Supporting Information

for

Reactions of 3-(p-substituted-phenyl)-5-chloromethyl-1,2,4oxadiazoles with KCN leading to acetonitriles and alkanes via a non-reductive decyanation pathway

Akın Sağırıı and Yaşar Dürüst

Beilstein J. Org. Chem. 2018, 14, 3011-3017. doi:10.3762/bjoc.14.280

Experimental details, characterization data and copies of NMR spectra

Table of contents

1.General information S2
2.General procedure for the synthesis of trisubstituted 1,2,4-oxadiazole-acetonitriles $\mathbf{3}$ S2
3.General procedure for the synthesis of 1,2,3-trisubstituted 1,2,4-oxadiazole propanes 4 S6
4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $3 \mathrm{a}-\mathrm{j}$ S10
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $4 \mathrm{a}-\mathrm{j}$ S19
6.HSQC and HMBC spectra of 3a S28
7.HSQC and HMBC spectra of 4a S29
8.References S30

1. General information

In order to dispose KCN waste properly, all KCN solutions were detoxified with hydrogen peroxide solution. 5-(Chloromethyl)-3-(substituted-phenyl)-1,2,4-oxadiazoles derivatives $\mathbf{1 a - j}$ were synthesized prior to use following literature procedure [1]. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (400 or 300 MHz for proton and 100 or 75 MHz for carbon, respectively) spectra were recorded in CDCl_{3} at ambient temperature. LC-MS spectra were obtained from Waters 2695 Alliance Micromass ZQ instrument. High-resolution mass spectra (HRMS) of compounds were obtained on an orthogonal accelerationTOF mass spectrometer and an FTMS (4.7 T) mass spectrometer. Single crystal X-ray diffraction data were obtained by Bruker Smart Apex II Quazar and Nonius Kappa CCD instruments. Melting points were determined with a Meltemp apparatus without corrections. All chemical shifts are reported in ppm relative to TMS. Coupling constants (J) are reported in Hz. Routine TLC analyses were carried out on pre-coated silica gel plates with fluorescent indicator. Flash column chromatography was performed on silica gel (230-400 Mesh ASTM). Stain solutions of potassium permanganate and iodine were used for visualization of the TLC spots.

2. General procedure for the synthesis of trisubstituted 1,2,4-oxadiazole-acetonitriles 3

Method B. A mixture of 5-(chloromethyl)-3-substitutedphenyl-1,2,4-oxadiazoles derivatives 1a-j $(0.75 \mathrm{mmol})$ and $\mathrm{KCN}(3 \mathrm{mmol}, 195 \mathrm{mg})$ were stirred in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{ml})$ at rt for 24 h . The reaction progress was followed by TLC and upon completion, the reaction mixture was concentrated in vacuo. The resulting residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed. Finally, crude products were purified by flash column chromatography on silica gel to afford the title compound $\mathbf{3}$ in a pure state.

2,3-Bis(3-phenyl-1,2,4-oxadiazol-5-yl)-2-((3-phenyl-1,2,4-oxadiazol-$5-\mathrm{yl}) m e t h y l) p r o p a n e n i t r i l e ~(3 a) ~ C o m p o u n d ~ 3 a ~ w a s ~ p r e p a r e d ~$ following method B using 1a ($0.75 \mathrm{mmol}, 145 \mathrm{mg}$) and KCN (3 $\mathrm{mmol}, 195 \mathrm{mg}$) and stirring at rt for 24 h . Column chromatography yielded ($106 \mathrm{mg}, 85 \%$) as a white solid. $\mathrm{mp} 125-127^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}): \mathrm{v}=$ 3010, 2920, 2857, 2163 (weak-CN), 1595, 1570, 1526, 1445, 1361, 1302,1221,892 777, 704, $688 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08-7.97(\mathrm{~m}, 6 \mathrm{H}), 7.56-7.40(\mathrm{~m}, 9 \mathrm{H}), 4.28(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 172.99,172.26,169.11,168.57,131.93,131.61,128.99,128.90,127.64,127.54$, 125.79, 125.39, 114.91(-CN), 38.42, 33.00. HRMS (-APCI-TOF) calcd for $\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~N}_{7} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]^{+} 500.1471$, found 500.1487 .

