Supporting Information

 for
Synthesis of pyrrolidine-based hamamelitannin

 analogues as quorum sensing inhibitors in Staphylococcus aureusJakob Bouton ${ }^{1}$, Kristof Van Hecke ${ }^{2}$, Reuven Rasooly ${ }^{3}$ and Serge Van Calenbergh* ${ }^{1}$

Address: ${ }^{1}$ Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium, ${ }^{2}$ XStruct, Department of Chemistry, Ghent University, Krijgslaan 281 S3, 9000 Ghent, Belgium and ${ }^{3}$ Western Regional Research Center, Foodborne Toxin Detection \& Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA

Email: Serge Van Calenbergh - serge.vancalenbergh@ugent.be

* Corresponding author

Experimental details

Contents

1. General S3
2. Synthetic procedures and compound characterization S4
3. Single crystal X-ray diffraction data S29
4. References. S32
5. Biological evaluation S33
6. NMR spectra S34

1. General

All reactions described were performed under argon atmosphere and at ambient temperature unless stated otherwise. All reagents and solvents were purchased from Sigma Aldrich (Diegem, Belgium), Acros Organics (Geel Belgium), TCI Europe (Zwijndrecht, Belgium) or Carbosynth Ltd (Compton Berkshire, United Kingdom) and used as received. NMR solvents were purchased from Eurisotop (Saint-Aubin, France). Reactions were monitored by TLC analysis using TLC aluminium sheets (Macherey-Nagel, Alugram Sil G/ UV_{254}) with detection by UV or by spraying with a solution of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}(25 \mathrm{~g} / \mathrm{L})$ and $\left(\mathrm{NH}_{4}\right)_{4} \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~g} / \mathrm{L})$ in $\mathrm{H}_{2} \mathrm{SO}_{4}$ (10%) followed by charring or an aqueous solution of $\mathrm{KMnO}_{7}\left(20 \mathrm{~g} / \mathrm{L}\right.$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (10 g / L) followed by charring. Silica gel column chromatography was performed manually using Grace Davisil 60 Å silica gel (40-63 $\mu \mathrm{m}$) or automated using a Grace Reveleris X2 system and the corresponding flash cartridges. High-resolution spectra were recorded with a Waters LCT Premier XE Mass spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Varian Mercury-300BB ($300 / 75 \mathrm{MHz}$) spectrometer. Chemical shifts are given in ppm (δ) relative to tetramethylsilane as an internal standard (${ }^{1} \mathrm{H}$ NMR) or the NMR solvent (${ }^{13} \mathrm{C}$ NMR). Coupling constants are given in Hz . Preparative HPLC purifications were carried out at $22{ }^{\circ} \mathrm{C}$ on a Waters AutoPurification System equipped with PDA and ESI-MS detection and using a Phenomenex Kinetex EVO C18 column ($21.2 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$) and a water/formic acid $(0.2 \% \mathrm{v} / \mathrm{v})$ to acetonitrile linear gradient system at a flow rate of 20 mL min .

Synthesis of (S)-2-(1-Hydroxybut-3-en-2-yl)isoindoline-1,3-dione (12) (Scheme 2)

9
A 500 mL flask containing solid $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.291 \mathrm{~g}, 2.75 \mathrm{mmol}, 0.055$ equiv) was placed under vacuum and dried with a heat gun. The flask was backfilled with N_{2} gas and allylpalladium chloride dimer ($0.082 \mathrm{~g}, 0.225 \mathrm{mmol}, 0.0045$ equiv), ($1 R, 2 R$)-(+)-1,2-diaminocyclohexane-N,N-bis(2-diphenylphosphino-1-naphthoyl) (CAS 174810-$09-4)(0.494 \mathrm{~g}, 0.625 \mathrm{mmol}, 0.0125$ equiv) and phthalimide ($7.36 \mathrm{~g}, 50.0 \mathrm{mmol}$) were added. The flask was then flushed with N_{2} gas. The solids were suspended in dry degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ after which butadiene-1,3-monoepoxide (4.07 mL , 50.5 mmol, 1.01 equiv) was added. The mixture was stirred for 48 h , filtered over celite and the filtrate concentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, absorbed onto celite and purified by flash column chromatography (10 to 40\% EtOAc in hexanes).

Spectral data are in accordance with those reported in literature. ${ }^{1}$

Synthesis of tert-butyl (2-chlorobenzoyl)carbamate (13) (Scheme 2)

13

2-Chlorobenzamide ($1.88 \mathrm{~g}, 12.0 \mathrm{mmol}, 1.0$ equiv) was dissolved in 1,2dichloroethane $(30 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Oxalyl chloride ($1.23 \mathrm{~mL}, 14.5 \mathrm{mmol}, 1.2$ equiv) was added dropwise and the temperature raised to $60^{\circ} \mathrm{C}$. After 1 hour, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and $t-\mathrm{BuOH}(5.74 \mathrm{mmol} \mathrm{mL}, 60.0 \mathrm{mmol}, 5.0$ equiv) in 1,2-dichlorethane (10 mL) was added. After 3 hours, the mixture was transferred to a separation funnel. A Saturated NaHCO_{3} solution (15 mL) was added and the mixture was extracted with $3 \times 50 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, absorbed onto celite and purified by flash column chromatography (petroleum ether/EtOAC 9:1 and 8:2). Compound 13 was obtained as a white powder ($2.32 \mathrm{~g}, 9.1 \mathrm{mmol}, 76 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta \mathrm{ppm} 1.35(9 \mathrm{H}, \mathrm{s}), 7.25-7.54(5 \mathrm{H}, \mathrm{m}), 10.90(1 \mathrm{H}$, s).
${ }^{13}$ C NMR (75 MHz, DMSO- d_{6}): $\delta \mathrm{ppm} 27.5,81.1,127.0,128.3,129.2,130.9,136.2$, 150.1, 167.0. (1 quaternary carbon not found)

HRMS (ESI-TOF) m/z: calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{CINNaO}_{3}[\mathrm{M}+\mathrm{Na}]$ 278.0560, found 278.0558.

Synthesis of (S)-2-chloro-N-(2-(1,3-dioxoisoindolin-2-yl)but-3-en-1-yl)benzamide (14) (Scheme 2)

14

A solution of 12 ($0.157 \mathrm{~g}, 0.72 \mathrm{mmol}, 1.0$ equiv), 13 ($0.313 \mathrm{~g}, 1.22 \mathrm{mmol}, 1.7$ equiv) and $\mathrm{PPh}_{3}\left(0.320 \mathrm{~g}, 1.22 \mathrm{mmol}, 1.7\right.$ equiv) in dry toluene (8 mL) was cooled to $0^{\circ} \mathrm{C}$. DIAD ($0.240 \mathrm{~mL}, 1.22 \mathrm{mmol}, 1.7$ equiv) was added dropwise and the reaction mixture was warmed to room temperature. After 18 hours, TLC analysis (petroleum ether/EtOAc 1:1) indicated disappearance of the starting material. The mixture was concentrated in vacuo and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, absorbed onto celite and purified by flash column chromatography ($0-35 \%$ EtOAc in petroleum ether) to remove the lower running impurities. The fractions containing product were isolated and concentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ and TFA (3 mL) was added. After 4 hours the reaction mixture was concentrated in vacuo and co-evaporated three times with toluene to remove all TFA. The residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, absorbed onto celite and purified by flash column chromatography (10-50\% EtOAc in petroleum ether) to give pure 14 as a colourless oil ($144 \mathrm{mg}, 0.405 \mathrm{mmol}, 56 \%$ yield over 2 steps).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 3.86(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=14.1,5.1 \mathrm{~Hz}$), $4.26(1 \mathrm{H}$, ddd, J=14.0, 9.0, 6.9 Hz), $5.07-5.24(1 \mathrm{H}, \mathrm{m}), 5.26-5.45(2 \mathrm{H}, \mathrm{m}), 6.22(1 \mathrm{H}$, ddd, J=17.3, 10.4, 7.2 Hz), 6.62 (1 H, br. s.), $7.27-7.37(3 \mathrm{H}, \mathrm{m}), 7.50-7.64(1 \mathrm{H}, \mathrm{m})$, 7.66-7.78 (2 H, m), 7.78-7.91 (2 H, m).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 41.23(1 \mathrm{C}, \mathrm{s}), 52.84(1 \mathrm{C}, \mathrm{s}), 118.98(1 \mathrm{C}, \mathrm{s})$, 123.18 ($1 \mathrm{C}, \mathrm{s}$), 126.84 ($1 \mathrm{C}, \mathrm{s}$), 129.91 ($1 \mathrm{C}, \mathrm{s}$), 131.07 ($1 \mathrm{C}, \mathrm{s}$), 131.57 ($1 \mathrm{C}, \mathrm{s}$), $132.29(1 \mathrm{C}, \mathrm{s}), 133.95(1 \mathrm{C}, \mathrm{s}), 166.45(1 \mathrm{C}, \mathrm{s})$ (5 quaternary carbons missing).

