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Experimental

General

Liquid-state NMR experiments were performed at 500 MHz for *H and 126 MHz for **C (Centre for
Magnetic Resonance, St. Petersburg State University). Chemical shifts are referred to TMS for 'H
and *3C.

The HR-ESI mass-spectra were obtained on a BRUKER maXis spectrometer equipped with an
electrospray ionization (ESI) source; methanol was used as the solvent (Chemical Analysis and
Materials Research Centre, St. Petersburg State University). The instrument was operated in
positive mode using an m/z range of 50-1200. The capillary voltage of the ion source was set at
4000 V. The nebulizer gas pressure was 1.0 bar, and the drying gas flow was set to 4.0 L/min.
Melting points were determined in glass capillaries on a Stuart SMP30 device and are
uncorrected.

The quantum mechanical simulations were carried out using the Gaussian 09 suite of program [1].
The energy minimization was performed using DFT with the B3LYP functional [2,3]. The 6-
311+G(d,p) basis set was applied during the simulations [4—6]. Harmonic frequencies calculations
were performed to confirm that the obtained structures correspond to the minimum on the potential
energy surface (PES) and for obtaining zero-point Energies (ZPE) values.

For the single crystal X-ray diffraction experiment, crystals were fixed on a micro mount and
placed on a SuperNova, Single source at offset/far, HyPix3000 (5b, 5¢) and Agilent Technologies
Excalibur Eos (5a) or Bruker APEX-Il CCD (4a'HCIQ,) diffractometers using CuKa and MoKa
monochromated radiation, respectively (Centre for X-ray Diffraction Studies, St. Petersburg State
University). The crystals were measured at a temperature of 100 K for all samples, except
4a'HCIO4, which was measured at a temperature of 120 K. The structures have been solved by
the ShelXS [7] and ShelXT [8] structure solution programs using Direct Methods and Intrinsic
Phasing, respectively, and were refined by means of the ShelXL program [8] incorporated in the
OLEX2 program package [9]. The carbon and nitrogen-bound H atoms were placed in calculated
positions and were included in the refinement in the ‘riding’ model approximation, with Uisq(H) set
to 1.5Ueq(C) and C—H 0.96 A for the CH3 groups, Uiso(H) set to 1.2Ueq(C) and C—H 0.97 A for the
CH, groups, Uiso(H) set to 1.2Uey(C) and C-H 0.93 A for the CH groups and Uiso(H) set to
1.2Ueq(N) and N-H 0.86 A for the NH, and NH groups. Supplementary crystallographic data for
this paper have been deposited at the Cambridge Crystallographic Data Centre (CCDC 1867639-

1867642) and can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.
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Preparation of reagents

2-Lithioanisole

To a solution of 2-bromoanisole (1571 mg; 8.4 mmol) in 10 mL of dry Et,O cooled to -20 °C a 1.6
M a solution of n-BuLi in hexanes (5.3 mL; 8.4 mmol) was added; the reaction mixture was kept at

—-20 °C under an argon atmosphere for 60 min.

2,4-Dimethoxyphenyllithium
To a solution of 2,4-dimethoxybromobensene (1883 mg; 8.4 mmol) in 10 mL of dry Et,O cooled to
-20 °C a 1.6 M a solution of n-BuLi in hexanes (5.3 mL; 8.4 mmol) was added; the reaction

mixture was kept at -20 °C under an argon atmosphere for 30 min.

2,4,6-Trimethoxyphenyllithium
To a solution of 2,4,6-trimethoxybromobensene (2075 mg; 8.4 mmol) in 10 mL of dry Et,O cooled
to —20 °C a 1.6 M a solution of n-BuLi in hexanes (5.3 mL; 8.4 mmol) was added; the reaction

mixture was kept at —20 °C under an argon atmosphere for 30 min.