2,3-Bis(3-(4-chlorophenyl)-1,2,4-oxadiazol-5-yl)-2-((3-(4-chlorophenyl)-1,2,4-oxadiazol-5-yl)methyl)propanenitrile (3b) Compound 3b was prepared following method B using 1b (0.75 mmol, 172 mg) and KCN ($3 \mathrm{mmol}, 195 \mathrm{mg}$) and stirring at rt for 24 h. Column chromatography yielded (118 mg, 78\%) as a light yellow solid. $\mathrm{mp} 156-158{ }^{\circ} \mathrm{C}$. IR (KBr): $v=3008,2925,2860,2161$ (weak-CN), 1587, 1562, 1471, 1407, 1344, 1183, 1092, 1012, 902, 832, $733 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.94$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.47(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 4.26(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 173.14,172.38,168.36,167.82,138.36,137.94,129.42,129.30,128.90,128.81$, 124.18, 123.75, 114.70(-CN), 38.45, 33.13. HRMS (+APCI-TOF) calcd for $\mathrm{C}_{28} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{~N}_{7} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 604.0458, found 604.0489.

2,3-Bis(3-(4-iodophenyl)-1,2,4-oxadiazol-5-yl)-2-((3-(4-iodophenyl)-1,2,4-oxadiazol-5-yl)methyl)propanenitrile Compound 3c was prepared following method B using 1c (0.75 mmol, 240 mg) and KCN ($3 \mathrm{mmol}, 195 \mathrm{mg}$) and stirring at rt for 24 h. Column chromatography yielded ($158 \mathrm{mg}, 72 \%$) as a light yellow solid. $\mathrm{mp} 220-222^{\circ} \mathrm{C}$. IR (KBr): v = 3010, 2920, 2852, 2160 (weak-CN), 1584, 1557, 1465, 1397, $1354,1275,1004,911,826,746,728 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{dd}, J=15.3,8.2 \mathrm{~Hz}, 6 \mathrm{H})$, $7.75(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 4.23(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.37,168.07,159.15,156.46,142.19,138.34,138.22,128.98,128.93,125.17,124.73,114.67(-C N)$, 98.55, 38.43, 33.12. HRMS (-APCl-TOF) calcd for $\mathrm{C}_{28} \mathrm{H}_{15} \mathrm{l}_{3} \mathrm{~N}_{7} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]^{+} 877.8370$, found 877.8362 .

2,3-Bis(3-(4-fluorophenyl)-1,2,4-oxadiazol-5-yl)-2-((3-(4-fluorophenyl)-1,2,4-oxadiazol-5-yl)methyl)propanenitrile (3d) Compound 3d was prepared following method B using 1d (0,75 mmol, 159 mg) and KCN ($3 \mathrm{mmol}, 195 \mathrm{mg}$) and stirring at rt for 24 h. Column chromatography yielded ($97 \mathrm{mg}, 70 \%$) as a white solid. mp 139-141 ${ }^{\circ} \mathrm{C}$. IR (KBr): v=3010, 2922, 2851, 2162 (weak-CN), 1606, 1573, 1482, 1416, 1354, 1219, 1155, 843, 759, 747, $601 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10-7.97(\mathrm{~m}, 6 \mathrm{H}), 7.22-7.11(\mathrm{~m}$, $6 \mathrm{H}), 4.25(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.31,172.54,168.54,167.99,130.19$, 130.04, 129.92, 122.16, 116.73, 116.59, 116.43, 116.29, 115.02(-CN), 38.67, 33.34. HRMS (-ESI-TOF) calcd for $\mathrm{C}_{28} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]^{+} 554.1188$, found 554.1206 .