HRMS (ESI-TOF) m / z : calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{CIN}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}] 355.0850$, found 355.0855.

Synthesis of (S)-2-chloro-N-(2-((4-nitrophenyl)sulfonamido)but-3-en-1yl)benzamide (9) (Scheme 2)

9

Compound 14 ($0.256 \mathrm{~g}, 0.63 \mathrm{mmol}$) was dissolved in EtOH (7 mL) and THF (3 mL). Ethylenediamine ($0.167 \mathrm{~mL}, 2.50 \mathrm{mmol}, 4.0$ equiv) was added and the reaction was heated to reflux. After 4 hours, the reaction mixture was cooled to room temperature, and filtered over celite. The filtrate was concentrated in vacuo and the residue was suspended in THF (7 mL). The suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{~N}(0.131 \mathrm{~mL}$, $0.939 \mathrm{mmol}, 1.5$ equiv) was added, followed by $p-\mathrm{Ns}-\mathrm{Cl}(0.139 \mathrm{~g}, 0.626 \mathrm{mmol}, 1.0$ equiv). After 1 hour, TLC analysis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9 / 1\right)$ indicated completion of the reaction. The reaction mixture was transferred to a separation funnel containing saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ solution and extracted with $3 \times 30 \mathrm{~mL}$ EtOAc. The combined organic fractions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, absorbed onto celite and purified by flash column chromatography (10-50\% EtOAc in petroleum ether) to yield 9 (115 mg , $0.280 \mathrm{mmol}, 45 \%$ yield (2 steps)) as an orange solid.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) δ ppm 3.07-3.37 (2 H, m), 3.91-4.14 (1 H, m), 4.84$5.10(2 \mathrm{H}, \mathrm{m}), 5.54(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=17.2,10.3,7.0 \mathrm{~Hz}), 7.25-7.62(4 \mathrm{H}, \mathrm{m}), 7.94-8.13$ ($2 \mathrm{H}, \mathrm{m}$), $8.30-8.41(3 \mathrm{H}, \mathrm{m}), 8.44(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta \mathrm{ppm} 43.1,55.6,117.2,124.4,126.9,128.1,128.9$, 129.6, 129.9, 130.8, 135.3, 136.5, 147.3, 149.3, 166.3. (1 quaternary carbon missing)

HRMS (ESI-TOF) m/z: calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{CIN}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}] 410.0577$, found 410.0585.

Synthesis of 2-(((tert-butyldimethylsilyl)oxy)methyl)prop-2-en-1-ol (17) (Scheme

 3)

17
2-Methylene-1,3-propanediol ($4.12 \mathrm{~mL}, 50.0 \mathrm{mmol}$, 1.0 equiv) in dry THF (150 mL) was added dropwise to a stirring suspension of sodium hydride (60% in mineral oil, $2.00 \mathrm{~g}, 50.0 \mathrm{mmol}, 1.0$ equiv) in dry THF (70 mL). After 45 minutes, when gas formation had ceased and a grey precipitate formed, $\operatorname{TBSCI}(3.014 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.0$ equiv) was added portionwise. After 2 hours of stirring, $100 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ was added and the mixture was extracted with $3 \times 100 \mathrm{~mL}$ EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by flash column chromatography (0 to 15% EtOAc in hexanes) yielded 17 as a colourless oil in 92% yield.
${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta \mathrm{ppm} 0.05-0.12(6 \mathrm{H}, \mathrm{m}), 0.87-0.96(9 \mathrm{H}, \mathrm{m}), 2.08(1$ H, br. s.), $4.17(2 \mathrm{H}, \mathrm{s}), 4.21-4.27(2 \mathrm{H}, \mathrm{m}), 5.05-5.15(2 \mathrm{H}, \mathrm{m})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}-5.5,18.3,25.6,25.8,64.6,65.1,111.1,147.4$.
HRMS (ESI-TOF) m / z : Calculated for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]$: 203.1463; found 203.1462.

Synthesis of 2-(2-(((tert-butyldimethylsilyl)oxy)methyl)allyl)isoindoline-1,3dione (18) (Scheme 3)

18
A solution of compound 17 ($9.24 \mathrm{~g}, 45.7 \mathrm{mmol}), \mathrm{PPh}_{3}(18.0 \mathrm{~g}, 68.5 \mathrm{mmol}, 1.5$ equiv) and phthalimide ($13.4 \mathrm{~g}, 91.3 \mathrm{mmol}, 2.0 \mathrm{eq}$) in dry THF (250 mL) was cooled to $0^{\circ} \mathrm{C}$. DEAD (40% in toluene, $25.3 \mathrm{~mL}, 68.5 \mathrm{mmol}, 1.5$ equiv) was added dropwise over 50 min. The reaction mixture was warmed to room temperature and stirred overnight. The mixture was concentrated in vacuo and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, absorbed onto celite and purified by flash column chromatography (4\% and 10\% $\mathrm{Et}_{2} \mathrm{O}$ in hexanes) to yield 18 ($12.9 \mathrm{~g}, 38.8 \mathrm{mmol}, 85 \%$ yield) as a colourless oil.

1H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 0.02-0.15(6 \mathrm{H}, \mathrm{m}), 0.77-1.02(9 \mathrm{H}, \mathrm{m}), 4.19(2$ $\mathrm{H}, \mathrm{s}), 4.29(2 \mathrm{H}, \mathrm{s}), 4.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.2 \mathrm{~Hz}), 5.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.2 \mathrm{~Hz}), 7.58-7.79(2 \mathrm{H}$, m), $7.79-7.94(2 \mathrm{H}, \mathrm{m})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 18.3,25.8,39.6,64.6,111.6,123.3,132.1,133.9$, 142.8, 167.9.

HRMS (ESI-TOF) m/z: Calculated for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]$: 332.1682; found 332.1682.

Synthesis of 2-(((tert-butyldimethylsilyl)oxy)methyl)prop-2-en-1-amine (Intermediate S1) (Scheme 3)

S1

Compound 18 (12.9 g, 38.8 mmol) was dissolved in MeOH (200 mL). Hydrazine hydrate ($4.71 \mathrm{~mL}, 97.0 \mathrm{mmol}, 2.5$ equiv) was added and the reaction mixture was heated to reflux. When a white precipitate was formed (after $\pm 1 \mathrm{~h}$), 50 mL of water was added and stirring was continued. After 4 hours, the mixture was concentrated in vacuo to remove most of the MeOH . The residue was dissolved in $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$, and transferred to a separation funnel. The water layer was extracted with $4 \times 100 \mathrm{~mL}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were washed with saturated NaHCO_{3} solution (150 mL), brine (150 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under slightly reduced pressure at $35^{\circ} \mathrm{C}$, yielding pure intermediate $\mathbf{S 1}(6.40 \mathrm{~g}, 31.8 \mathrm{mmol}$, 82\% yield) as a yellow oil.

