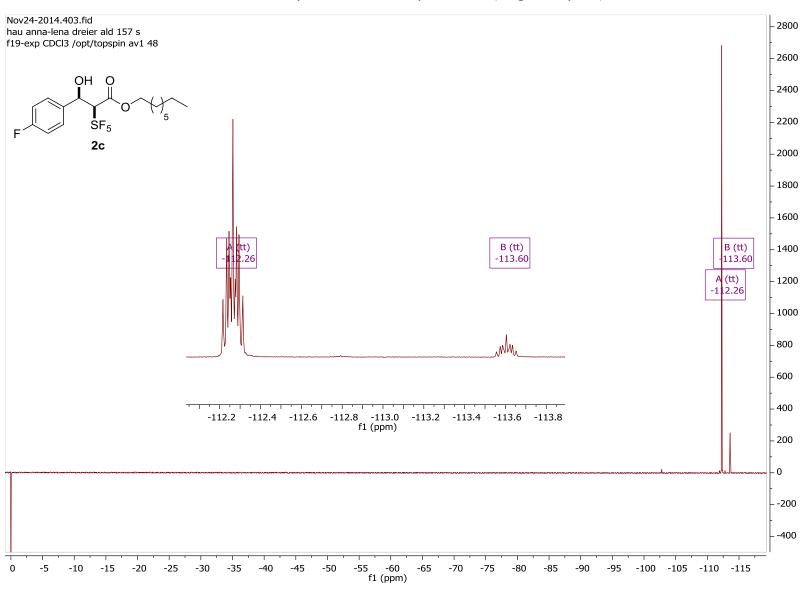

¹⁹F NMR spectrum of compound **2a**

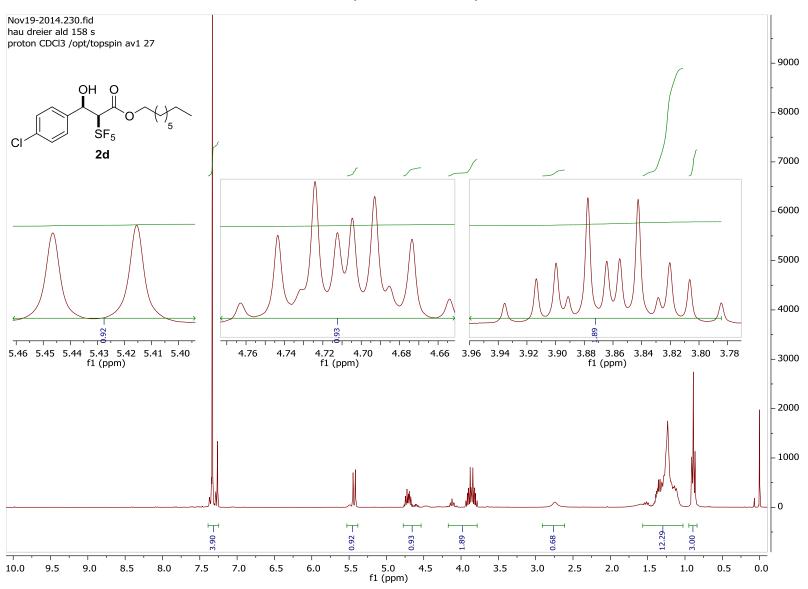

¹H NMR spectrum of compound **2b**

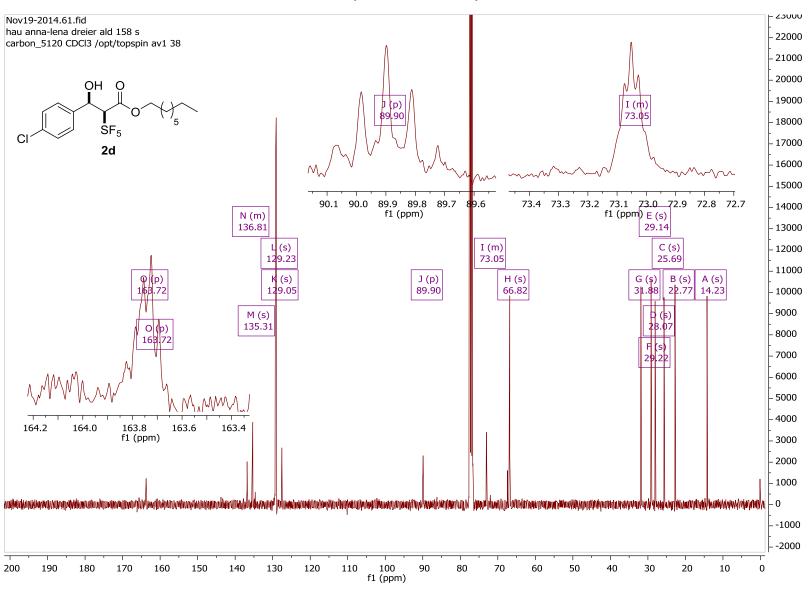

¹³C NMR spectrum of compound **2b**

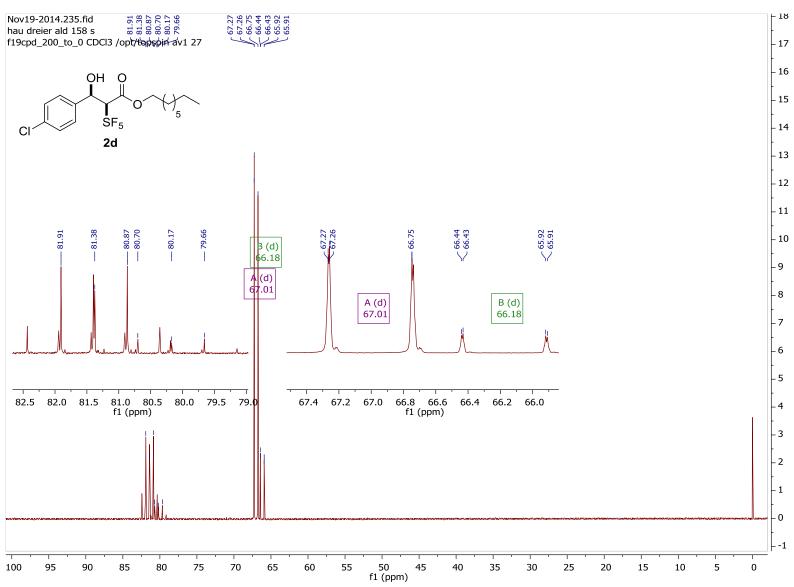

$^{19} {\sf F}$ NMR spectrum of compound ${\bf 2b}$

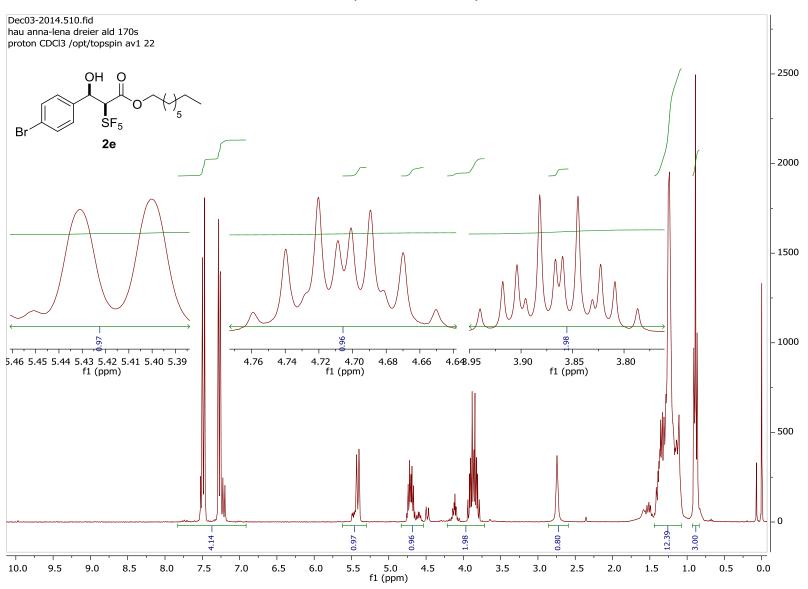

¹H NMR spectrum of compound **2c**

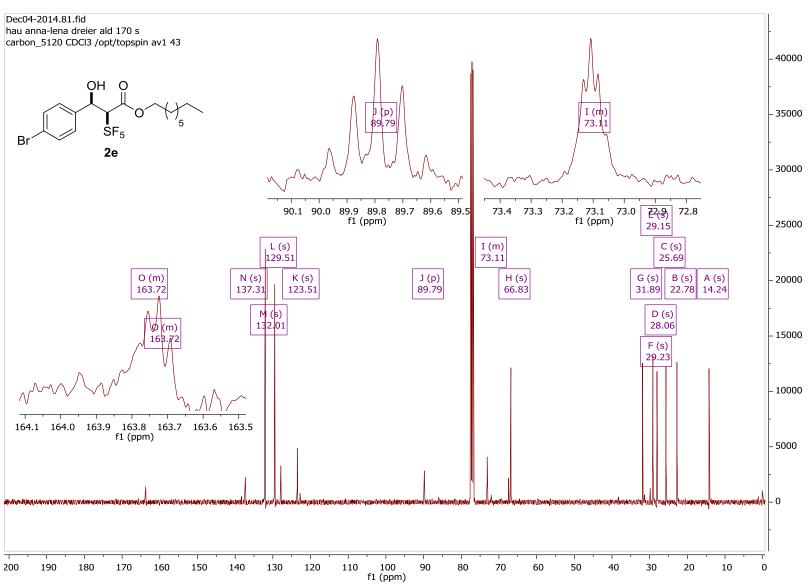

¹³C NMR spectrum of compound **2c**

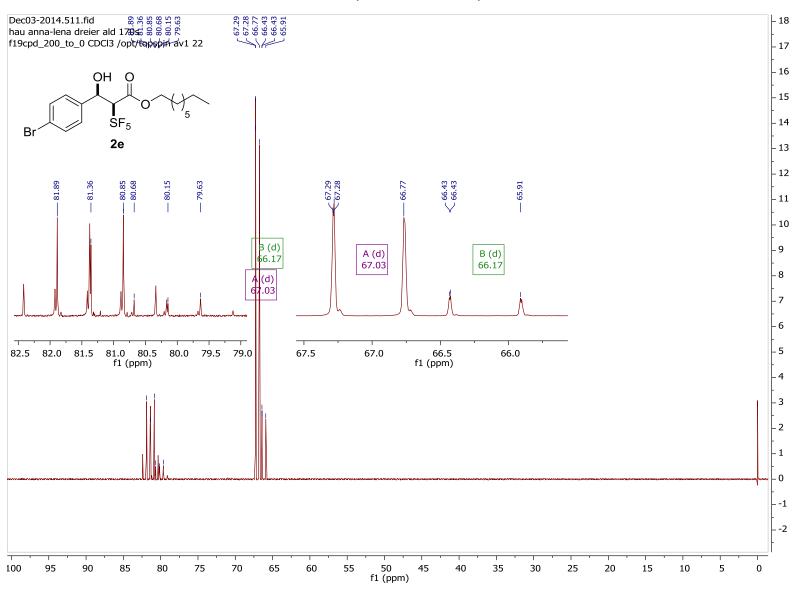

¹⁹F NMR spectrum of compound **2c** (positive part)

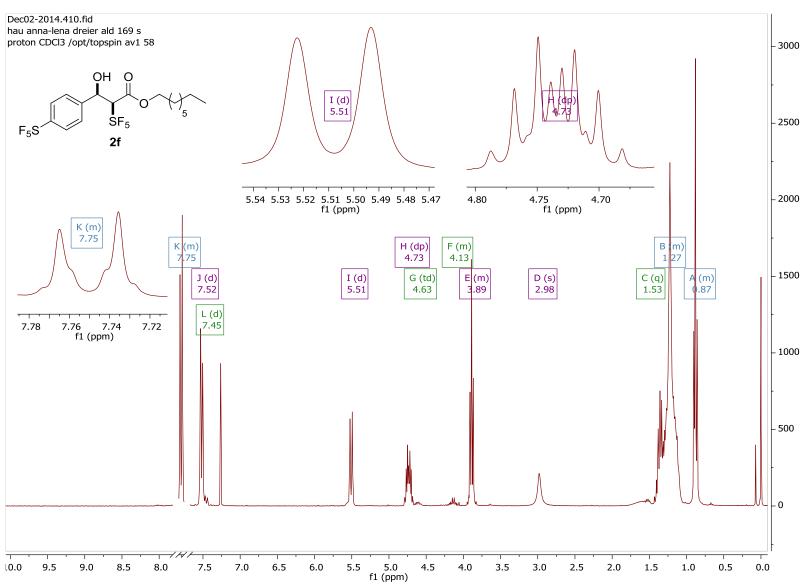

¹⁹F NMR spectrum of compound **2c** (negative part)