2,3-Bis(3-(p-tolyl)-1,2,4-oxadiazol-5-yl)-2-((3-(p-tolyl)-1,2,4-oxadiazol-5-yl)methyl)propanenitrile (3e) Compound 3e was prepared following method B using $1 \mathbf{e}(0.75 \mathrm{mmol}, 156 \mathrm{mg})$ and KCN ($3 \mathrm{mmol}, 195 \mathrm{mg}$) and stirring at rt for 24 h . Column chromatography yielded ($111 \mathrm{mg}, 82 \%$) as a white solid. mp 131-133 ${ }^{\circ} \mathrm{C}$. IR (KBr): v=3002, 2922, 2856, 2161 (weak-CN), 1592, 1570, 1478, 1411, 1363, 1219, 1113, 889, 822, $744 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{dd}, J=14.9,7.7 \mathrm{~Hz}, 6 \mathrm{H}), 7.25(\mathrm{t}, \mathrm{J}=10.2 \mathrm{~Hz}, 6 \mathrm{H}), 4.25(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.39(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 172.93,172.26,169.19,168.65,142.52,142.13,129.94,129.48$, $127.46,123.07,122.68,115.14(-C N), 38.48,33.03,21.72$. LC-MS (70 eV): ($\mathrm{m} / \mathrm{z}, \%$) 542.8 (100) [M$\mathrm{H}]^{+}$. HRMS (-APCI-TOF) calcd for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]^{+}$542.1941, found 542.1920.

yielded (124 mg, 78\%) as a light yellow solid. mp184-186 ${ }^{\circ} \mathrm{C}$. $\mathrm{IR}(\mathrm{KBr}): v=3010,2920,2852,2158$ (weak-CN), 1640, 1618, 1519, 1418, 1341, 1108, 851, 720, $618 \mathrm{~cm}^{-11} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83$ ($\mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.79(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 4.23(\mathrm{~d}, \mathrm{~J}=$ $3.9 \mathrm{~Hz}, 4 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.43,173.73,167.57,166.97,149.86,149.64,131.69$, 131.18, 128.73, 128.56, 124.31, 124.21, 114.85(-CN), 39.17, 33.89. HRMS (-APCl-TOF) calcd for $\mathrm{C}_{28} \mathrm{H}_{16} \mathrm{~N}_{10} \mathrm{O}_{9}[\mathrm{M}-\mathrm{H}]^{+}$635.1023, found 635.1041.

2,3-Bis(3-(4-(trifluoromethyl)phenyl)-1,2,4-oxadiazol-5-
yl)-2-((3-(4-(trifluoromethyl)phenyl)-1,2,4-oxadiazol-5yl)methyl)propanenitrile (3g) Compound $\mathbf{3 g}$ was prepared following method B using $\mathbf{1 g}(0,75 \mathrm{mmol}, 197$ $\mathrm{mg})$ and KCN ($3 \mathrm{mmol}, 195 \mathrm{mg}$) and stirring at rt for 24 h . Column chromatography yielded (132 mg, 75\%) as a white solid. $\mathrm{mp} 199-201^{\circ} \mathrm{C}$. IR (KBr): $v=3005,2925,2852,2160$ (weak-CN), 1590, 1570, 1541, 1416, 1320, 1161, 1119, 1064, 849, 758, $705 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.13$ $(d, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.76(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.30(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
(101 MHz, CDCl_{3}) $\delta 173.46,172.63,168.19,167.64,133.62,133.30,129.00,128.57,128.00,127.88$, 124.91, 122.21, 114.51(-CN), 38.53, 33.31. HRMS (+APCI-TOF) calcd for $\mathrm{C}_{31} \mathrm{H}_{17} \mathrm{~F}_{9} \mathrm{~N}_{7} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 706.1249, found 706.1245 .

2,3-Bis(3-(4-methoxyphenyl)-1,2,4-oxadiazol-5-yl)-2-((3-(4-methoxyphenyl)-1,2,4-oxadiazol-5-yl)methyl)propanenitrile (3h) Compound 3h was prepared following method B using 1h ($0,75 \mathrm{mmol}, 168 \mathrm{mg}$) and $\mathrm{KCN}(3 \mathrm{mmol}, 195 \mathrm{mg})$ and stirring at rt for 24 h . Column chromatography yielded (115 $\mathrm{mg}, 78 \%$) as a brown solid. $\mathrm{mp} 140-142{ }^{\circ} \mathrm{C}$. $\mathrm{IR}(\mathrm{KBr}): \mathrm{v}=3002,2933,2844,2161$ (weak-CN), 1610, $1594,1570,1479,1421,1251,1171,1028,834,752,614 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, \mathrm{~J}=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.95(\mathrm{dd}, J=10.6,8.9 \mathrm{~Hz}, 6 \mathrm{H}), 4.23(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, $3.84(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.82,172.13,168.87,168.33,162.55,162.29,129.44$, 129.31, 118.33, 117.90, 115.19(-CN), 114.48, 114.39, 55.53, 55.49, 38.48, 33.04. LC-MS (70 eV): $(\mathrm{m} / \mathrm{z}, \%)=592.4$ (100) $[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (-APCl-TOF) calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~N}_{7} \mathrm{O}_{6}[\mathrm{M}-\mathrm{H}]^{+} 590.1788$, found 590.1739.