1H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 0.06$ (s, 6 H), 0.90 (br. s, 9 H), 1.38 (s, 2 H), 3.29 (s, 2 H), 4.16 (s, 2 H), 5.01 (d, J = $23.14 \mathrm{~Hz}, 2 \mathrm{H}$).

13C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}-5.4,25.8,44.3,64.9,108.3,150.1$.
HRMS (ESI-TOF) m / z : Calculated for $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{NOSi}[\mathrm{M}+\mathrm{H}]$: 202.1627; found 202.1618.

Synthesis of N-(2-(((tert-butyldimethylsilyl)oxy)methyl)allyl)benzamide (19) (Scheme 3)

19
Intermediate S1 ($6.40 \mathrm{~g}, 31.8 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. To the solution was added $\mathrm{Et}_{3} \mathrm{~N}(5.54 \mathrm{~mL}, 39.8 \mathrm{mmol}, 1.25$ equiv), followed by dropwise addition of $\mathrm{Bz}-\mathrm{Cl}(3.77 \mathrm{~mL}, 32.4 \mathrm{mmol}, 1.02$ equiv). After 90 minutes the reaction was quenched by the addition of saturated NaHCO_{3} solution (50 mL) and the biphasic mixture was transferred to a separation funnel. The phases were separated and the aequous layer was extracted once more with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, absorbed onto celite and purified by flash column chromatography (petroleum ether/EtOAc 95/5 and $8 / 2$) to give 19 ($8.38 \mathrm{~g}, 27.4 \mathrm{mmol}, 86 \%$ yield) as a white solid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}-0.01-0.16$ (m, 6 H), $0.79-1.02$ (m, 9 H), 4.11 (d, $J=5.57 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{~s}, 2 \mathrm{H}), 5.13(\mathrm{~d}, J=24.90 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.33-$ $7.56(\mathrm{~m}, 3 \mathrm{H}), 7.72-7.83(\mathrm{~m}, 2 \mathrm{H})$.

13C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}-5.4,18.3,25.8,42.7,65.4,112.1,126.9,128.4$, 131.3, 134.5, 144.5, 167.2.

HRMS (ESI-TOF) m/z: Calculated for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NNaO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}$: 328.1709; found 328.1714.

Synthesis of N-(2-(hydroxymethyl)allyl)benzamide (10) (Scheme 3)

10
TBAF (1.0 M in THF, $30.0 \mathrm{ml}, 30.0 \mathrm{mmol}, 1.1$ equiv) was added to a solution of 19 ($8.32 \mathrm{~g}, 27.2 \mathrm{mmol}$) in THF (200 mL). After 2 hours, most of the solvent was removed by concentration under reduced pressure. The residue was dissolved in EtOAC (200 mL), transferred to a separation funnel and washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (60 $\mathrm{mL}), \mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$, and brine (60 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, absorbed onto celite and purified by flash column chromatography (petroleum ether/EtOAc 9:1 and 8:2). Compound 10 ($4.66 \mathrm{~g}, 24.4 \mathrm{mmol}, 89 \%$ yield) was obtained as a white solid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm 3.65 (br. s., 1 H), $3.99-4.22$ (m, 4 H), 5.06 (d, $J=$ $13.20 \mathrm{~Hz}, 2 \mathrm{H}$), 6.94 (br. s., 1 H), $7.32-7.63$ (m, 3H), $7.70-7.92$ (m, 2 H).
${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta \mathrm{ppm} 42.5,64.2,113.3,127.0,128.6,131.7,133.9$, 145.3, 168.3.

HRMS (ESI-TOF) m / z : Calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]$: 192.1025; found 192.1015.
(S)- N -(2-((N -(2-(Benzamidomethyl)allyl)-4-nitrophenyl)sulfonamido)but-3-en-1-yl)-2-chlorobenzamide (20) (Scheme 4)

20

Compound 9 ($0.093 \mathrm{mg}, 0.227 \mathrm{mmol}, 1.2$ equiv) , 10 ($0.036 \mathrm{mg}, 0.189 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(0.069 \mathrm{mg}, 0.265 \mathrm{mmol}, 1.4$ equiv) were dissolved in a mixture of THF (4 mL) and DMF (2 mL). The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and DEAD (40% wt in toluene, $0.097 \mathrm{~mL}, 0.256 \mathrm{mmol}, 1.4$ equiv) was added dropwise. The reaction was warmed to room temperature and stirred for 4 hours after which it was concentrated in vacuo. The residue was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, absorbed onto celite and purified by flash column chromatography (10-45\% ethyl acetate in toluene). After chromatography, the product was still slightly contaminated with Mitsunobu sideproducts and was therefore used without further characterization in the next reaction.

HRMS (ESI-TOF) m/z: Calculated for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{ClN}_{4} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]$: 583.1418; found 583.1389.

Synthesis of (S)-2-(1-((tert-butyldimethylsilyl)oxy)but-3-en-2-yl)isoindoline-1,3dione (22) (Scheme 5)

22

Compound 12 ($6.67 \mathrm{~g}, 30.7 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL). Imidazole ($2.51 \mathrm{~g}, 36.85 \mathrm{mmol}, 1.2$ equiv) was added, followed by TBS-Cl ($5.09 \mathrm{~g}, 33.8 \mathrm{mmol}$, 1.1 equiv). The solution was stirred at room temperature for 90 minutes after which it was diluted with saturated NaHCO_{3} solution (60 mL). The biphasic mixture was transferred to a separation funnel, the phases were separated and the aequous layer was extracted two more times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The combined organic phases were dried over anhydrous MgSO_{4} and concentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, absorbed onto celite and purified by flash column chromatography (petroleum ether/EtOAc 95/5) to obtain 22 ($9.25 \mathrm{~g}, 27.89 \mathrm{mmol}, 91 \%$ yield) as a white solid.
${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta \mathrm{ppm}-0.07(3 \mathrm{H}, \mathrm{s}), 0.00(3 \mathrm{H}, \mathrm{s}), 0.72-0.79(9 \mathrm{H}, \mathrm{m})$, $3.87(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.0,6.2 \mathrm{~Hz}), 4.16(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.7 \mathrm{~Hz}), 4.79-4.99(1 \mathrm{H}, \mathrm{m}), 5.18-$ $5.41(2 \mathrm{H}, \mathrm{m}), 6.18(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=17.4,10.3,7.5 \mathrm{~Hz}), 7.65-7.77(2 \mathrm{H}, \mathrm{m}), 7.77-7.90$ (2 H, m).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}-5.6,-5.5,17.9,25.6,55.8,62.2,118.9,123.1$, 132.0, 132.3, 133.8, 168.2.

HRMS (ESI-TOF) m/z: Calculated for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{Si}$ [M+H]: 332.1682; found 332.1674.