Synthesis of imines 4a—7a starting from 2-lithium-1,8-

bis(dimethylamino)naphthalene (path A)

In a similar manner as described before [10], to a solution of 2-lithium-1,8-
bis(dimethylamino)naphthalene (2) obtained by a standard technique [11] from 1000 mg (3.4
mmol) of 2-bromo-1,8-bis(dimethylamino)naphthalene (1b) a solution of the corresponding nitrile
in 10 mL of dry Et,O was added via syringe under an argon atmosphere at =20 °C. The red-
coloured reaction mixture was kept at room temperature for 24—96 h and treated with 10 mL of
distilled water. The yellow ether solution was separated, and the aqueous phase was extracted
three times with chloroform (10 mL). The organic fractions were combined, evaporated and

chromatographed on alumina.

Synthesis of imines 4a—7a starting from 2-cyano-1,8-

bis(dimethylamino)naphthalene (path B)

To a solution of the corresponding aryllithium (see above) 1000 mg (4.2 mmol) of 2-
cyanonaphthalene [12] in 20 mL of absolute Et,O was added via syringe under an argon
atmosphere at —20 °C. The red-coloured reaction mixture was kept at room temperature for 24 h
and treated with 10 mL of water. The yellow ether solution was separated and the aqueous phase
was extracted with chloroform (30 mL). The organic fractions were combined, evaporated and

chromatographed on alumina.

S3



2-(Imino(4-methoxyphenyl)methyl)-1,8-bis(dimethylamino)naphthalene (4a)

Obtained by path A from 4-methoxybenzonitrile. Yield: 769 mg (65%). Characterization data were
consistent with those reported in the literature [12]. HRMS (ESI): 348.2056 [M+H"]; calculated for
C22H25N203 [M+H] 348.2070.

2-(Imino(2-methoxyphenyl)methyl)-1,8-bis(dimethylamino)naphthalene (5a)

Obtained by path A from 2-methoxybenzonitrile with yield: 414 mg (35%), or by path B from 2-
methoxyphenyllithium with yield: 994 mg (68%). Dark orange oil. *H NMR (500 MHz, CD3CN) &
10.29 (brs, 1H), 7.49 — 7.32 (m, 4H), 7.24 (d, J = 8.2 Hz, 1H), 7.12 — 7.02 (m, 3H), 6.90 (t, J = 7.4
Hz, 1H), 3.73 (s, 3H), 2.75 (s, 6H), 2.65 (s, 6H). *C NMR (126 MHz, CD3sCN) 5 176.95, 158.14,
152.30, 146.96, 138.30, 134.45, 131.05, 130.48, 128.40, 127.71, 126.11, 123.17, 122.33, 121.94,
120.07, 113.91, 111.97, 55.22, 44.38, 43.52. HRMS (ESI): 348.2069 [M+H"]; calculated for
C22H25N203 [M+H'] 348.2070.

2-(Imino(2,4-dimethoxyphenyl)methyl)-1,8-bis(dimethylamino)naphthalene (6a)

Obtained by path A from 2,4-dimethoxybenzonitrile with yield: 180 mg (14%), or by path B from
2,4-dimethoxyphenyllithium with yield: 476 mg (30%). Yellow crystals, m.p. 125-126 °C (n-
hexane) *H NMR (500 MHz, CDsCN) & 10.43 (brs, 1H), 7.48 — 7.39 (m, 2H), 7.34 (t, J = 7.7 Hz,
1H), 7.20 (d, J = 7.9 Hz, 1H), 7.06 (d, J = 7.4 Hz, 1H), 6.63 (d, J = 1.2 Hz, 1H), 6.44 (d, J = 7.8 Hz,
1H), 3.81 (s, 3H), 3.78 (brs, 3H), 2.76 (s, 6H), 2.68 (s, 6H). **C NMR (126 MHz, CDsCN) & 176.37,
162.22, 159.89, 152.19, 146.80, 138.18, 134.47, 132.22, 127.75, 125.98, 122.93, 122.18, 121.79,
120.87, 113.71, 104.53, 98.79, 55.34, 55.16, 44.26, 43.60. HRMS (ESI): 378.2183 [M+H];
calculated for C,,H25N203 [M+H™] 378.2176. For X-Ray measurements, the crystals were obtained
from n-hexane. The details of data collection and crystal structure refinement are summarized in
Table SI-1 (Supporting Info). CCDC reference number 1867639.