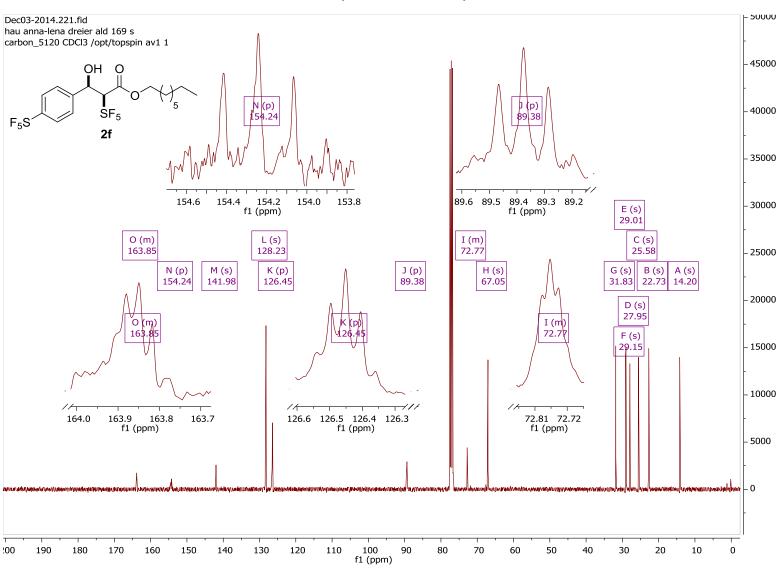

¹H NMR spectrum of compound **2d**

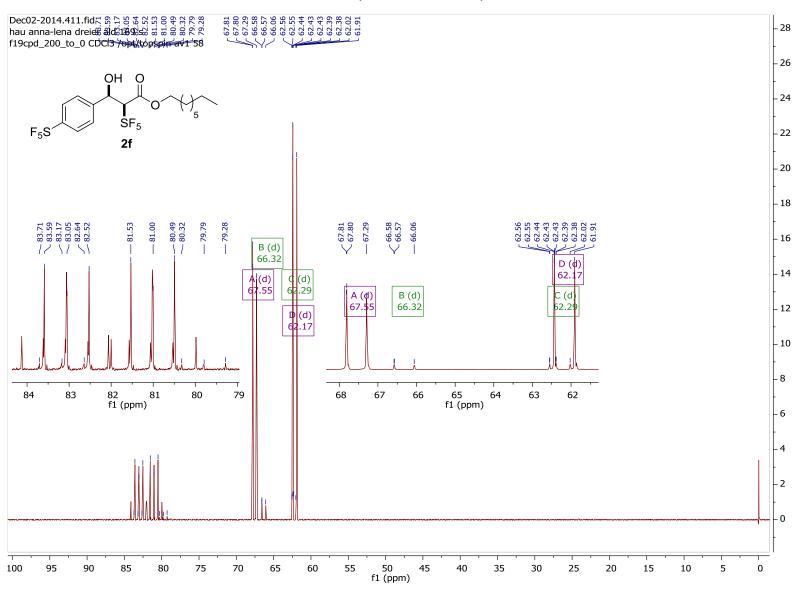

¹³C NMR spectrum of compound **2d**

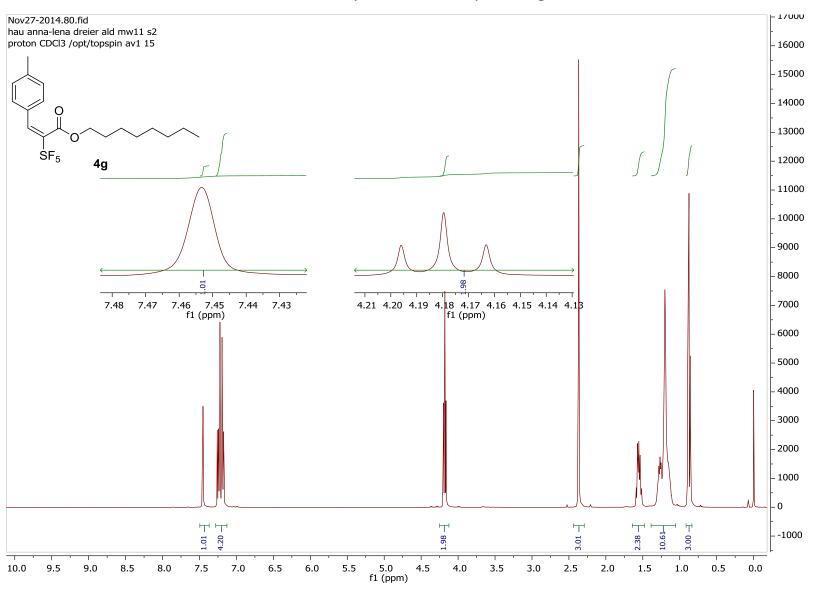

¹⁹F NMR spectrum of compound **2d**

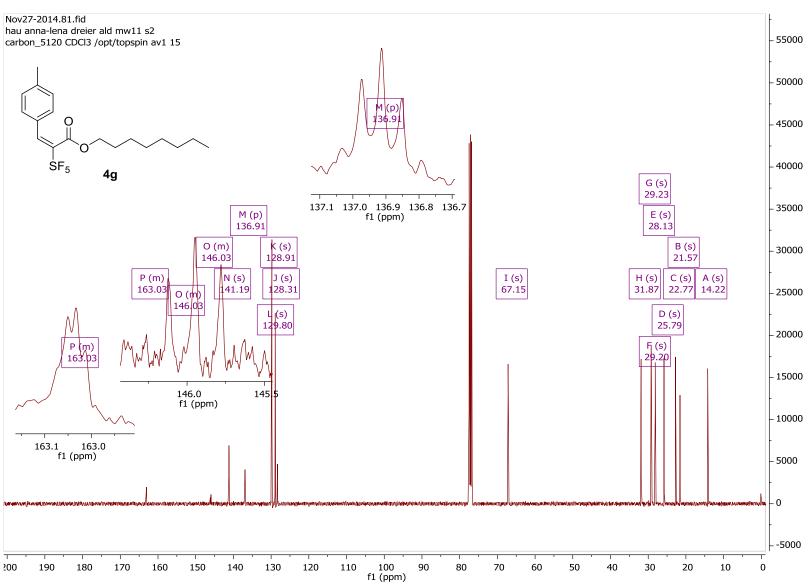

¹H NMR spectrum of compound **2e**

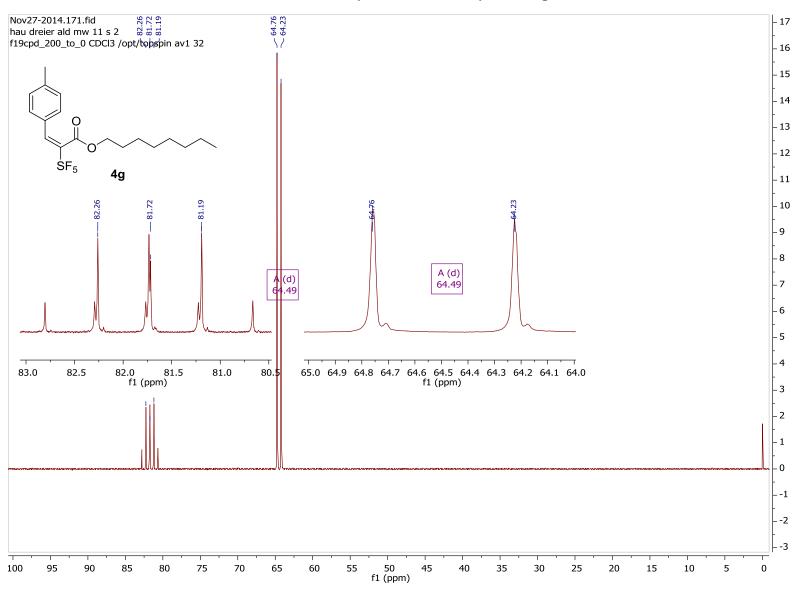

¹³C NMR spectrum of compound **2e**

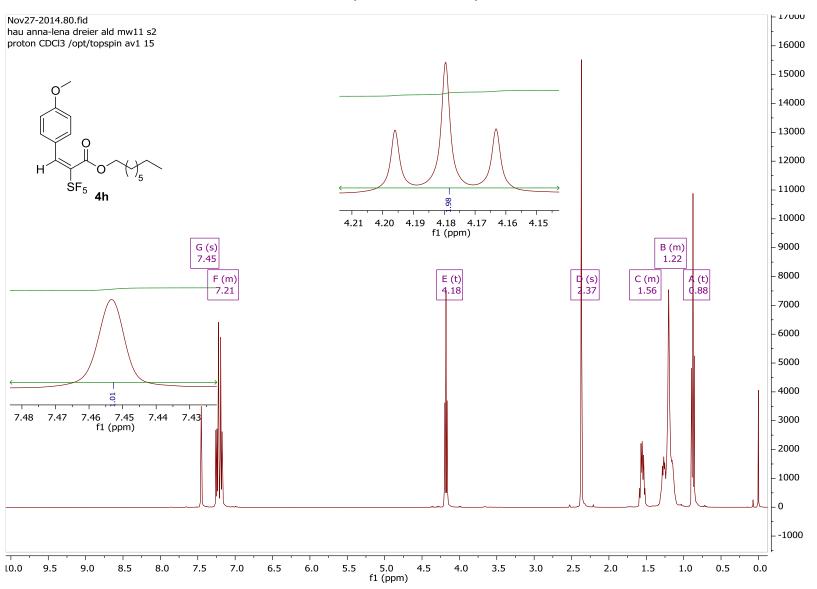

¹⁹F NMR spectrum of compound **2e**