Synthesis of (S)-N-(1-((tert-butyldimethylsilyl)oxy)but-3-en-2-yl)-4nitrobenzenesulfonamide (23) (Scheme 5)

23

To a solution of compound 22 ($9.25 \mathrm{~g}, 27.9 \mathrm{mmol}$) in MeOH was added hydrazine hydrate ($4.75 \mathrm{~mL}, 97.7 \mathrm{mmol}, 3.5$ equiv). The solution was stirred for 3 hours at $65^{\circ} \mathrm{C}$ and concentrated in vacuo. The residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(70 \mathrm{~mL})$, transferred to a separation funnel and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 60 \mathrm{~mL})$. The combined organic phases were washed with saturated NaHCO_{3} solution (100 mL) and brine (100 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was then redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. $\mathrm{Et}_{3} \mathrm{~N}(4.73 \mathrm{~mL}, 30.7 \mathrm{mmol}, 1.1$ equiv) and $p-\mathrm{Ns}-\mathrm{Cl}(6.18 \mathrm{~g}, 27.9 \mathrm{mmol}, 1.0$ equiv) were added, and after 90 minutes TLC analysis (petroleum ether/EtOAc $7: 3$) indicated completion of the reaction. The mixture was transferred to a separation funnel containing saturated NaHCO_{3} solution (80 mL). The phases were separated and the aqueous layer was extracted two more times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, absorbed onto celite and purified by flash column chromatography (petroleum ether/EtOAc 95:5) to yield 23 ($8.23 \mathrm{~g}, 22.3 \mathrm{mmol}, 80 \%$ over 2 steps) as a white powder.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}-0.08-0.06(6 \mathrm{H}, \mathrm{m}), 0.79-0.88(9 \mathrm{H}, \mathrm{m}), 3.56(1$ H , dd, J=10.3, 5.3 Hz), $3.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.3,4.1 \mathrm{~Hz}$), $3.80-3.95(1 \mathrm{H}, \mathrm{m}), 5.06-$ $5.18(2 \mathrm{H}, \mathrm{m}), 5.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}), 5.62(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=17.2,10.3,6.7 \mathrm{~Hz}), 7.97$ $8.17(2 \mathrm{H}, \mathrm{m}), 8.27-8.45(2 \mathrm{H}, \mathrm{m})$.
${ }^{13}$ C NMR (75 MHz, CDCl_{3}) $\delta \mathrm{ppm}-5.6,-5.5,18.2,25.7,58.0,65.2,118.0,124.1$, 128.4, 134.6, 146.7, 149.9.

HRMS (ESI-TOF) m/z: Calculated for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]$: 387.1410; found 387.1403.

Synthesis of (S)-N-(2-(((N-(1-((tert-butyldimethylsilyl)oxy)but-3-en-2-yl)-4nitrophenyl)sulfonamido)methyl)allyl)benzamide (24) (Scheme 6)

24

Compound 23 ($4.06 \mathrm{~g}, 10.49 \mathrm{mmol})$, 10 ($2.609 \mathrm{~g}, 13.6 \mathrm{mmol}, 1.3$ equiv) and PPh_{3} ($4.13 \mathrm{~g}, 15.8 \mathrm{mmol}, 1.5$ equiv) were dissolved in anhydrous THF (100 mL). The solution was cooled to $0^{\circ} \mathrm{C}$ and DEAD (40% wt. in toluene, $5.79 \mathrm{~mL}, 15.7 \mathrm{mmol}, 1.5$ equiv) was added dropwise. After 8 hours stirring at room temperature the reaction mixture was concentrated in vacuo, redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, absorbed onto celite and purified by flash column chromatography (petroleum ether/ethyl acetate 85:15 and 8:2). Compound 23 ($2.90 \mathrm{~g}, 5.18 \mathrm{mmol}, 49 \%$ yield) was obtained as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}-0.01(3 \mathrm{H}, \mathrm{s}), 0.01(3 \mathrm{H}, \mathrm{s}), 0.81(9 \mathrm{H}, \mathrm{s}), 3.71(1$ H, dd, J=10.8, 5.9 Hz), 3.85 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.8,8.2 \mathrm{~Hz}$), $3.94(2 \mathrm{H}, \mathrm{s}), 4.19$ (2 H, d, $J=6.2 \mathrm{~Hz}$), $4.32-4.47(1 \mathrm{H}, \mathrm{m}), 5.10-5.26(3 \mathrm{H}, \mathrm{m}), 5.33(1 \mathrm{H}, \mathrm{s}), 5.55-5.84(1 \mathrm{H}$, m), $7.15(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}), 7.39-7.57(3 \mathrm{H}, \mathrm{m}), 7.82-7.91(2 \mathrm{H}, \mathrm{m}), 7.97-8.07(2 \mathrm{H}$, m), 8.26-8.39 (2 H, m).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}-5.5,-5.5,0.0,18.2,25.7,42.0,48.5,63.1,117.4$, $120.4,124.2,126.9,127.0,128.5,128.6,131.5,132.7,134.1,141.8,146.0,149.9$, 166.9.

HRMS (ESI-TOF) m/z: Calculated for C27H38N3O6SSi [M+H]: 560.2251; found 560.2246.

Synthesis of (S)-N-((5-(((tert-butyldimethylsilyl)oxy)methyl)-1-((4-nitrophenyl)sulfonyl)-2,5-dihydro-1 H-pyrrol-3-yl)methyl)benzamide (Scheme 6)

25

Compound 24 ($2.90 \mathrm{~g}, 5.18 \mathrm{mmol}, 1.0$ equiv) was dissolved in dry degassed 1,2dichloroethane (25 mL). The reaction was warmed to $50{ }^{\circ} \mathrm{C}$ and a solution of Grubbs-Hoveyda II catalyst ($0.097 \mathrm{~g}, 0.155 \mathrm{mmol}, 3 \mathrm{~mol} \%$) in 1,2-dichloroethane (1 mL) was added. After 4 hours a second portion of catalyst ($0.065 \mathrm{~g}, 0.103 \mathrm{mmol}, 2$ $\mathrm{mol} \%$) in 1,2-dichloroethane (1 mL) was added and stirring was continued overnight. The reaction mixture was concentrated in vacuo, the residue redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, absorbed onto celite and purified by flash column chromatography (22% EtOAc in petroleum ether) to yield $25(2.30 \mathrm{~g}, 4.33 \mathrm{mmol}, 84 \%$ yield) as a brown foam.
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl $)_{3}$) $\delta \mathrm{ppm} 0.05(3 \mathrm{H}, \mathrm{s}), 0.06(3 \mathrm{H}, \mathrm{s}), 0.85(9 \mathrm{H}, \mathrm{s}), 3.72(1$ H, dd, J=10.0, 6.7 Hz), 3.91 (1 H , dd, $J=10.0,3.5 \mathrm{~Hz}$), $4.04-4.24$ ($4 \mathrm{H}, \mathrm{m}$), 4.35 $4.59(1 \mathrm{H}, \mathrm{m}), 5.60(1 \mathrm{H}, \mathrm{m}, \mathrm{J}=1.8 \mathrm{~Hz}), 6.24(1 \mathrm{H}, \mathrm{br} . \mathrm{t}, \mathrm{J}=6.2,6.2 \mathrm{~Hz}), 7.38-7.50(2$ $\mathrm{H}, \mathrm{m}), 7.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}), 7.64-7.78(2 \mathrm{H}, \mathrm{m}), 7.90-8.08(2 \mathrm{H}, \mathrm{m}), 8.17-8.36$ (2 H, m).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}-5.4,-5.4,18.1,25.7,37.7,56.2,65.8,68.7,124.0$, 124.4, 126.8, 128.4, 128.7, 131.9, 133.6, 137.1, 143.5, 150.1, 167.3.

HRMS (ESI-TOF) m/z: Calculated for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]$: 532.1938; found 532.1925.