2-(Imino(2,4,6-trimethoxyphenyl)methyl)-1,8-bis(dimethylamino)naphthalene (7a)

Obtained by path B from 2,4,5-trimethoxyphenyllithium with yield: 480 mg (28%). Dark orange oil.
'H NMR (500 MHz, CDsCN) & 10.04 (s, 1H), 7.39 — 7.29 (m, 3H), 7.12 (d, J = 8.2 Hz, 1H), 7.07 (d,
J = 7.3 Hz, 1H), 6.27 (s, 2H), 3.85 (s, 3H), 3.62 (s, 6H), 2.80 (s, 6H), 2.78 (s, 6H). *C NMR (126
MHz, CD3CN) & 172.32, 161.71, 158.98, 152.64, 146.93, 138.37, 127.53, 127.28, 126.70, 125.98,
123.52, 121.83, 121.77, 113.74, 112.49, 55.37, 55.16, 44.54, 43.50. HRMS (ESI): 408.2297
[M+H"]; calculated for CoH2sN,0O3 [M+H'] 408.2282.
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Synthesis of imines monocations

To a solution of the corresponding imine 4a—7a in 5 mL of Et,O one equivalent of tetrafluoroboric
acid solution was added. The precipitate was filtered, washed with Et,O and recrystallised from
EtOH to give pure 4b-7b.

2-(Imino(4-methoxyphenyl)methyl)-1,8-bis(dimethylamino)naphthalene tetrafluoroborate (4b/4b’).
Colorless crystals, 189 °C decomp.

4b: *H NMR (500 MHz, CD3sCN, 25 °C) & 19.20 (s, 1H), 10.43 (s, 1H), 8.14 (d, J = 8.2 Hz, 1H),
8.09 (d, J = 8.5 Hz, 1H), 8.00 (dd, J = 7.6, 0.8 Hz, 1H), 7.80 (t, J = 7.9 Hz, 1H), 7.67 (d, J = 8.5 Hz,
2H), 7.35 (d, J = 8.4 Hz, 1H), 7.00 (d, J = 9.1 Hz, 2H), 3.86 (s, 3H), 3.22 (d, J = 3.2 Hz, 6H), 3.04
(s, 6H).

4b’: *H NMR (500 MHz, DMSO 25 °C) & 11.83 (s, 2H), 7.63 (d, J = 8.5 Hz, 1H), 7.58 — 7.48 (m,
4H), 7.39 (d, J = 8.4 Hz, 1H), 7.20 — 7.11 (m, 3H), 3.89 (s, 3H), 2.73 (s, 6H), 2.59 (s, 6H).

2-(Imino(2-methoxyphenyl)methyl)-1,8-bis(dimethylamino)naphthalene tetrafluoroborate (5b/5b’).
Colorless crystals, 148 °C decomp.

5b: 'H NMR (500 MHz, CD3CN, -40 °C) & 19.27 (s, 1H), 11.70 (s, 1H), 8.12 (d, J = 8.1 Hz, 1H),
8.06 (d, J = 8.5 Hz, 1H), 8.02 (d, J = 7.4 Hz, 1H), 7.80 (t, J = 7.9 Hz, 1H), 7.59 — 7.54 (m, 1H), 7.34
(d, 3 =8.5Hz, 1H), 7.26 (d, J = 8.4 Hz, 1H), 7.10 (d, J = 7.6 Hz, 1H), 6.93 (t, J = 7.5 Hz, 1H), 4.01
(s, 3H), 3.19 (d, J = 2.9 Hz, 6H), 3.09 (s, 6H).

5b’: *H NMR (500 MHz, DMSO, 25 °C) & 11.19 (s, 2H), 7.73 — 7.68 (m, 1H), 7.49 (t, J = 7.8 Hz,
1H), 7.42 — 7.34 (m, 3H), 7.15 (d, J = 8.5 Hz, 1H), 7.11 (d, J = 7.4 Hz, 1H), 7.06 (t, J = 7.6 Hz, 1H),
6.97 (dd, J =7.7, 1.3 Hz, 1H), 3.90 (s, 3H), 2.78 (s, 6H), 2.74 (s, 6H).

