Supporting Information

for

Cross-coupling of dissimilar ketone enolates via enolonium species to afford non-symmetrical 1,4-diketones

Keshaba N. Parida, Gulab K. Pathe, Shimon Maksymenko, and Alex M. Szpilman*

Address: Department of Chemical Sciences, Ariel University, 4070000 Ariel, Israel

Email: Alex M. Szpilman - amszpilman@gmail.com

*Corresponding author

Experimental, characterization data and copies of NMR spectra

Table of contents:

General methods ... S2
General procedure for the synthesis of 1,4-diketones ... S2
Experimental procedures and characterization data .. S3
References.. S9
NMR spectra... S10
General methods: Air and/or moisture-sensitive reactions were carried out in anhydrous solvents under an argon atmosphere in predried glassware. CH$_2$Cl$_2$ was freshly distilled from CaH$_2$. All commercially available reagents were used without purification. Column chromatography was carried out on silica gel (100–200 mesh). NMR spectra were recorded on a Bruker Avance III 400 spectrometer operating at 400 MHz (1H) and 101 MHz (13C). 1H and 13C NMR chemical shifts are reported in ppm relative to chloroform-d ($\delta = 7.26$ for 1H and 77.16 for 13C) or TMS (0.0 ppm) and coupling constants (J) are reported in hertz (Hz). The following abbreviations have been used to designate signal multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. IR spectra were recorded as films on a Bruker FT-IR. TOF-ESI-HSMS (m/z) was recorded on a Waters Micromass LCT premier instrument at 70 eV in the positive or negative mode. APCI-HRMS was recorded on a Bruker Maxis Impact QTOF instrument using the APCI solid probe.

General procedure for the synthesis of 1,4-diketones

Under an argon atmosphere, BF$_3$·OEt$_2$ (1.25 equiv) was added to a slurry of hydroxy(tosyloxy)iodobenzene (1.25 equiv) in anhydrous CH$_2$Cl$_2$ (8 mL) at room temperature resulting in a clear yellow solution. The solution was cooled to $-78 \, ^\circ\text{C}$, and the first trimethylsilyl enol ether (1.0 equiv) dissolved in CH$_2$Cl$_2$ (4 mL) was added slowly. After 10 minutes the second trimethylsilyl enol ether (1.2–1.4 equiv) dissolved in CH$_2$Cl$_2$ (2 mL) was added dropwise. The reaction mixture was stirred for 10 min at $-78 \, ^\circ\text{C}$ and then allowed to warm to room temperature. Stirring was continued for 1 h in total. The reaction mixture was quenched by the addition of H$_2$O (5 mL) and then extracted with CH$_2$Cl$_2$ (3 × 10 mL). The combined organic extracts were dried over anhydrous Na$_2$SO$_4$ and concentrated in vacuo. The residue was subjected to silica gel column chromatography to isolate the corresponding 1,4-diketone product(s).
1-(4-Methoxyphenyl)-4-phenylbutane-1,4-dione (8): Cross-coupling of 1-phenyl-1-trimethylsiloxyethylene (192 mg, 1.0 mmol) with 1-(4-methoxyphenyl)-1-trimethylsiloxyethylene (311 mg, 1.4 mmol) following the general procedure gave 1-(4-methoxyphenyl)-4-phenylbutane-1,4-dione (193 mg, 72%) as white solid; \(R_f \): 0.4 (1:4 v/v EtOAc/hexane). FT-IR: \(\nu_{\text{max}} \) 2979, 1710, 1678, 1599, 1356, 1171, 954 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.97–8.08 (m, 4H), 7.54–7.61 (m, 1H), 7.45–7.52 (m, 2H), 6.92–6.98 (m, 2H), 3.88 (s, 3H), 3.37–3.51 (m, 4H) ppm. \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 199.1, 197.4, 163.7, 137.0, 133.3, 130.5, 130.1, 128.7, 128.3, 113.9, 55.6, 32.8, 32.4 ppm; HRMS (APCI\(^+\)): \(m/z \) calculated for C\(_{17}\)H\(_{17}\)O\(_3\) 269.1178; \([\text{M+H}]^+\) found 269.1192.

1-(4-Nitrophenyl)-4-phenylbutane-1,4-dione (9): Cross-coupling of 1-phenyl-1-trimethylsiloxyethylene (192 mg, 1.0 mmol) with 1-(4-nitrophenyl)-1-trimethylsiloxyethylene (332 mg, 1.4 mmol) following the general procedure gave 1-(4-nitrophenyl)-4-phenylbutane-1,4-dione (184 mg, 65%) as an yellow solid; \(R_f \): 0.4 (1:4 v/v EtOAc/hexane). FT-IR: \(\nu_{\text{max}} \) 2968, 1662, 1303, 959, 864 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 8.28–8.37 (m, 2H), 8.15–8.24 (m, 2H), 7.97–8.09 (m, 2H), 7.56–7.65 (m, 1H), 7.44–7.54 (m, 2H), 3.41–3.56 (m, 4H) ppm. \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 198.3, 197.5, 150.5, 141.5, 136.6, 133.6, 129.3, 128.8, 128.3, 124.0, 33.2, 32.8 ppm; HRMS (APCI\(^+\)): \(m/z \) calculated for C\(_{16}\)H\(_{14}\)N\(_4\)O 284.0923; \([\text{M+H}]^+\) found 284.0949.