Synthesis of $\quad \mathrm{N}-(((3 S, 4 R, 5 R)-5-(((t e r t-b u t y l d i m e t h y l s i l y l) o x y) m e t h y l)-3,4-$ dihydroxy-1-((4-nitrophenyl)sulfonyl)pyrrolidin-3-yl)methyl)benzamide (Scheme 6)

26

Compound 25 ($2.51 \mathrm{~g}, 4.73 \mathrm{mmol}, 1.0$ equiv) was dissolved in a mixture of acetone $(30 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL}) . \mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.032 \mathrm{~g}, 0.087 \mathrm{mmol}, 2 \mathrm{~mol} \%)$ was added, followed by NMO ($0.761 \mathrm{~g}, 6.50 \mathrm{mmol}, 1.5$ equiv). The reaction was stirred overnight, and quenched by the addition of solid $\mathrm{Na}_{2} \mathrm{SO}_{3}(3.2 \mathrm{~g})$. Stirring was continued for 1 hour, and the solvents removed by concentration under reduced pressure. The residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$, transferred to a separation funnel, and exracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, absorbed onto celite and purified by flash column chromatography (5-50\% EtOAc in petroleum ether) to yield single diastereoisomer 26 ($2.28 \mathrm{~g}, 4.03 \mathrm{mmol}, 85 \%$ yield) as a white foam.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.07(3 \mathrm{H}, \mathrm{s}), 0.08-0.11(3 \mathrm{H}, \mathrm{m}), 0.82-0.84(9 \mathrm{H}$, m), 3.30-3.37 ($1 \mathrm{H}, \mathrm{m}$), $3.37-3.48(5 \mathrm{H}, \mathrm{m}), 3.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}), 3.60(1 \mathrm{H}$, dd, $J=14.6,7.0 \mathrm{~Hz}$), $3.97(1 \mathrm{H}, \mathrm{dd}, J=10.5,2.6 \mathrm{~Hz}), 4.07(1 \mathrm{H}, \mathrm{m}, \mathrm{J}=4.1 \mathrm{~Hz}), 4.22(1 \mathrm{H}$, dd, J=7.0, 5.3 Hz), $6.74(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}), 7.35-7.49(2 \mathrm{H}, \mathrm{m}), 7.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3$ $\mathrm{Hz}), 7.65-7.81(2 \mathrm{H}, \mathrm{m}), 7.91-8.08(2 \mathrm{H}, \mathrm{m}), 8.22-8.44(2 \mathrm{H}, \mathrm{m})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}-5.5,-5.4,18.1,25.8,44.4,56.2,63.0,65.1,74.6$, $76.9,123.9,127.0,128.7,129.0,132.3,132.8,143.0,150.1,169.7$.

HRMS (ESI-TOF) m/z: Calculated for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]$: 566.1992; found 566.2020.

Synthesis of $\quad N-(((3 a S, 6 R, 6 a R)-6-((($ tert-butyldimethylsilyl)oxy)methyl)-2,2-dimethyl-5-((4-nitrophenyl)sulfonyl)tetrahydro-3aH-[1,3]dioxolo[4,5-c]pyrrol-3ayl)methyl)benzamide (27) (Scheme 6)

27

Compound 26 ($2.201 \mathrm{~g}, 3.89 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in dry THF (120 mL). 2Methoxypropene ($3.60 \mathrm{~mL}, 38.9 \mathrm{mmol}, 10.0$ equiv) was added, followed by camphorsulphonic acid ($0.018 \mathrm{~g}, 0.078 \mathrm{mmol}, 2 \mathrm{~mol} \%$) The reaction was stirred overnight and neutralized by the addition of Et3N (100 $\mu \mathrm{L}$). The mixture was concentrated in vacuo, the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, absorbed onto celite and purified by flash column chromatography ($0-35 \%$ EtOAc in petroleum ether). 27 was obtained as a white foam ($2.17 \mathrm{~g}, 3.58 \mathrm{mmol}, 92 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 0.11(3 \mathrm{H}, \mathrm{s}), 0.12-0.15(3 \mathrm{H}, \mathrm{m}), 0.86-0.93(9 \mathrm{H}$, m), $1.03(3 \mathrm{H}, \mathrm{s}), 1.32(3 \mathrm{H}, \mathrm{s}), 3.54-3.71(3 \mathrm{H}, \mathrm{m}), 3.89(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz}), 4.00-$ $4.13(2 \mathrm{H}, \mathrm{m}), 4.52(1 \mathrm{H}, \mathrm{s}), 6.24-6.50(1 \mathrm{H}, \mathrm{m}), 7.34-7.63(3 \mathrm{H}, \mathrm{m}), 7.71-7.86(2$ H, m), 7.96-8.14 (2 H, m), 8.25-8.45 (2 H, m).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}-5.4,18.5,26.0,26.9,27.3,44.7,58.4,64.5,68.1$, $76.6,77.4,85.2,90.6,112.3,124.3,126.9,128.5,128.7,131.8,133.9,145.1,150.0$, 167.4.

HRMS (ESI-TOF) m/z: Calculated for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]$: 606.2305; found 606.2301 .

Synthesis of tert-butyl-(3aS,6R,6aR)-3a-(benzamidomethyl)-6-(hydroxymethyl)-2,2-dimethyltetrahydro-5H-[1,3]dioxolo[4,5-c]pyrrole-5-carboxylate (Scheme 6)

28
To a solution of $27(2.17 \mathrm{~g}, 3.58 \mathrm{mmol})$ in $\mathrm{MeCN}(30 \mathrm{~mL})$ were added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.48 \mathrm{~g}$, $10.74 \mathrm{mmol}, 3.0$ equiv) and thiophenol ($0.551 \mathrm{~mL}, 5.37 \mathrm{mmol}, 1.5$ equiv). The mixture was warmed to $50{ }^{\circ} \mathrm{C}$ and stirred for 36 hours after which it was filtered over celite and conentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, absorbed onto celite and purified by quick flash column chromatography ($0-5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), to give a mixture of product and close-running impurities. This residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL}) . \mathrm{Et}_{3} \mathrm{~N}$ ($0.600 \mathrm{~mL}, 4.30 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Boc}_{2} \mathrm{O}(0.987 \mathrm{~mL}, 4.30$ $\mathrm{mmol}, 1.2$ equiv) were added and the reaction was stirred overnight. A saturated NaHCO_{3} solution (30 mL) was added and the biphasic mixture was transferred to a separation funnel. The aequous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic fractions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was dissolved in THF (30 mL) and TBAF (1.0 M in THF) was added. After 3 hours, the reaction mixture was concentrated in vacuo, the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, absorbed onto celite and purified by flash column chromatography (petroleum ether/EtOAc 65:35 and 1:1) to give $28(1.040 \mathrm{~g}, 2.56 \mathrm{mmol}, 71 \%$ yield over 3 steps) as a colourless oil.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}^{2}-\mathrm{d}_{6}, 80^{\circ} \mathrm{C}\right) \delta \mathrm{ppm} 1.34(3 \mathrm{H}, \mathrm{s}), 1.35(3 \mathrm{H}, \mathrm{s}), 1.40-1.43$ (9 H, m), 3.38-3.47 (2 H, m), 3.51 (1 H, dd, J=10.5, 4.1 Hz), 3.61-3.73 (3 H, m), 3.76$3.99(1 \mathrm{H}, \mathrm{m}), 4.65(1 \mathrm{H}, \mathrm{s}), 7.40-7.58(3 \mathrm{H}, \mathrm{m}), 7.82-7.91(2 \mathrm{H}, \mathrm{m}), 8.27-8.43(1$ H, m).

[^0]HRMS (ESI-TOF) m / z : Calculated for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]$: 407.2182 ; found 407.2200.