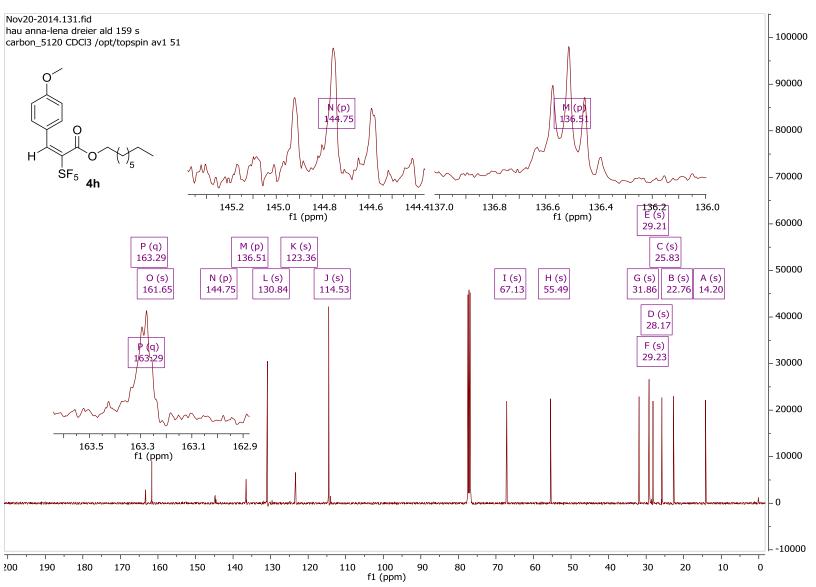

¹H NMR spectrum of compound **2f**

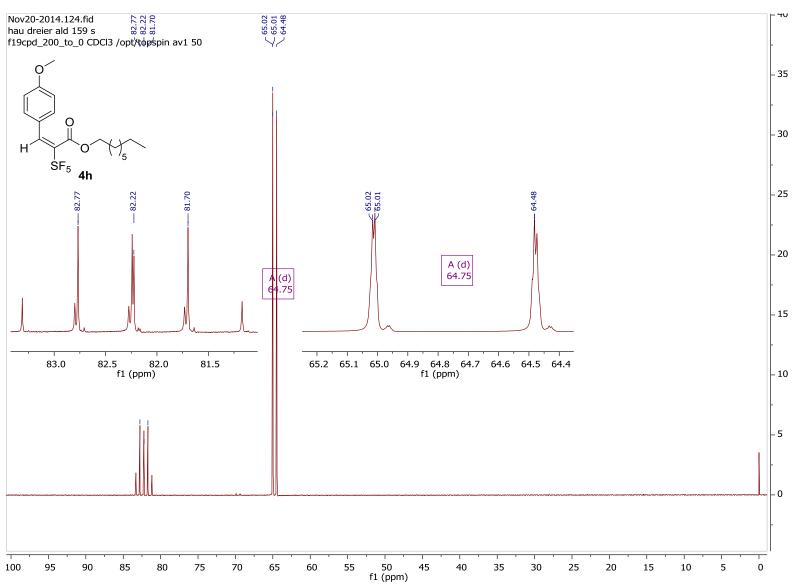

¹³C NMR spectrum of compound **2f**

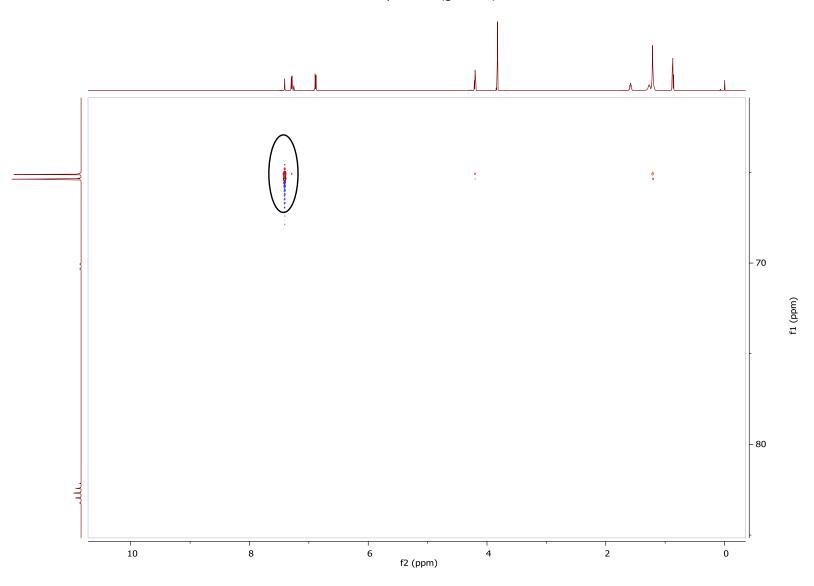

¹⁹F NMR spectrum of compound **2f**

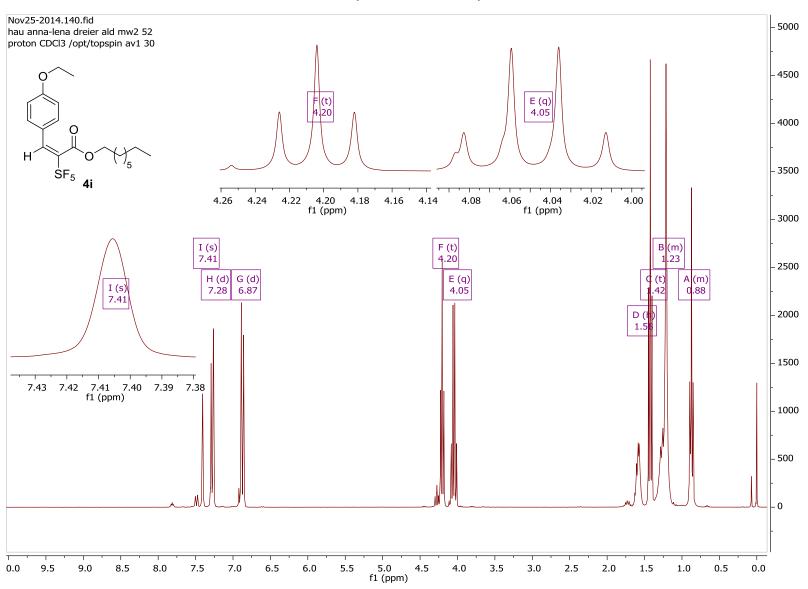

¹H NMR spectrum of compound **4g**

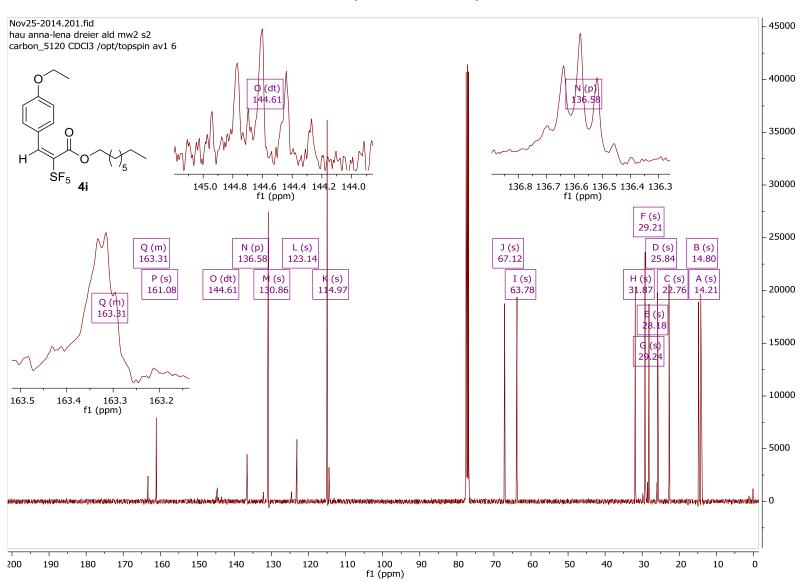

¹³C NMR spectrum of compound **4g**

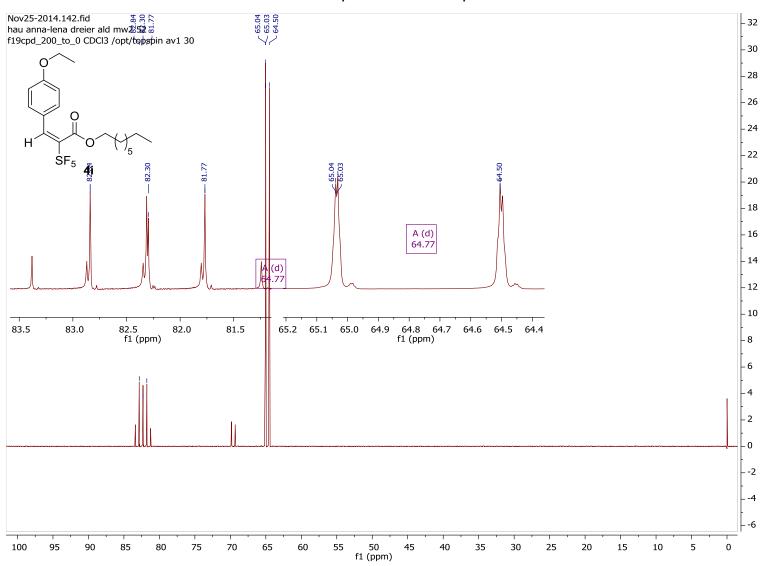

¹⁹F NMR spectrum of compound **4g**

