

Supporting Information

for

Nucleofugal behavior of a β -shielded α -cyanovinyl carbanion

Rudolf Knorr and Barbara Schmidt

Beilstein J. Org. Chem. 2018, 14, 3018-3024. doi:10.3762/bjoc.14.281

Ion-pair intermediate through desilylation with Bu₄N⁺ F⁻

The metal-free ion-pair intermediate S3 is generated through desilylation.

Some of the following formula numbers (Scheme S1) are accompanied in parentheses by the corresponding numbers from the Main Text.

Scheme S1: Desilylation of S1 with production of alkenes S4a,b or aldehyde adduct S7.

The known [S1] α -(1,1,3,3-tetramethylindan-2-ylidene)- α -trimethylsilylacetonitrile (S1 (24)) can be desilylated (Scheme S1) by soluble tetrabutylammonium fluoride (Bu₄N⁺ F⁻ (S2)): Formation of the metal-free ion pair S3 in a DCCl₃ solution of S1 and S2 had been recognized [S1] through a deuterium transfer reaction that furnished the completely α -deuterated alkene S4b ([α -D]1). Trapping of S3 with pivalaldehyde (O=CH-t-Bu) was now possible in THF as the solvent at room temperature with catalytic amounts of S2 (\leq 0.05 equiv) which consumed S1 almost immediately and yielded roughly equal amounts of alkene 4a (1) and the adduct S7 (7) after aqueous work-up. The consumption of S1 was slower with reduced amounts of catalyst S2, requiring typically 2 hours with 0.01 equiv of S2 or ca. 21 hours with 0.0036 equiv, while the product ratio of S4a and S7 was always roughly 1:1 and did not depend on the solvents (THF, Et₂O, t-BuOMe, or benzene) and on the period of time prior to work-up. This unexpected product stability was a consequence of the catalytic process which demanded that S2 should be regenerated from the coproduct FSiMe₃ with a concomitant trimethylsilyl transfer to the emerging reactive primary alkoxide S5 to give S6. This known [S2] kind of SiMe₃ transfer protected the system from the expected nucleofugal escape of the carbanion unit until S6 succumbed to desilylation by the

aqueous work-up procedure with hydrolysis to give **S7**. Thus, **S6** could not be characterized; but the system of Scheme S1 explained the surprising adduct stability and described the fate of the Bu_4N^+ intermediate in accord with a previously [S2] analyzed, different system.

The expected alkene **S4a** was observed already in situ (before work-up); therefore, its major portion cannot be ascribed to aqueous work-up or to the tiny water content of the completely dissolved reagent Bu_4N^+ F^- (0.004–0.05 equiv) but may perhaps result through HF elimination from Bu_4N^+ F^- and subsequent reactions. In any case, the formation of **S4a** from either unconsumed ion pair **S3** or cleaving Bu_4N^+ alkoxide **S5** remained an open question.

References

- S1. Knorr, R.; Schmidt, B.; Mehlstäubl, J.; von Roman, T. *J. Organomet. Chem.* **2018**, *871*, 185–196.
- S2. Briddle, M. M.; Reich, H. J. *J. Org. Chem.* **2006**, *71*, 4031–4039, Figure 1 and cited references therein.