2-(Imino(2,4-dimethoxyphenyl)methyl)-1,8-bis(dimethylamino)naphthalene tetrafluoroborate (6b).
Colorless crystals, 190 °C decomp.

6b: 'H NMR (500 MHz, CDsCN, -40 °C) & 18.92 (s, 1H), 11.35 (s, 1H), 8.14 (d, J = 8.0 Hz, 1H),
8.08 (d, J = 8.5 Hz, 1H), 8.04 (d, J = 7.5 Hz, 1H), 7.82 (t, J = 7.9 Hz, 1H), 7.35 (d, J = 8.5 Hz, 1H),
7.04 (d, J = 8.9 Hz, 1H), 6.77 (d, J = 2.1 Hz, 1H), 6.49 (dd, J = 8.9, 2.2 Hz, 1H), 4.07 (s, 3H), 3.87
(s, 3H), 3.21 (d, J = 2.9 Hz, 6H), 3.03 (s, 6H). For X-ray measurements, the crystals were obtained
from EtOH. The details of data collection and crystal structure refinement are summarized in Table
SI-1. CCDC reference number 1867640.

6b’: 'H NMR (500 MHz, DMSO, 25 °C) & 11.54 (s, 2H), 7.60 (d, J = 8.5 Hz, 1H), 7.52 — 7.45 (m,
2H), 7.29 (d, J = 8.4 Hz, 1H), 7.13 (dd, J = 6.9, 1.5 Hz, 1H), 6.91 (d, J = 2.1 Hz, 1H), 6.84 (d, J =
9.0 Hz, 1H), 6.65 (dd, J = 9.0, 2.2 Hz, 1H), 4.06 (s, 3H), 3.92 (s, 3H), 2.74 (s, 6H), 2.67 (s, 6H).
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2-(Imino(2,4,6-dimethoxyphenyl)methyl)-1,8-bis(dimethylamino)naphthalene tetrafluoroborate
(7b). Colorless crystals, 85 °C decomp.

7b: *H NMR (500 MHz, CD3CN, 25 °C) d 19.80 (s, 1H), 10.84 (s, 1H), 8.02 (d, J = 8.1 Hz, 1H),
7.95 (d, J = 8.7 Hz, 2H), 7.75 (t, J = 7.9 Hz, 1H), 7.35 (d, J = 8.6 Hz, 1H), 6.29 (s, 2H), 3.87 (s,
3H), 3.66 (s, 6H), 3.39 (d, J = 2.4 Hz, 6H), 3.16 (d, J = 1.5 Hz, 6H).

7b’: *H NMR (500 MHz, DMSO, 25 °C) 5 9.66 (s, 2H), 7.47 — 7.39 (m, 1H), 7.18 (d, J = 6.5 Hz,
1H), 7.02 (d, J = 6.8 Hz, 1H), 6.90 (d, J = 7.9 Hz, 1H), 6.68 (d, J = 8.0 Hz, 1H), 6.41 (s, 2H), 3.90
(s, 3H), 3.67 (s, 6H), 3.12 (s, 6H), 2.77 (s, 6H).

2-(Imino(4-methoxyphenyl)methyl)-1,8-bis(dimethylamino)naphthalene perchlorate (4a'HCIO,)
was obtained as it was described previously [10]. For X-ray measurements, the crystals were
obtained from EtOH. The details of data collection and crystal structure refinement are
summarized in Table SI-1. CCDC reference number 1867642.

Synthesis of imines dications

To a solution of the corresponding imine 4a—7a in 5 mL of Et,O 2 equivalents of tetrafluoroboric
acid solution was added. The precipitate was filtered, washed with Et,O and recrystallised from
EtOH to give pure 4c-7c.

2-(Imino(4-methoxyphenyl)methyl)-1,8-bis(dimethylamino)naphthalene ditetrafluoroborate (4c).
Colorless crystals, 175 °C decomp.