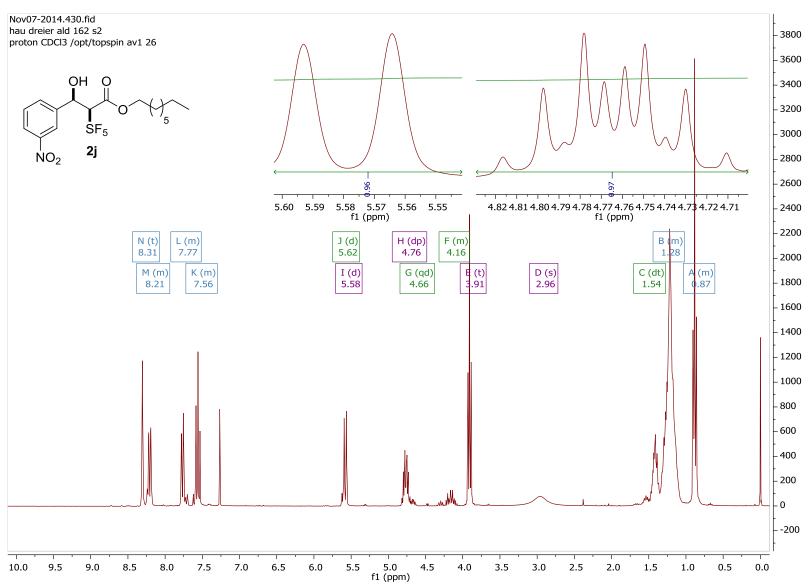

¹H NMR spectrum of compound **4h**

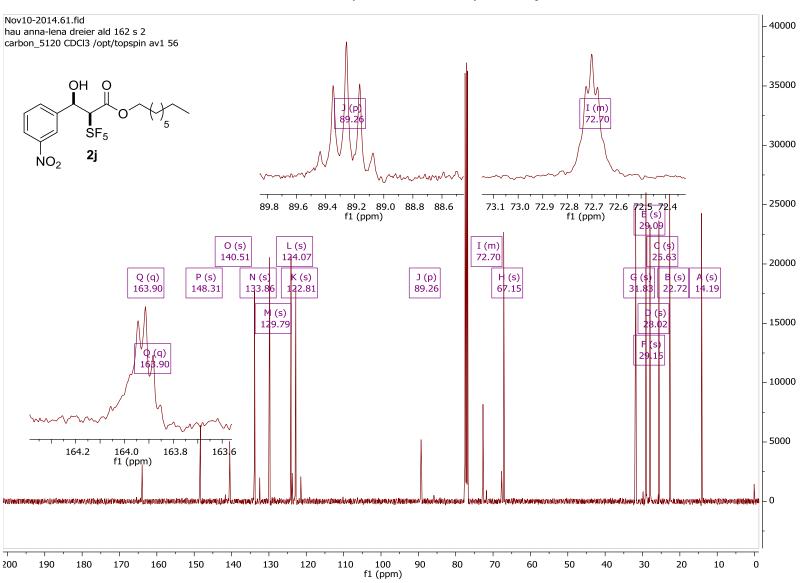

¹³C NMR spectrum of compound **4h**

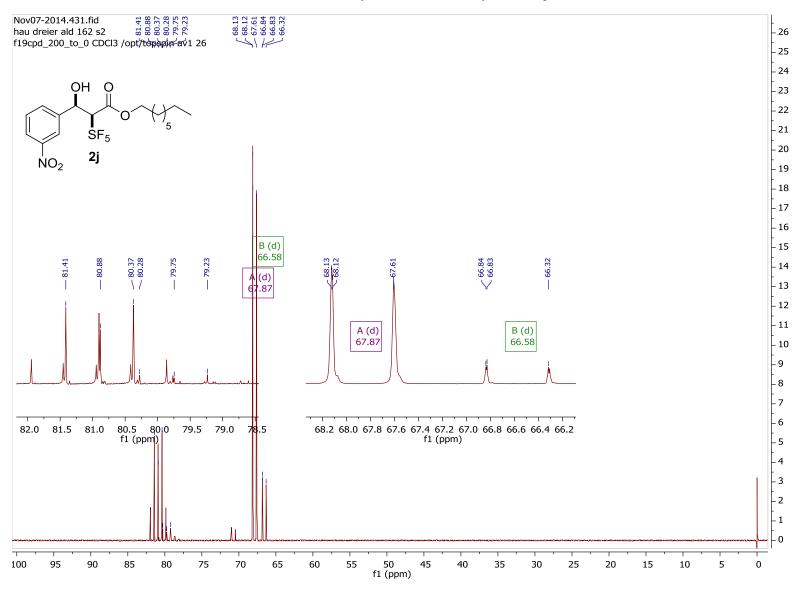

$^{19}\mathrm{F}$ NMR spectrum of compound $\mathbf{4h}$

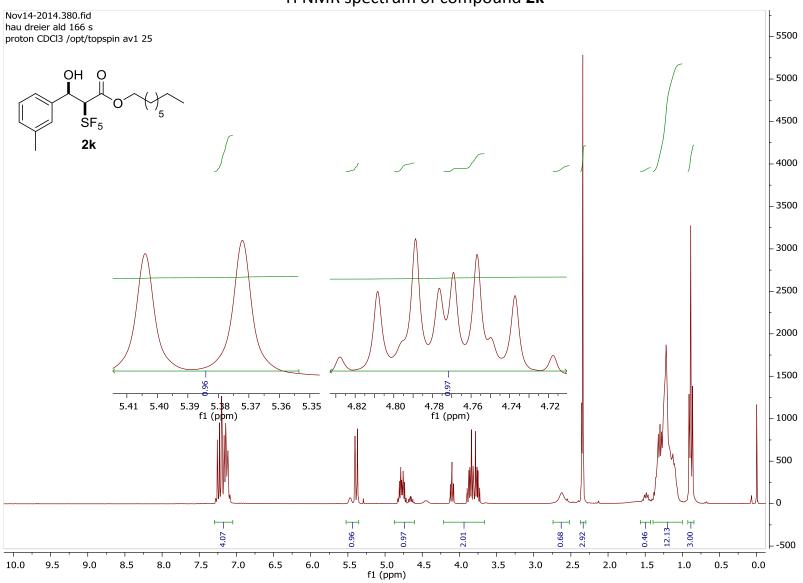

¹H,¹⁹F-correlation spectrum (gHOESY) of **4h**

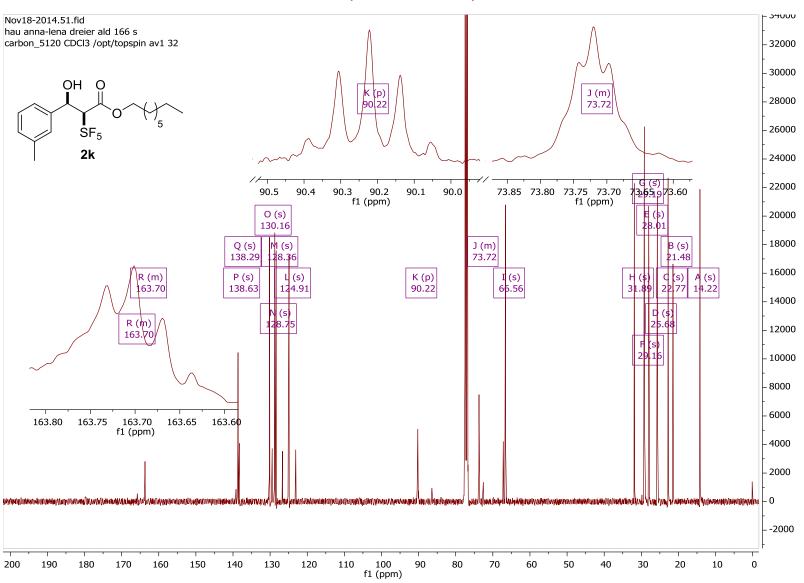

¹H NMR spectrum of compound **4i**

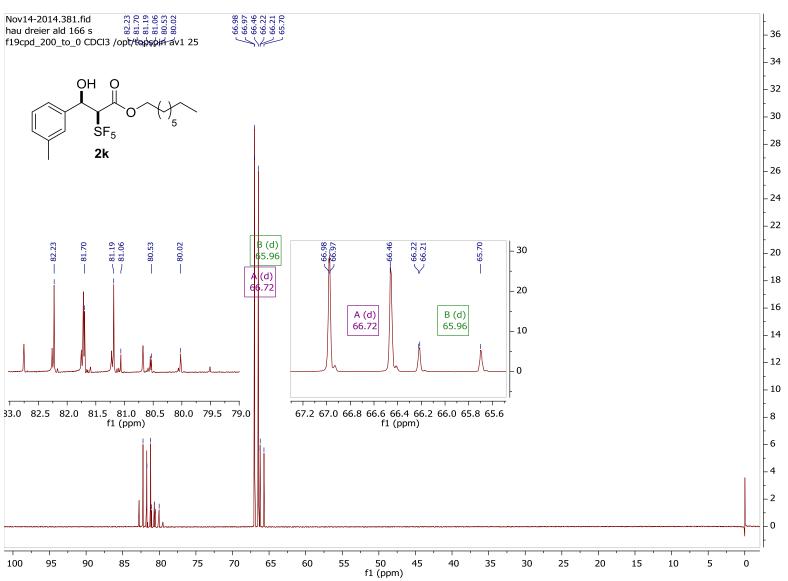

¹³C NMR spectrum of compound **4i**