Synthesis of tert-butyl-(3aS,6R,6aR)-6-(azidomethyl)-3a-(benzamidomethyl)-2,2-dimethyltetrahydro-5H-[1,3]dioxolo[4,5-c]pyrrole-5-carboxylate (29) (Scheme 6)

29

Compound 28 ($0.950 \mathrm{~g}, 2.34 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.489 \mathrm{~mL}, 3.51 \mathrm{mmol}, 1.5$ equiv) was added, followed by dropwise addition of $\mathrm{Ms}-\mathrm{Cl}(0.226 \mathrm{~mL}, 2.92 \mathrm{mmol}, 1.25$ equiv). After 1 hour of stirring, the reaction mixture was diluted with $50 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ and transferred to a separation funnel. A saturated NaHCO_{3} solution (30 mL) was added and the phases were separated. The organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The residue was dissolved in DMF (20 mL), $\mathrm{NaN}_{3}(0.770 \mathrm{~g}$, 11.7 mmol, 5.0 equiv) was added and the reaction was stirred overnight at $60^{\circ} \mathrm{C}$. The reaction mixture was diluted with $30 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$, transferred to a separation funnel and extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic fractions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, absorbed onto celite and purified by flash column chromatography (10-40\% EtOAc in petroleum ether) to yield 29 ($0.671 \mathrm{~g}, 1.56 \mathrm{mmol}, 66 \%$ yield) as a white foam.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}^{2}-\mathrm{d}_{6}, 80^{\circ} \mathrm{C}$) $\delta \mathrm{ppm} 1.35(3 \mathrm{H}, \mathrm{s}), 1.37(3 \mathrm{H}, \mathrm{s}), 1.43(9 \mathrm{H}, \mathrm{s})$, 3.41-3.51 (3 H, m), 3.59-3.77 (3 H, m), 4.04 (1 H, t, J=6.2 Hz), 4.57 (1 H, s), 7.40$7.58(3 \mathrm{H}, \mathrm{m}), 7.83-7.94(2 \mathrm{H}, \mathrm{m}), 8.42(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}_{-\mathrm{d}_{6}}, 80^{\circ} \mathrm{C}$) $\delta \mathrm{ppm} 27.1,27.5,27.6,42.7,50.1,54.2,63.1$, 79.0, 84.3, $90.4,111.2,126.8,127.8,130.8,133.9,152.9,166.7$.

HRMS (ESI-TOF) m / z : Calculated for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]: 432.2247$; found 432.2250.

Synthesis of N-(((2R,3R,4R)-4-(benzamidomethyl)-3,4-dihydroxypyrrolidin-2-yl)methyl)-2-chlorobenzamide (4) (Scheme 6)

4
PMe_{3} (1.0 M in THF, $3.06 \mathrm{~mL}, 3.06 \mathrm{mmol}, 2.0$ equiv) was added to a solution of 29 ($0.671 \mathrm{~g}, 1.53 \mathrm{mmol}$) in THF (15 mL), and the reaction was stirred for 1 hour when $\mathrm{H}_{2} \mathrm{O}(100 \mu \mathrm{~L})$ was added. After 1 more hour, the reaction mixture was concentrated in vacuo and coevaporated three times with toluene. The residue was dissolved in in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and the solution cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{Et}_{3} \mathrm{~N}(0.235 \mathrm{~mL}, 1.68 \mathrm{mmol}, 1.1$ equiv) was added, followed by dropwise addition of 2-chloro-benzoyl chloride (0.204 $\mathrm{mL}, 1.61 \mathrm{mmol}, 1.05$ equiv) over 30 minutes. After 1 more hour, TLC analysis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)$ indicated completion of the reaction and the presence of a single higher-running spot. A saturated NaHCO_{3} solution (30 mL) was added and the biphasic mixture was transferred to a separation funnel and extracted with $3 \times 50 \mathrm{~mL}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was dissolved in a mixture of $\mathrm{MeOH}(4 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$, conc. $\mathrm{HCl}(2 \mathrm{~mL})$ was added and the solution was heated to reflux. After 4 hours, TLC analysis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH} 84: 15: 1\right)$ indicated completion of the reaction. The mixture was concentrated in vacuo, the residue dissolved in MeOH , absorbed onto celite and purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH} 99: 0: 1\right.$ to $79: 20: 1$). 4 was obtained as a white solid (491 mg , $1.22 \mathrm{mmol}, 80 \%$ yield over 3 steps).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta \mathrm{ppm} 2.91(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}$), $3.15(1 \mathrm{H}, \mathrm{d}, J=12.3$ $\mathrm{Hz})$, $3.23-3.30(1 \mathrm{H}, \mathrm{m}), 3.48-3.71(5 \mathrm{H}, \mathrm{m}), 7.29-7.57(7 \mathrm{H}, \mathrm{m}), 7.81-7.87(2 \mathrm{H}$, $\mathrm{m})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta \mathrm{ppm} 42.8,46.4,54.7,63.3,77.4,79.7,128.0,128.3$, 129.4, 129.9, 130.8, 131.7, 132.1, 132.6, 135.3, 137.3, 170.4, 170.9 .

HRMS (ESI-TOF) m/z: Calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{CIN}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]$: 404.1377; found 404.1364.

Synthesis of $\quad N-((2 R, 3 R, 4 S)-4-(b e n z a m i d o m e t h y l)-3,4-d i h y d r o x y-1-(2-$ hydroxyethyl)pyrrolidin-2-yl)methyl)-2-chlorobenzamide (3a) (Scheme 7)

3a

To a solution of $4(0.038 \mathrm{~g}, 0.094 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ were added $\mathrm{AcOH}(0.108$ $\mathrm{mL}, 1.88 \mathrm{mmol}, 20.0$ equiv), $\mathrm{NaBH}_{3} \mathrm{CN}(0.018 \mathrm{~g}, 0.282 \mathrm{mmol}, 3.0$ equiv) and glycolaldehyde dimer ($0.017 \mathrm{~g}, 0.141 \mathrm{mmol}, 1.5$ equiv). The reaction was warmed to $60^{\circ} \mathrm{C}$ and stirred for 2 hours, after which TLC analysis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}\right.$ $84: 15: 1$) showed full conversion of the starting material. The reaction mixture was concentrated in vacuo, the residue dissolved in MeOH , absorbed onto celite and purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH} 99: 0: 1\right.$ to 79:20:1) to afford 3a ($39 \mathrm{mg}, 0.087 \mathrm{mmol}, 93 \%$ yield) as a white solid.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) δ ppm 2.29-2.43 (2 H, m), 2.66 (1 H, br. s.), 2.81 $2.95(1 \mathrm{H}, \mathrm{m}), 3.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.3 \mathrm{~Hz}), 3.24-3.48(5 \mathrm{H}, \mathrm{m}), 3.52-3.67(2 \mathrm{H}, \mathrm{m})$, $4.36(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}), 4.59(1 \mathrm{H}, \mathrm{s}), 4.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}), 7.23-7.34(1 \mathrm{H}, \mathrm{m})$, 7.34-7.61 (6 H, m), 7.78-7.91 (2 H, m), 8.11 (1 H , br. s.), 8.25 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d d_{6}) $\delta \mathrm{ppm} 38.7,45.9,54.2,56.4,59.4,61.8,62.8,67.9$, $74.1,76.3,126.9,127.3,128.2,129.0,129.5,129.9,130.6,131.2,134.4,137.0$, 166.4, 167.0.

HRMS (ESI-TOF) m/z: Calculated for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{ClN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]$: 448.1639; found 448.1626.

Synthesis of $\quad \mathbf{N}$-(($2 R, 3 R, 4 S)$-4-(benzamidomethyl)-1-cyclopropyl-3,4-dihydroxypyrrolidin-2-yl)methyl)-2-chlorobenzamide (3b) (Scheme 7)