2,3-Bis(3-(4-(methylthio)phenyl)-1,2,4-oxadiazol-5-yl)-2-((3-(4-(methylthio)phenyl)-1,2,4-oxadiazol-5yl)methyl)propanenitrile (3j) Compound $\mathbf{3 j}$ was prepared following method B using $\mathbf{1 j}(0,75 \mathrm{mmol}, 180 \mathrm{mg})$ and KCN ($3 \mathrm{mmol}, 195 \mathrm{mg}$) and stirring at rt for 24 h . Column chromatography yielded ($121 \mathrm{mg}, 76 \%$) as a brown solid. mp $160-162{ }^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): v=3000,2926,2856,2161$ (weak-CN), 1590, 1556, 1474, 1407, 1360, 1182, $1120,900,834,748,502 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $4 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.25(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 172.86,172.15,168.77,168.23,144.16,143.62,127.83,127.75,125.78$, 121.98, 121.51, 114.93(-CN), 38.43, 33.04, 15.01. HRMS (+APCI-TOF) calcd for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{~S}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 640.1259, found 615.1281.

3. General procedure for the synthesis of 1,2,3-trisubstituted 1,2,4-oxadiazole propanes 4

Method A. A mixture of 5-(chloromethyl)-3-(substituted-phenyl)-1,2,4-oxadiazoles derivatives 1a-j $(0.75 \mathrm{mmol})$ and $\mathrm{KCN}(1,50 \mathrm{mmol}, 98 \mathrm{mg})$ were heated in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{ml})$ at $100{ }^{\circ} \mathrm{C}$ for 12 h except $\mathbf{4 f}$ and $\mathbf{4 g}$. The reaction progress was followed by TLC and upon completion, the reaction mixture was concentrated in vacuo. The resulting residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed. Finally, crude products were purified by flash column chromatography on silica gel to afford the title compound $\mathbf{4}$ in a pure state.

5,5',5'-(Propane-1,2,3-triyl)tris(3-phenyl-1,2,4-oxadiazole)
Compound 4a was prepared following method A using 1a (0.75 mmol, 145 mg) and $\mathrm{KCN}\left(1.50 \mathrm{mmol}, 98 \mathrm{mg}\right.$) and stirring at $100^{\circ} \mathrm{C}$ for 12 h . Column chromatography yielded ($89 \mathrm{mg}, 75 \%$) as a white solid. mp 98-100 ${ }^{\circ} \mathrm{C}$. IR (KBr): v = 2918, 2951, 1645, 1573, 1446, $1363,1288,1172,1114,1072,1003,898,692 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06-7.97(\mathrm{~m}, 6 \mathrm{H})$, $7.53-7.38(\mathrm{~m}, 9 \mathrm{H}), 4.51(\mathrm{p}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=16.4,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{dd}, J=16.5,7.2 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.19,175.76,168.48,168.39,131.38,131.30,128.84,128.81$, 127.50, 127.44, 126.28, 126.27, 33.61, 28.94. HRMS (-APCl-TOF) calcd for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{~N}_{6} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]^{+}$ 475.1519, found 475.1556 .