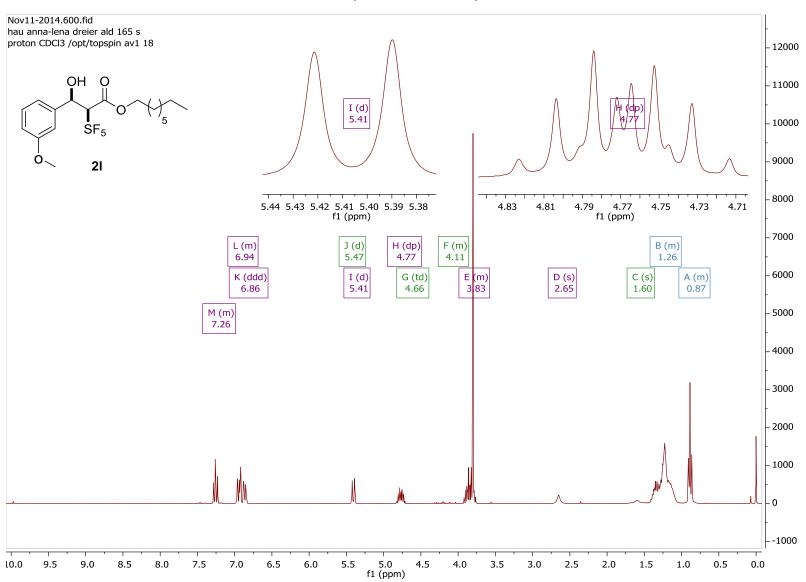

19 F NMR spectrum of compound $\bf 4i$

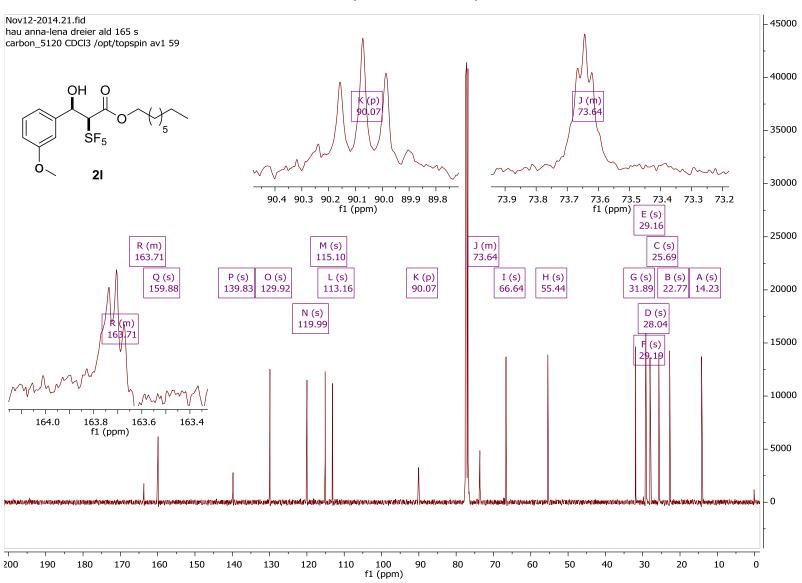

¹H NMR spectrum of compound **2j**

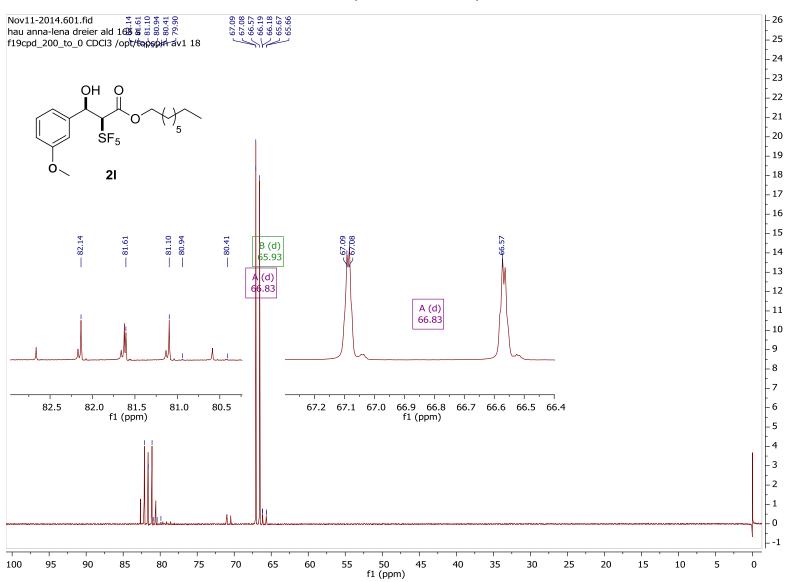

¹³C NMR spectrum of compound **2j**

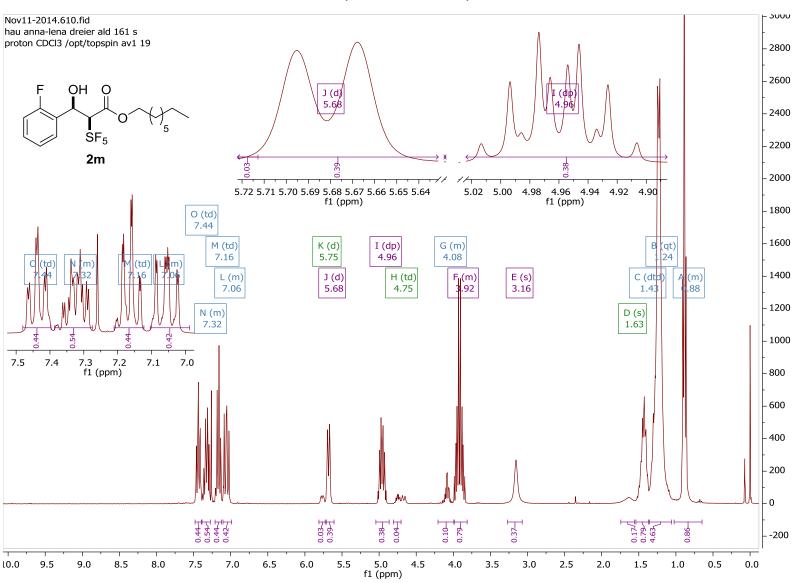

¹⁹F NMR spectrum of compound **2j**

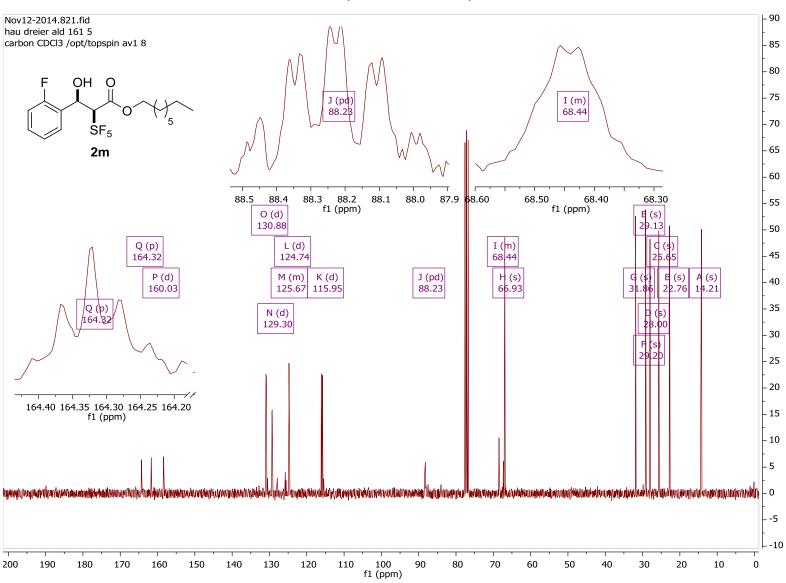

1 H NMR spectrum of compound 2k

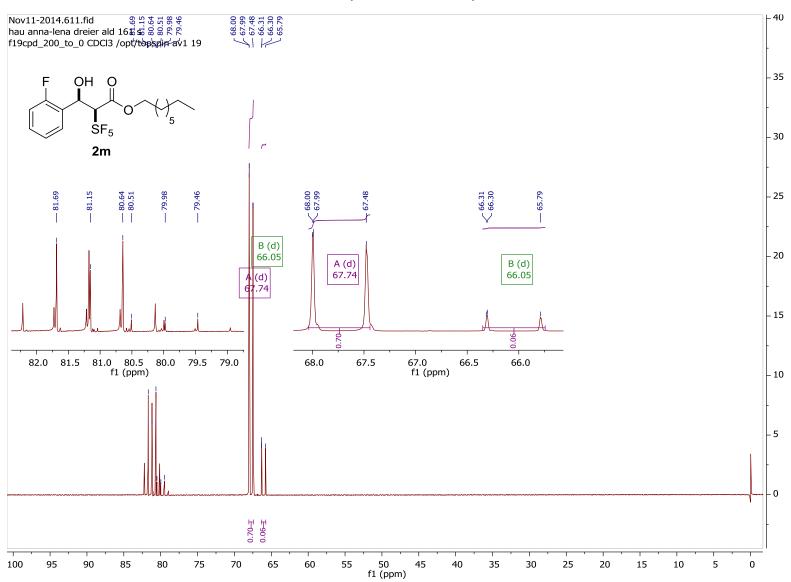

^{13}C NMR spectrum of compound 2k