3b

To a solution of $4(0.038 \mathrm{~g}, 0.094 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ were added $3 \hat{\text { Á molecular }}$ sieves (500 mg), $\mathrm{AcOH}\left(0.108 \mathrm{~mL}, 1.88 \mathrm{mmol}, 20.0\right.$ equiv), $\mathrm{NaBH}_{3} \mathrm{CN}(0.018 \mathrm{~g}$, $0.282 \mathrm{mmol}, 3.0$ equiv) and (1-ethoxycyclopropoxy)trimethylsilane ($0.076 \mathrm{~mL}, 0.376$ $\mathrm{mmol}, 4.0$ equiv). The reaction was warmed to $60^{\circ} \mathrm{C}$ and stirred for 4 hours, after which TLC analysis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH} 84: 15: 1\right)$ showed full conversion of the starting material. The reaction mixture was concentrated in vacuo, the residue dissolved in MeOH , absorbed onto celite and purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH} 99: 0: 1\right.$ to $\left.79: 20: 1\right)$. The residue was then purified again by preparative reversed phase HPLC (MeCN/H2O 5-100\%) to afford 3b ($19 \mathrm{mg}, 0.043 \mathrm{mmol}, 46 \%$ yield) as a white solid.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta \mathrm{ppm} 0.14-0.66(4 \mathrm{H}, \mathrm{m}), 2.53-2.65(1 \mathrm{H}, \mathrm{m}), 2.81$ (1 H, br. s.), 3.15 (1 H, d, J=10.5 Hz), 3.21-3.50 (3 H, m), 3.60 (1 H, br. s.), 3.64 3.87 (1 H, m), 4.69 (1 H, br. s.), 4.91 (1 H, br. s.), $7.28-7.58$ ($7 \mathrm{H}, \mathrm{m}$), 7.78 - 7.89 (2 $\mathrm{H}, \mathrm{m}), 8.01(1 \mathrm{H}$, br. s.), $8.28(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta \mathrm{ppm} 3.3,7.0,35.4,46.0,62.7,68.7,75.0,75.8$, 126.9, 127.3, 128.2, 129.1, 129.5, 129.9, 130.6, 131.2, 134.4, 136.9, 166.3, 167.0.

HRMS (ESI-TOF) m / z : Calculated for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{CIN}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]: 444.1690$; found 444.1702.

Synthesis of N-(($2 R, 3 R, 4 S)-4-(b e n z a m i d o m e t h y l)-3,4-d i h y d r o x y-1-(o x e t a n-3-$ yl)pyrrolidin-2-yl)methyl)-2-chlorobenzamide (3c) (Scheme 7)

3c

To a solution of $4(0.033 \mathrm{~g}, 0.082 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ were added AcOH (0.094 $\mathrm{mL}, 1.64 \mathrm{mmol}, 20.0$ equiv), $\mathrm{NaBH}_{3} \mathrm{CN}(0.015 \mathrm{~g}, 0.246 \mathrm{mmol}, 3.0$ equiv) and 3oxetanone ($0.020 \mathrm{~mL}, 0.327 \mathrm{mmol}, 4.0$ equiv). The reaction was warmed to $60^{\circ} \mathrm{C}$ and stirred for 2 hours, after which TLC analysis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH} 84: 15: 1\right)$ showed full conversion of the starting material. The reaction mixture was concentrated in vacuo, the residue dissolved in MeOH , absorbed onto celite and purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH} 99: 0: 1\right.$ to $79: 20: 1$) to afford 3c (31 $\mathrm{mg}, 0.067 \mathrm{mmol}, 83 \%$ yield) as a white solid.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta \mathrm{ppm} 2.58-2.67(1 \mathrm{H}, \mathrm{m}), 2.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.8 \mathrm{~Hz})$, $3.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.5 \mathrm{~Hz}), 3.22(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=13.9,4.8 \mathrm{~Hz}), 3.36-3.55(3 \mathrm{H}, \mathrm{m}), 3.63(1$ $\mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$), $4.07(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=13.5,6.4 \mathrm{~Hz}), 4.42-4.69(5 \mathrm{H}, \mathrm{m}), 4.84(1 \mathrm{H}, \mathrm{d}$, $J=6.7 \mathrm{~Hz}), 7.22-7.59(7 \mathrm{H}, \mathrm{m}), 7.75-7.93(2 \mathrm{H}, \mathrm{m}), 8.18(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}), 8.30(1$ $\mathrm{H}, \mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d d_{6}) $\delta \mathrm{ppm} 39.8,45.5,55.2,56.1,65.9,74.0,74.7,75.7$, 76.2, 126.9, 127.3, 128.2, 129.0, 129.5, 129.8, 130.6, 131.2, 134.4, 136.9, 166.4, 167.0.

HRMS (ESI-TOF) m / z : Calculated for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{CIN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]: 460.1639$; found 460.1634.

Synthesis of $\quad \mathrm{N}-(((2 R, 3 R, 4 S)-4$-(benzamidomethyl)-3,4-dihydroxy-1-
methylpyrrolidin-2-yl)methyl)-2-chlorobenzamide hydrochloride (3d) (Scheme 7)

3d

A solution of $4(0.062 \mathrm{~g}, 0.153 \mathrm{mmol})$ in THF (5 mL) was cooled to $0^{\circ} \mathrm{C}$. DIPEA ($0.028 \mathrm{~mL}, 0.161 \mathrm{mmol}, 1.05$ equiv) was added, followed by dropwise addition of a solution of $\mathrm{Mel}(0.022 \mathrm{~g}, 0.158 \mathrm{mmol}, 1.0$ equiv) in THF (2 mL). The reaction mixture was stirred overnight, and concentrated in vacuo. The residue was dissolved in MeOH , absorbed onto celite and purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH} 99: 0: 1\right.$ to 79:20:1). The resulting product was redissolved in $\mathrm{MeOH}(10 \mathrm{~mL}), 1 \mathrm{M} \mathrm{HCl}(1 \mathrm{~mL})$ was added and lyophilization overnight afforded the hydrochloride salt 3d ($36 \mathrm{mg}, 0.079 \mathrm{mmol}, 52 \%$ yield).as a white solid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta \mathrm{ppm} 2.95(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.7 \mathrm{~Hz}$), $3.01-3.11(1 \mathrm{H}, \mathrm{m})$, 3.38-3.57(3 H, m), 3.66-4.00(4 H, m), 5.60 (1 H, br. s.), 5.79 (1 H, br. s.), $7.30-$ $7.39(1 \mathrm{H}, \mathrm{m}), 7.39-7.62(6 \mathrm{H}, \mathrm{m}), 7.88-7.98(2 \mathrm{H}, \mathrm{m}), 8.73(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}), 8.84$ (1 H, t, J=5.6 Hz), 10.40 (1 H, br. s.).
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{DMSO}^{2}-\mathrm{d}_{6}$) $\delta \mathrm{ppm} 37.4,42.3,44.0,61.7,69.5,72.8,76.9,127.1$, 127.4, 128.2, 129.1, 129.7, 129.9, 131.2, 131.4, 134.0, 135.9, 167.0, 167.1.

HRMS (ESI-TOF) m/z: Calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{ClN}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]$: 418.1534; found 418.1537.

Synthesis of $\quad \mathbf{N}$-(($2 R, 3 R, 4 S)$-4-(benzamidomethyl)-3,4-dihydroxy-1-(methylsulfonyl)pyrrolidin-2-yl)methyl)-2-chlorobenzamide (3e) (Scheme 7)

$3 e$

A solution of $4(0.067 \mathrm{~g}, 0.167 \mathrm{mmol})$ in THF (5 mL) was cooled to $0^{\circ} \mathrm{C}$. $\mathrm{Et}_{3} \mathrm{~N}(0.024$ $\mathrm{mL}, 0.175 \mathrm{mmol}, 1.05$ equiv) was added, followed by dropwise addition of a solution of $\mathrm{Ms}-\mathrm{Cl}(0.019 \mathrm{~g}, 0.167 \mathrm{mmol}, 1.0$ equiv) in THF (2 mL). The reaction mixture was stirred overnight, and concentrated in vacuo. The residue was dissolved in MeOH , absorbed onto celite and purified by flash column chromatography ($0-10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $3 \mathrm{e}(28 \mathrm{mg}, 0.058 \mathrm{mmol}, 35 \%$ yield) as a white solid.
${ }^{1} \mathrm{H}$ NMR (300 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) ~ \delta \mathrm{ppm} 2.97(3 \mathrm{H}, \mathrm{s}), 3.42-3.71(6 \mathrm{H}, \mathrm{m}), 4.00-4.12(2$ $\mathrm{H}, \mathrm{m}), 7.21-7.28(1 \mathrm{H}, \mathrm{m}), 7.33-7.57(6 \mathrm{H}, \mathrm{m}), 7.80-7.86(2 \mathrm{H}, \mathrm{m})$
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta \mathrm{ppm} 35.0,42.1,44.7,57.9,64.9,76.3,78.7,128.2$, 128.6, 129.7, 130.2, 131.1, 131.9, 132.3, 133.0, 135.3, 137.6, 170.7, 171.1

HRMS (ESI-TOF) m/z: Calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{CIN}_{3} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]$: 482.1153; found 482.1150.