5,5',5'-(Propane-1,2,3-triyl)tris(3-(4-chlorophenyl)-1,2,4oxadiazole) (4b) Compound 4b was prepared following method A using 1b ($0.75 \mathrm{mmol}, 172 \mathrm{mg}$) and KCN (1.50 mmol , 98 mg) and stirring at $100^{\circ} \mathrm{C}$ for 12 h . Column chromatography yielded ($101 \mathrm{mg}, 70 \%$) as a yellow solid. $\mathrm{mp} 168-170{ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): v=2918,2847,1588,1561,1472,1409,1365,1091,1014,902,836,763 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 6 \mathrm{H}), 4.50(\mathrm{p}, \mathrm{J}=6.9$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.81(\mathrm{dd}, \mathrm{J}=16.4,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{dd}, \mathrm{J}=16.4,7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $178.29,175.86,167.74,167.62,137.70,137.59,129.23,129.16,128.78,128.70,124.71,33.62,29.66$, 28.97. HRMS (+APCI-TOF) calcd for $\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{Cl}_{3} \mathrm{~N}_{6} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$579.0506, found 579.0535.

5,5',5'-(Propane-1,2,3-triyl)tris(3-(4-iodophenyl)-1,2,4oxadiazole) (4c) Compound 4c was prepared following method A using 1c ($0,75 \mathrm{mmol}, 240 \mathrm{mg}$) and KCN ($1,50 \mathrm{mmol}, 98 \mathrm{mg}$) and stirring at $100^{\circ} \mathrm{C}$ for 12 h . Column chromatography yielded (145 mg, 68\%) as a white solid. $\mathrm{mp} 169-171{ }^{\circ} \mathrm{C}$. IR (KBr): $\mathrm{v}=$ 2930, 2820, 1593, 1570, 1418, 1321, 1169, 1130, 1065, 849, $766,595 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=6.9$ $\mathrm{Hz}, 4 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.48(\mathrm{p}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=16.4,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{dd}, J=$ $16.4,7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.38,175.97,168.07,167.94,138.27,138.20$, $129.04,128.95,125.73,124.62,98.42,98.29,33.67,29.03$. HRMS (-APCI-TOF) calcd for $\mathrm{C}_{27} \mathrm{H}_{16} \mathrm{I}_{3} \mathrm{~N}_{6} \mathrm{O}_{3}$ $[\mathrm{M}-\mathrm{H}]^{+}$852.8418, found 852.8392 .

5,5',5"-(Propane-1,2,3-triyl)tris(3-(4-fluorophenyl)-1,2,4oxadiazole) (4d) Compound 4d was prepared following method A using 1d ($0.75 \mathrm{mmol}, 159 \mathrm{mg}$) and KCN (1.50 mmol , 98 mg) and stirring at $100{ }^{\circ} \mathrm{C}$ for 12 h . Column chromatography yielded ($86 \mathrm{mg}, 65 \%$) as a yellow solid. mp $141-143{ }^{\circ} \mathrm{C}$. IR (KBr): v = 2928, 2815, 1605, 1573, 1481, 1416, $1356,1226,1158,900,842,751 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06-7.96(\mathrm{~m}, 6 \mathrm{H}), 7.19-7.09$ $(\mathrm{m}, 6 \mathrm{H}), 4.50(\mathrm{p}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=16.5,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{dd}, J=16.4,7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.47,176.04,167.92,167.80,129.98,129.89,129.77,122.65,116.51,116.44$, 116.21, 116.15, 33.81, 29.18. HRMS (-APCl-TOF) calcd for $\mathrm{C}_{27} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]^{+} 529.1236$, found 529.1192.

5,5',5"-(Propane-1,2,3-triyl)tris(3-(p-tolyl)-1,2,4-oxadiazole) (4e) Compound $\mathbf{4 e}$ was prepared following method A using $\mathbf{1 e}$ $(0.75 \mathrm{mmol}, 156 \mathrm{mg})$ and KCN $(1.50 \mathrm{mmol}, 98 \mathrm{mg})$ and stirring at $100{ }^{\circ} \mathrm{C}$ for 12 h . Column chromatography yielded (93 mg , $72 \%)$ as a light yellow solid. $\mathrm{mp} 123-125^{\circ} \mathrm{C}$. IR (KBr): $v=2918$, $2851,1593,1567,1480,1411,1349,1080,1013,907,824,745 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13$ $-7.67(\mathrm{~m}, 6 \mathrm{H}), 7.43-7.08(\mathrm{~m}, 6 \mathrm{H}), 4.49(\mathrm{p}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=16.4,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{dd}, J=$ 16.4, $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.39(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.16,175.75,168.56,168.48,141.86$,
141.76, 129.84, 129.42, 127.55, 127.42, 123.56, 33.56, 29.01, 21.66. HRMS (-APCI-TOF) calcd for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~N}_{6} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]^{+}$517.1988, found 517.2024.