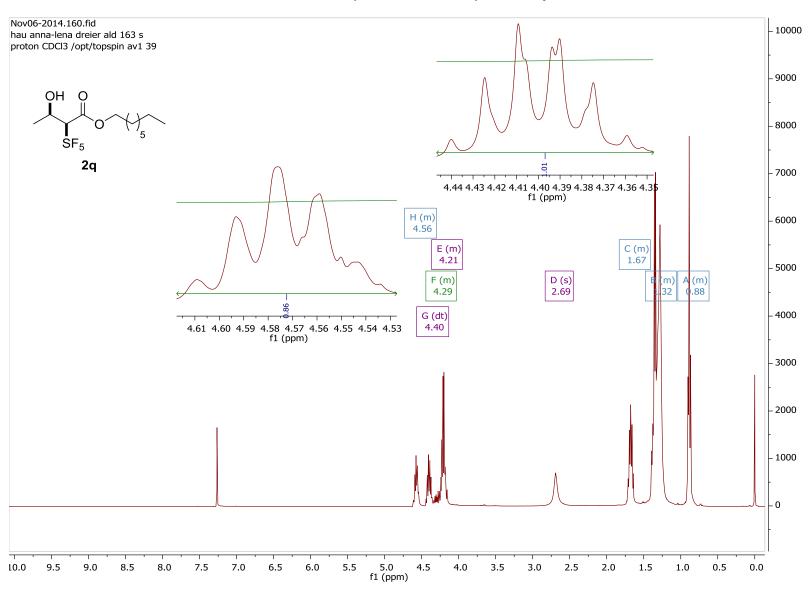

¹⁹F NMR spectrum of compound **2k**

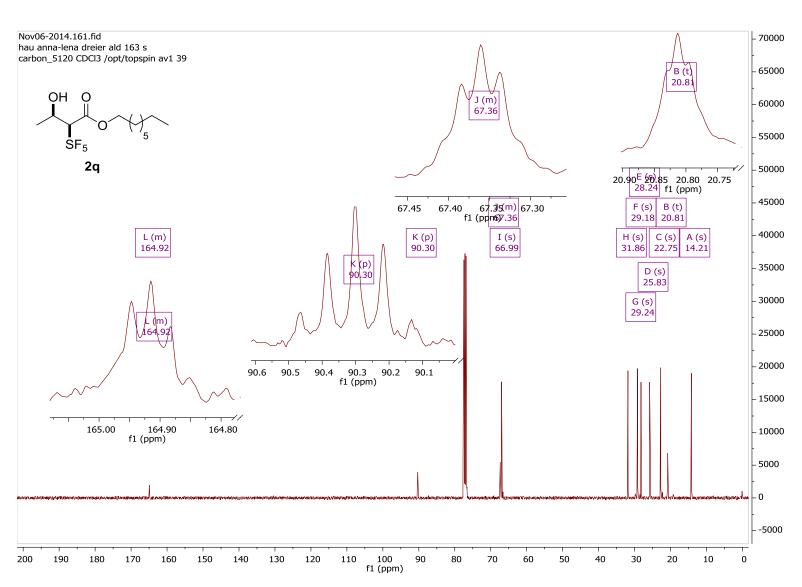

¹H NMR spectrum of compound **2I**

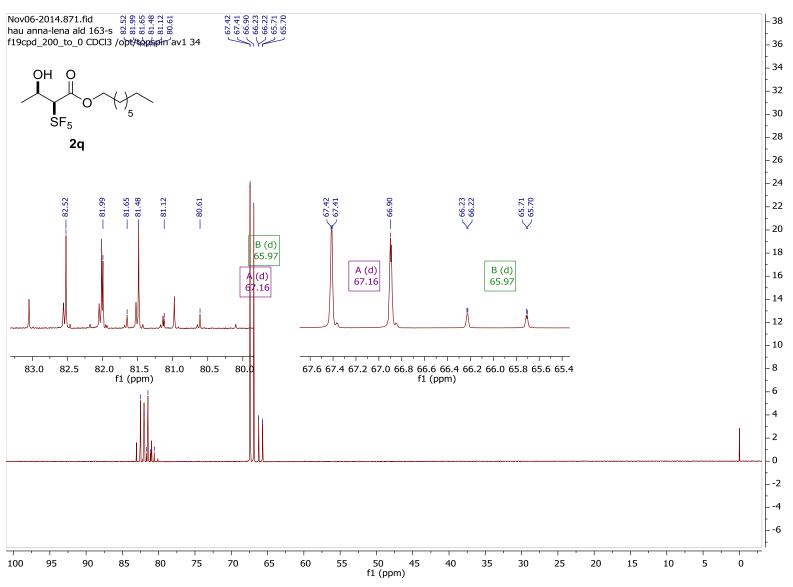

¹³C NMR spectrum of compound **2I**

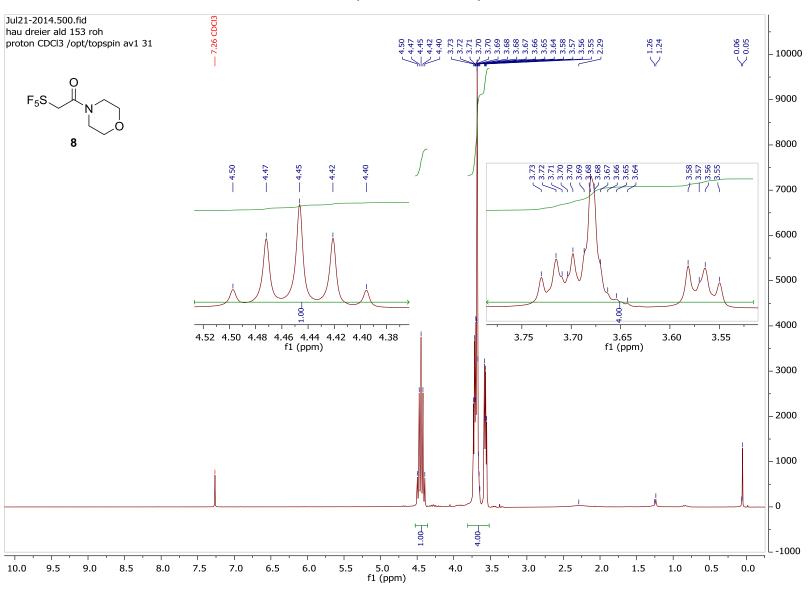

¹⁹F NMR spectrum of compound **2I**

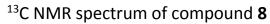

¹H NMR spectrum of compound **2m**

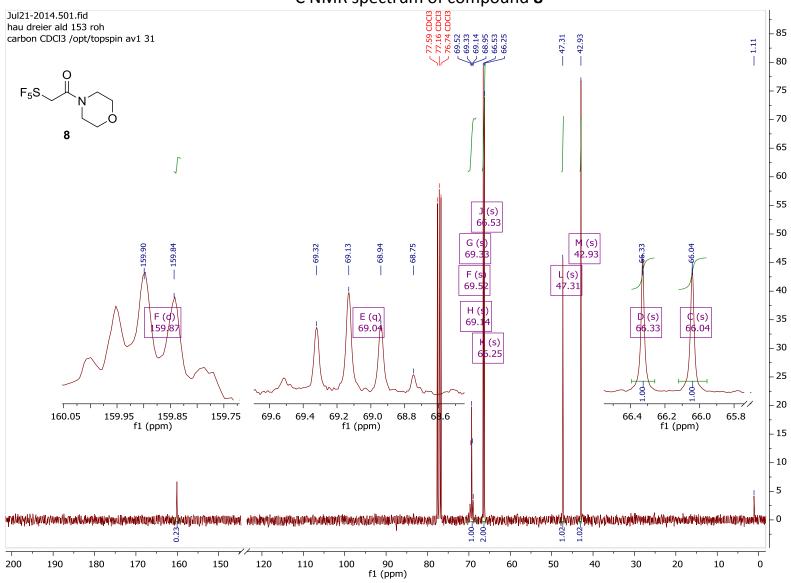

¹³C NMR spectrum of compound **2m**