'H NMR (500 MHz, CDsCN, 25 °C) & 17.62 (s, 1H), 8.25 (d, J = 8.2 Hz, 1H), 8.21 (d, J = 8.5 Hz,
1H), 8.11 (d, J = 7.6 Hz, 1H), 7.95 — 7.85 (m, 1H), 7.49 (d, J = 8.5 Hz, 1H), 7.19 (d, J = 9.1 Hz,
1H), 3.98 (s, 1H), 3.33 (d, J = 4.0 Hz, 6H), 2.92 (s, 6H).

2-(Imino(2-methoxyphenyl)methyl)-1,8-bis(dimethylamino)naphthalene ditetrafluoroborate (5c¢).
Colorless crystals, 194 °C decomp.

'H NMR (500 MHz, CDsCN, 25 °C) d 17.28 (s, 1H), 11.57 (s, 2H), 8.27 (d, J = 8.1 Hz, 1H), 8.23 (d,
J = 8.6 Hz, 1H), 8.14 (d, J = 7.6 Hz, 1H), 8.01 — 7.90 (m, 2H), 7.53 — 7.46 (m, 2H), 7.38 (dd, J =
8.1, 1.5 Hz, 1H), 7.13 (t, J = 7.7 Hz, 1H), 4.29 (s, 3H), 3.36 (d, J = 4.1 Hz, 6H), 2.91 (s, 6H).

2-(Imino(2,4-dimethoxyphenyl)methyl)-1,8-bis(dimethylamino)naphthalene ditetrafluoroborate (6c).
Colorless crystals, 194 °C decomp.

'H NMR (500 MHz, CDsCN, 25 °C) & 17.49 (s, 1H), 10.98 (s, 1H), 10.16 (s, 1H), 8.26 (d, J = 8.2
Hz, 1H), 8.22 (d, J = 8.5 Hz, 1H), 8.13 (d, J = 7.6 Hz, 1H), 7.92 (t, J = 8.0 Hz, 1H), 7.48 (d, J = 8.5
Hz, 1H), 7.27 (d, J = 9.2 Hz, 1H), 6.90 (d, J = 1.7 Hz, 1H), 6.66 (dd, J = 9.2, 1.8 Hz, 1H), 4.28 (s,
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3H), 4.03 (s, 3H), 3.39 (s, 3H), 3.30 (s, 3H), 3.09 (s, 3H), 2.78 (s, 3H). For X-ray measurements,
the crystals were obtained from EtOH. The details of data collection and crystal structure

refinement are summarized in Table SI-1. CCDC reference number 1867641.

2-(Imino(2,4,6-dimethoxyphenyl)methyl)-1,8-bis(dimethylamino)naphthalene tetrafluoroborate (7c).
Colorless crystals, 148 °C decomp.

'H NMR (500 MHz, CDsCN, 60 °C) 8 17.78 (s, 1H), 10.75 (s, 1H), 9.59 (s, 1H), 8.21 (d, J = 8.2 Hz,
1H), 8.16 (d, J = 8.6 Hz, 1H), 8.07 (d, J = 7.6 Hz, 1H), 7.87 (t, J = 8.0 Hz, 1H), 7.45 (d, J = 8.6 Hz,
1H), 6.39 (s, 2H), 4.05 (s, 3H), 3.78 (s, 6H), 3.34 (d, J = 4.1 Hz, 6H), 2.95 (s, 5H).
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Copies of *H and **C NMR spectra
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Figure S1. Temperature depending 'H NMR spectra for compound 4a, acetone-ds, 500 MHz.
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Figure S2. Temperature depending *H NMR spectra for compound 5a, acetone-dg, 500 MHz.
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Figure S3. Temperature depending *H NMR spectra for compound 6a, acetone-dg, 500 MHz.