5,5',5'-(Propane-1,2,3-triyl)tris(3-(4-nitrophenyl)-1,2,4oxadiazole) (4f) Compound $\mathbf{4 f}$ was prepared following method A using 1f ($0,75 \mathrm{mmol}, 179 \mathrm{mg}$) and KCN (1.50 mmol, 98 mg) and stirring at $100{ }^{\circ} \mathrm{C}$ for 6 h . Column chromatography yielded ($125 \mathrm{mg}, 82 \%$) as a light yellow solid. $\mathrm{mp} 169-171^{\circ} \mathrm{C}$. IR (KBr): v = 2917, 2848, 1610, 1571, 1514, 1416, 1336, 1105, 907, 852, 749, $718 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.35-8.29(\mathrm{~m}, 6 \mathrm{H}), 8.25-8.18(\mathrm{~m}, 6 \mathrm{H}), 4.59(\mathrm{p}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.90 (dd, $J=16.5,6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.80 (dd, $J=16.5,7.0 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.80$, $176.40,167.07,166.96,149.71,149.65,131.90,131.83,128.47,128.39,124.15,124.11,33.57,28.97$. HRMS (-APCI-TOF) calcd for $\mathrm{C}_{27} \mathrm{H}_{16} \mathrm{~N}_{9} \mathrm{O}_{9}[\mathrm{M}-\mathrm{H}]^{+}$610.1071, found 610.1097.

5,5',5'-(Propane-1,2,3-triyl)tris(3-(4-(trifluoromethyl) phenyl)-1,2,4-oxadiazole) (4 g) Compound $\mathbf{4 g}$ was prepared following method A using $\mathbf{1 g}(0,75 \mathrm{mmol}, 197 \mathrm{mg})$ and KCN $(1.50 \mathrm{mmol}, 98 \mathrm{mg})$ and stirring at $100^{\circ} \mathrm{C}$ for 8 h . Column chromatography yielded ($133 \mathrm{mg}, 78 \%$) as a yellow solid. $m p 149-151^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): v=2918,2847,1588,1561,1472$, 1409, 1365, 1091, 1014, 902, 836, $763 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.11$ (d, J = $8.1 \mathrm{~Hz}, 4 \mathrm{H}$), $7.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.57(\mathrm{p}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=$ $16.5,6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.75 (dd, $J=16.5,7.3 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.53,176.10,167.56$, 167.41, 133.31, 132.98, 129.50, 127.85, 127.73, 125.86, 124.97, 122.27, 33.65, 29.01. HRMS (+APCITOF) calcd for $\mathrm{C}_{30} \mathrm{H}_{18} \mathrm{~F}_{9} \mathrm{~N}_{6} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$681.1297, found 681.1294.

5,5',5'-(Propane-1,2,3-triyl)tris(3-(4-methoxyphenyl)-1,2,4-oxadiazole) (4h) Compound 4h was prepared following method A using $1 \mathrm{~h}(0,75 \mathrm{mmol}, 168 \mathrm{mg})$ and KCN ($1.50 \mathrm{mmol}, 98 \mathrm{mg}$) and stirring at $100{ }^{\circ} \mathrm{C}$ for 12 h . Column chromatography yielded ($99 \mathrm{mg}, 70 \%$) as a light yellow solid. $\mathrm{mp} 146-148{ }^{\circ} \mathrm{C}$. IR (KBr): $\mathrm{v}=2924,2852,1610$,
$1588,1566,1479,1424,1357,1253,1172,1023,836,751 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-$
$7.91(\mathrm{~m}, 6 \mathrm{H}), 6.95(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 6 \mathrm{H}), 4.47(\mathrm{p}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 9 \mathrm{H}), 3.78(\mathrm{dd}, \mathrm{J}=16.4,6.5 \mathrm{~Hz}$, 2 H), 3.67 (dd, $J=16.4,7.3 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.06,175.63,168.24,168.16$, $162.12,162.05,129.35,129.24,129.17,118.83,114.33,114.29,55.47,33.68,29.04 . \operatorname{LC}-\mathrm{MS}(70 \mathrm{eV})$: $(\mathrm{m} / \mathrm{z}, \%)=567.7(100)[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (-APCl-TOF) calcd for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~N}_{6} \mathrm{O}_{6}[\mathrm{M}-\mathrm{H}]^{+} 565.1836$, found 565.1884.