Synthesis of N-(((2R,3R,4S)-1-acetyl-4-(benzamidomethyl)-3,4-dihydroxypyrrolidin-2-yl)methyl)-2-chlorobenzamide (3f) (Scheme 7)

To a solution of $\mathrm{AcOH}(0.063 \mathrm{~mL}, 0.11 \mathrm{mmol}, 1.1$ equiv) in DMF $(2 \mathrm{~mL})$ was added DIPEA ($0.052 \mathrm{~mL}, 0.30 \mathrm{mmol}, 3.0$ equiv) followed by HATU ($0.057 \mathrm{~g}, 0.15 \mathrm{mmol}, 1.5$ equiv). After 5 minutes of stirring, $4(0.040 \mathrm{~g}, 0.10 \mathrm{mmol})$ was added. The yellow mixture was stirred overnight and concentrated in vacuo. The residue was dissolved in MeOH , absorbed onto celite and purified by flash column chromatography ($0-10 \%$ MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford $\mathbf{3 f}(31 \mathrm{mg}, 0.070 \mathrm{mmol}, 70 \%$ yield) as a white powder.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6, $80^{\circ} \mathrm{C}$) $\delta \mathrm{ppm} 1.91$ (3 H , br. s.), 3.41-4.11 ($6 \mathrm{H}, \mathrm{m}$), $4.64(1 \mathrm{H}, \mathrm{br} . \mathrm{s}),. 4.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), 7.23-7.61(5 \mathrm{H}, \mathrm{m}), 7.80-7.96(2 \mathrm{H}, \mathrm{m})$, 8.02-8.39 (2 H, m).
${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d6, $80^{\circ} \mathrm{C}$) δ ppm 21.8, 43.5, 55.7, 61.3, 74.3, 76.2, 126.5, $126.9,127.8,128.5,129.2,129.5,130.2,130.7,134.2,136.7,166.1,166.9,169.5$.

HRMS (ESI-TOF) m/z: Calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{ClN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]$: 446.1483; found 446.1476.

3. Single crystal X-ray diffraction data

For the structure of 3a, X-ray intensity data were collected at 100 K on a Rigaku Oxford Diffraction Supernova Dual Source (Cu at zero) diffractometer equipped with an Atlas CCD detector using ω scans and $\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184 \AA$) radiation. The images were interpreted and integrated with the program CrysAlisPro [2]. Using Olex2 [3], the structure was solved by direct methods using the ShelXS structure solution program and refined by full-matrix least-squares on F^{2} using the SheIXL program package $[4,5]$. Non-hydrogen atoms were anisotropically refined and the hydrogen atoms in the riding mode and isotropic temperature factors fixed at 1.2 times $\mathrm{U}(\mathrm{eq})$ of the parent atoms (1.5 times for hydroxyl groups). For 3a, the absolute configuration was established, with chirality at $\mathrm{C} 9(R)$, $\mathrm{C} 10(R)$ and $\mathrm{C} 11(S)$, showing a refined Flack parameter of $0.015(7)$. Positional disorder of the chloro-phenyl ring was observed and modeled in two parts with occupancy factors of $0.8818(19)$ and $0.1182(19)$, respectively. An additional water solvent molecule was observed in the crystal packing. An extended hydrogen bond network is formed between the water solvent molecules and $\mathrm{N}-\mathrm{H},-\mathrm{N},=\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ functional groups.

Crystal data for compound 3a. $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{CIN}_{3} \mathrm{O}_{6}, M=465.92$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$ (No. 19), $a=10.08079$ (14) $\AA, b=14.04949$ (16) $\AA, c=15.64296(17)$ $\AA, V=2215.51(5) \AA^{3}, Z=4, T=100 \mathrm{~K}, \rho_{\text {calc }}=1.397 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Cu}-\mathrm{K} \mathrm{\alpha})=1.910 \mathrm{~mm}^{-1}$, $F(000)=984,31219$ reflections measured, 4519 unique ($R_{\text {int }}=0.0579$) which were used in all calculations. The final $R 1$ was $0.0337(I>2 \sigma(I))$ and $w R 2$ was 0.0883 (all data).

CCDC 1858528 contains the supplementary crystallographic data for this paper and can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44-1223-336033; or deposit@ccdc.cam.ac.uk).

Figure S1: Asymmetric unit of the crystal structure of 3a, showing thermal displacement ellipsoids at the 50\% probability level. The positional disorder of the chlorophenyl ring is shown in yellow.

Figure S2: Packing in the crystal structure of 3a, viewed down the a-axis, showing an extended hydrogen bond network between the water solvent molecules and $\mathrm{N}-\mathrm{H}$, $-\mathrm{N},=\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ functional groups.

4. References

1. Xiong, H.; Chen, B.; Durand-Reville, T. F.; Joubran, C.; Alelyunas, Y. W.; Wu, D.; Huynh, H. ACS Med Chem Lett 2014, 5, 1143-7.
2. Rigaku Oxford Diffraction (2015). CrysAlis Pro; Rigaku Oxford Diffraction, Yarnton, England.
3. O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, J. Appl. Crystallogr. 2004, 42, 339-341.
4. G.M. Sheldrick, Acta Crystallogr. Sect. A64 2008, 112-122.
5. G.M. Sheldrick, Acta Crystallogr. Sect. C71 2015, 3-8.

5. Biological evaluation

S. aureus ($5 \times 105 \mathrm{CFU}$) in 0.2 mL of LB was added to each well of a tissue culture-treated polystyrene 96 -well plate. Hamamelitannin and its analogs were added to the bacteria at a final concentration of $170 \mu \mathrm{~g} / \mathrm{mL}$. After a 3.5 hour incubation at $37^{\circ} \mathrm{C}$, cell density was read at OD600nm. The growth medium was discarded and each well was gently washed three times with PBS to eliminate unbound bacteria. To evaluate the formation of biofilm, the remaining attached bacteria were fixed with methanol for 15 minutes. Plates were emptied and left to dry. Cells were stained with 0.8% crystal violet for 10 minutes. Excess stain was rinsed off by placing the plate under running tap water. The plates were air-dried and the dye bound to adherent cells was solubilized with $0.2 \mathrm{~mL} 2 \%$ sodium dodecyl sulfate. The OD of each well was determined at 570 nm .

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 300 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}$

[^0]: ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}, 80^{\circ} \mathrm{C}$) $\delta \mathrm{ppm} 27.21$ ($1 \mathrm{C}, \mathrm{s}$), 27.53 ($1 \mathrm{C}, \mathrm{s}$), 27.74 (1 C, s), 43.01 ($1 \mathrm{C}, ~ s), 54.85(1 \mathrm{C}, ~ s), 59.96(1 \mathrm{C}, ~ s), 65.37(1 \mathrm{C}, ~ s), 78.30(1 \mathrm{C}, \mathrm{s})$, 78.71 ($1 \mathrm{C}, ~ s$), 84.31 ($1 \mathrm{C}, ~ s$), 110.83 ($1 \mathrm{C}, ~ s$), 126.83 ($1 \mathrm{C}, ~ s$), 127.74 ($1 \mathrm{C}, ~ s), 130.66$ ($1 \mathrm{C}, \mathrm{s}$), 134.14 ($1 \mathrm{C}, \mathrm{s}$), 153.02 ($1 \mathrm{C}, \mathrm{s}$), 166.59 ($1 \mathrm{C}, \mathrm{s}$) .