Me,N NMe, NH OMe

§
(7

Gl iy VO Y . O O O Y W
Ml oo e
el o e
A Y T L S W A W
JaNL DN I O S SN W
A

Figure S4. Temperature depending 'H NMR spectra for compound 7a, acetone-ds, 500 MHz.
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Figure S5. Temperature depending *H NMR spectra for compound 4a, CDsCN, 500 MHz.
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Figure S7. Temperature depending 'H NMR spectra for compound 6a, CD3CN, 500 MHz.
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Figure $38. 'H NMR spectrum of 4c, CD;CN, 500 MHz, 25 °C.
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Figure S39. 'H NMR spectrum of 5¢, CD;CN, 500 MHz, 25 °C.
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Figure $40. 'H NMR spectrum of 6¢, CD;CN, 500 MHz, 25 °C.

S27



BYEMT—
Pl
62991 OGN
£5T491 ™
958887 —
e 0
: £2e
6ObZZ— =
£ 9TE—

(s)
6.39

=
TE BT == _
[ L

Egm/ H
Bmmom.‘ (?. H
66 Ev6E

5 0EDb~, g
50'8E0b— =2l
ik, | o

[ e

2 00Th— =
so8otb

BT Ebdb—

BEELES—

99'8888—

3.6|

3.9
ppm

6.4

i

Figure S41. 'H NMR spectrum of 7¢, CDsCN, 500 MHz, 60 °C.
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Table SI-1. Crystal data and structure refinement

Parameter 6a 6b 6¢C 4a'HCIO,
Empirical formula C23H27N30, CosH34BF4N3O Co3HogBoFsN3 szHzeC|N305
3 O,
Formula weight 377.47 511.36 553.11 447.91
Temperature/K 100(2) 100(2) 100(2) 120(2)
Crystal system monoclinic monoclinic triclinic monoclinic
Space group P2:/n P24/n P-1 P24/c
alA 13.5506(7) 7.61226(12) 7.6816(3) 7.7872(7)
b/A 9.7144(3) 21.1202(4) 12.3759(5) 14.0217(12)
c/A 15.9727(10) 15.7463(2) 15.8693(5) 20.1562(18)
a/® 90 90 112.684(3) 90.00
B/° 111.673(6) 91.5601(14) 93.269(3) 94.971(2)
y/° 90 90 93.060(3) 90.00
Volume/A3 1953.94(19) 2530.63(7) 1385.01(9) 2192.6(3)
z 4 4 2 4
pcalcg/cm3 1.283 1.342 1.326 1.357
p/mm-1 0.083 0.906 1.051 0.213
F(000) 808.0 1080.0 572.0 944.0
Crystal size/mm3 0.2x0.2 0.22 x 0.21 0.29 x 0.24 0.28 x 0.18
x 0.2 x 0.15 x 0.2 x 0.12
Radiation MoKa CuKa CuKa MoKa
(A=0.71073) | (A=1.54184) | (A=1.54184) | (A=0.71073)
20 range for data 5.296 to 7.004 to 6.058 to 4.06 to 58.68
collection/® 54.996 143.726 143.216
-17<h<17 -9<h<9 -9<h<9 -10<h<10
Index ranges -12<k<11 -25<k<25 -15<k<15 -19<k<19
-20<1<17 -19<1<19 -19<1<19 27 <1< 27
Reflections 11449 28374 27137 26618
collected
Independent 4497 4958 5370 5961
reflections Rint = 0.0250 Rint = 0.0343, Rint = 0.0364 Rint = 0.0602
Rsigma = 0.0306 | Rsigma = 0.0188 | Rsigma = 0.0193 Rsigma =
0.0498
Data/restraints/par 4497/0/262 4958/0/336 5370/0/349 5961/1/302
ameters
Goodness-of-fit on 1.038 1.027 1.084 1.039
F2
Final R indexes R, = 0.0562 R1 =0.0424 R1 =0.0482 R;1 =0.0560
[I>=20 (] WR,; =0.1418 | wR,=0.1107 | wR,=0.1371 | wR, =0.1266
Final R indexes R; =0.0681 R1 =0.0435 R; =0.0533 R; =0.0826
[all data] WR, =0.1500 | wR,=0.1117 | wR,=0.1415 | wR,=0.1389
Largest diff. 1.85/-0.23 0.88/-0.38 0.42/-0.33 0.55/-0.39
peak/hole/e A-3
CCDC 1867639 1867640 1867641 1867642
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