5,5',5"-(Propane-1,2,3-triyl)tris(3-(4-(methylthio)phenyl)-1,2,4-oxadiazole) (4j) Compound $\mathbf{4 j}$ was prepared following method A using $\mathbf{1 j}$ ($0.75 \mathrm{mmol}, 180 \mathrm{mg}$) and KCN (1.50 mmol , 98 mg) and stirring at $100{ }^{\circ} \mathrm{C}$ for 12 h . Column chromatography yielded ($99 \mathrm{mg}, 72 \%$) as a light yellow solid. mp 111-113 ${ }^{\circ} \mathrm{C}$. IR (KBr): $v=2918,2845,1589,1556,1470$, 1407, 1357, 1114, 1087, 904, 823, $745 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 4 \mathrm{H})$, $7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 4 \mathrm{H}), 4.49(\mathrm{p}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=16.4,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.68$ (dd, J = 16.4, 7.4 Hz, 2H). ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.07,175.63,168.15,168.05,143.28,143.13$, 127.78, 127.73, 127.66, 125.82, 125.76, 122.52, 33.64, 28.99, 15.06. HRMS (+APCI-TOF) calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}_{3}[\mathrm{M}+\mathrm{H}]^{+}$615.1307, found 615.1328.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3a-j

${ }^{1}$ H NMR Spectrum of 3a

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 a}$
CARBNOSNO
${ }^{1}$ H NMR Spectrum of $\mathbf{3 b}$

${ }^{13}$ C NMR Spectrum of $\mathbf{3 b}$

${ }^{1}$ H NMR Spectrum of $\mathbf{3 c}$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 c}$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 d}$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 d}$

${ }^{1}$ H NMR Spectrum of $\mathbf{3 e}$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 e}$

${ }^{1}$ H NMR Spectrum of $\mathbf{3 f}$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 f}$

${ }^{1}$ H NMR Spectrum of $\mathbf{3 g}$

${ }^{13}$ C NMR Spectrum of $\mathbf{3 g}$

${ }^{1}$ H NMR Spectrum of $\mathbf{3 h}$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 h}$

${ }^{1}$ H NMR Spectrum of $\mathbf{3 j}$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 j}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR SPECTRA of 4a-j

${ }^{1}$ H NMR Spectrum of $\mathbf{4 a}$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{4 a}$

${ }^{1}$ H NMR Spectrum of $\mathbf{4 b}$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{4 b}$

${ }^{1}$ H NMR Spectrum of $\mathbf{4 c}$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{4 c}$
IP2FR1 1
single pulse decoupled gated NOE
${ }^{1}$ H NMR Spectrum of $\mathbf{4 d}$

${ }^{13}$ C NMR Spectrum of $\mathbf{4 d}$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4 e}$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{4 e}$
ES146FR1
${ }^{1}$ H NMR Spectrum of $\mathbf{4 f}$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{4 f}$

${ }^{1}$ H NMR Spectrum of $\mathbf{4 g}$

${ }^{13}$ C NMR Spectrum of $\mathbf{4 g}$

${ }^{1}$ H NMR Spectrum of $\mathbf{4 h}$

${ }^{13}$ C NMR Spectrum of $\mathbf{4 h}$

${ }^{1}$ H NMR Spectrum of $\mathbf{4 j}$

${ }^{13} \mathbf{C}$ NMR Spectrum of $\mathbf{4} \mathbf{j}$

HSQC and HMBC SPECTRA of 3a

HSQC Spectrum of $\mathbf{3 a}$

HMBC Spectrum of 3a

HSQC and HMBC SPECTRA of 4a

HSQC Spectrum of $\mathbf{4 a}$

HMBC Spectrum of $\mathbf{4 a}$

References

1- H. Ağırbaş, D. Sümengen, Y. Dürüst and N. Dürüst, Synth. Commun., 1992. 22, 209-217.