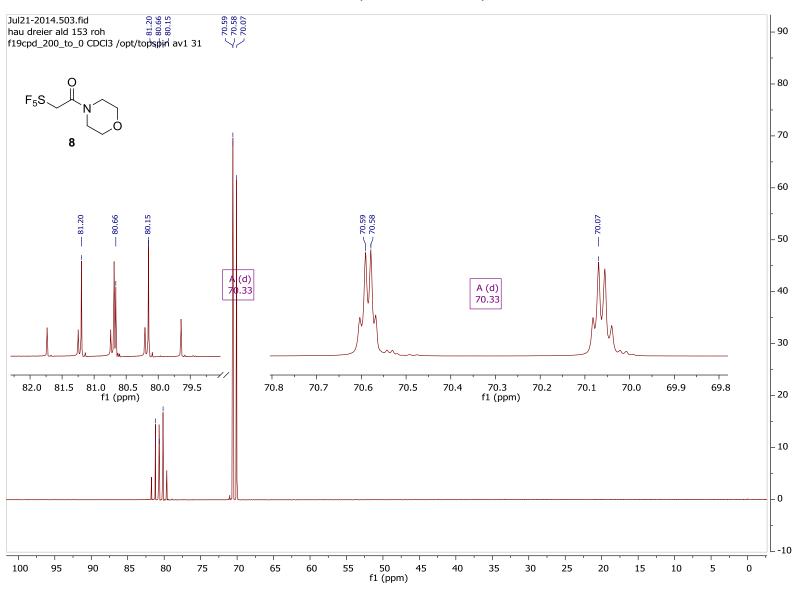

¹⁹F NMR spectrum of compound **2m**

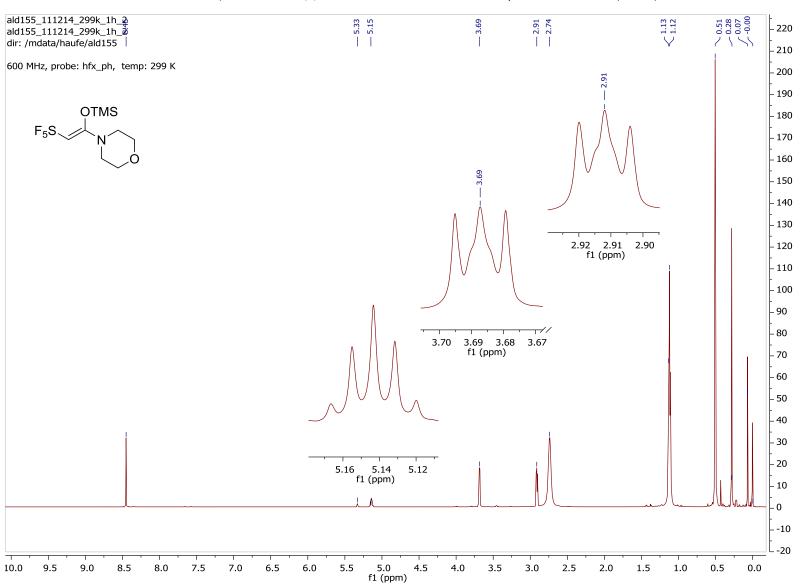

¹H NMR spectrum of compound **2q**

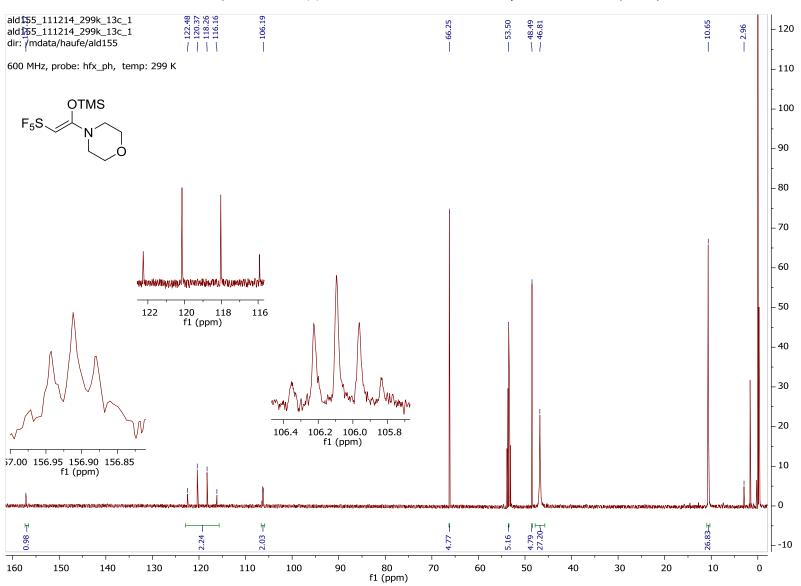

¹³C NMR spectrum of compound **2q**

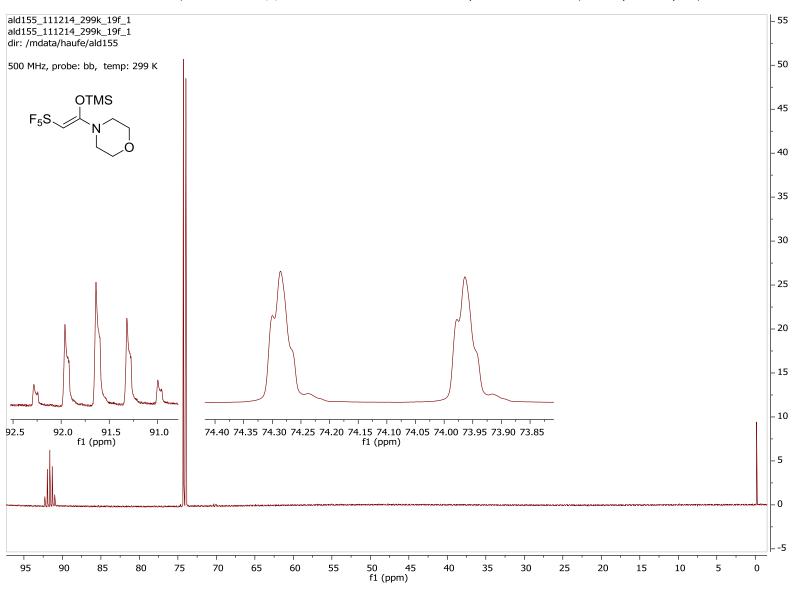



¹⁹F NMR spectrum of compound **2q**


¹H NMR spectrum of compound **8**

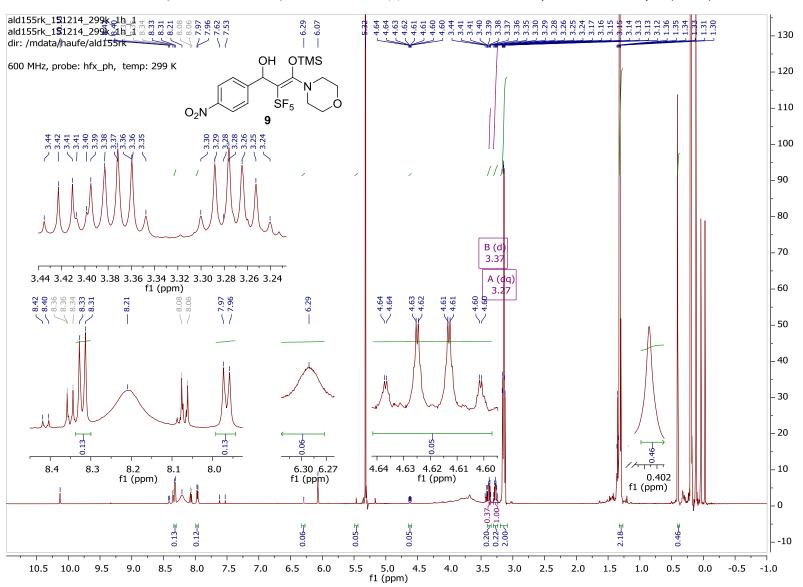


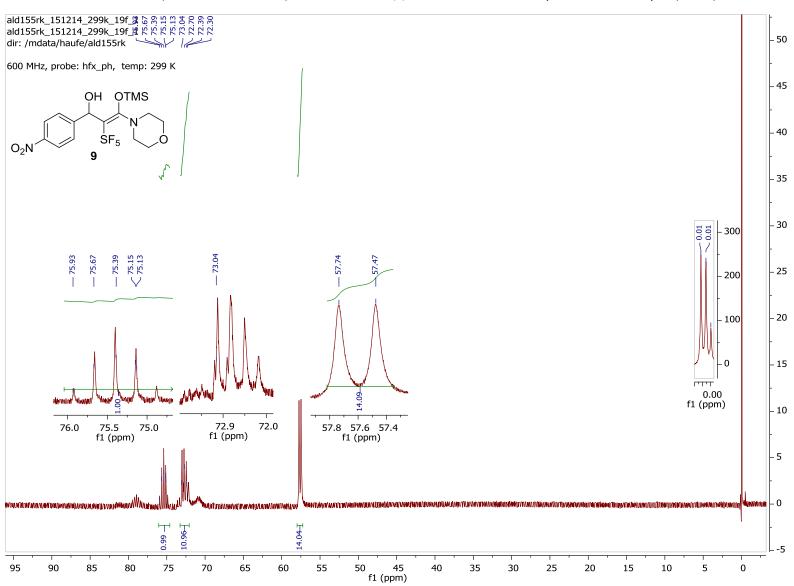

¹⁹F NMR spectrum of compound **8**



¹H NMR spectrum of the (*Z*)-ketene aminal formed from compound **8** in CD₂Cl₂ (crude)

¹³C NMR spectrum of the (*Z*)-ketene aminal formed from compound **8** in CD₂Cl₂ (crude)




¹H, ¹⁹F-correlation spectrum (gHOESY) of the (*Z*)-ketene aminal formed from compound **8**

¹H NMR spectrum after workup of the reaction of (*Z*)-ketene aminal of **8** with *p*-nitrobenzaldehyde (crude)

¹⁹F NMR spectrum before workup of the reaction of (*Z*)-ketene aminal of **8** with *p*-nitrobenzaldehyde (crude)