1-(4-Fluorophenyl)-4-phenylbutane-1,4-dione (10): Cross-coupling of 1-(4-fluorophenyl)-1-trimethylsiloxyethylene (262 mg, 1.246 mmol) with 1-phenyl-1-trimethylsiloxyethylene (336 mg, 1.747 mmol) following the general procedure gave 1-(4-fluorophenyl)-4-phenylbutane-1,4-dione (219 mg, 69%) as colorless crystal. \(R_f \): 0.4 (1:9 v/v EtOAc/hexane). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 8.02–8.09 (m, 4H), 7.58 (tt, \(J = 7.28, 1.2 \) Hz, 1H), 7.48 (tt, \(J = 7.28, 1.64 \) Hz, 2H), 7.15 (tt, \(J = 8.62, 2.1 \) Hz, 2H), 3.42–3.47 (m, 4H) ppm.
13C NMR (101 MHz, CDCl$_3$): 198.7, 197.2, 166.0 (d, $J = 254.6$ Hz), 136.9, 133.4, 130.5 (d, $J = 9.3$ Hz), 128.8, 128.7, 128.3, 115.8 (d, $J = 21.9$ Hz), 32.7, 32.6 ppm.

1-(4-Chlorophenyl)-4-phenylbutane-1,4-dione (11): Cross-coupling of 1-(4-chlorophenyl)-1-trimethylsiloxyethylene (283 mg, 1.248 mmol) with 1-phenyl-1-trimethylsiloxyethylene (336 mg, 1.747 mmol) following the above general procedure gave 1-(4-chlorophenyl)-4-phenylbutane-1,4-dione (229 mg, 67%) as a colorless solid. R_f: 0.4 (1:9 v/v EtOAc/hexane). 1H NMR (400 MHz, CDCl$_3$): δ 8.02–8.05 (m, 2H), 7.96–8.00 (m, 2H), 7.58 (tt, $J = 7.4$, 1.3 Hz, 1H), 7.44–7.50 (m, 4H), 3.40–3.49 (m, 4H) ppm. 13C NMR (101 MHz, CDCl$_3$): δ 198.6, 197.6, 139.7, 136.8, 135.3, 133.4, 129.7, 129.1, 128.8, 128.3, 32.7, 32.4 ppm.

1-(4-Bromophenyl)-4-phenylbutane-1,4-dione (12): Cross-coupling of 1-(4-bromophenyl)-1-trimethylsiloxyethylene (337 mg, 1.242 mmol) with 1-phenyl-1-trimethylsiloxyethylene (336 mg, 1.747 mmol) following the above general procedure gave 1-(4-bromophenyl)-4-phenylbutane-1,4-dione (246 mg, 62%) as a colorless solid. R_f: 0.4 (1:9 v/v EtOAc/hexane). FT-IR: ν_{max} 2905, 1673, 1583, 1319, 991, 742, 689 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$): δ 8.02–8.05 (m, 2H), 7.88–7.92 (m, 2H), 7.63 (td, $J = 8.64$, 1.96 Hz, 2H), 7.58 (tt, $J = 7.4$, 1.96 Hz, 1H), 7.48 (tt, $J = 7.32$, 1.64 Hz, 2H), 3.42–3.47 (m, 4H) ppm. 13C NMR: (101 MHz, CDCl$_3$): δ 198.6, 197.8, 139.7, 136.8, 135.7, 133.4, 132.1, 129.82, 129.8, 128.5, 128.3, 32.7, 32.6 ppm. HRMS (ESI+): m/z calculated for C$_{16}$H$_{14}$BrO$_2$ 317.0177 [M+H]$^+$; found 317.0198.

1-(4-Iodophenyl)-4-phenylbutane-1,4-dionene (13): Cross-coupling of 1-phenyl-1-trimethylsiloxyethylene (192 mg, 1.0 mmol) with 1-(4-iodophenyl)-1-trimethylsiloxyethylene (440 mg, 1.382 mmol) following the general procedure gave 1-(4-iodophenyl)-4-phenylbutane-1,4-dionene (248 mg, 68%) as an white solid; R_f: 0.5 (1:5 v/v EtOAc/hexane). FT-IR: ν_{max} 2921, 1705, 1678, 1599, 1451, 1350, 922 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$) δ
7.98–8.09 (m, 2H), 7.79–7.91 (m, 2H), 7.69–7.79 (m, 2H), 7.52–7.64 (m, 1H), 7.42–7.52 (m, 2H), 3.36–3.51 (m, 4H) ppm. 13C NMR (101 MHz, CDCl$_3$) δ 198.6, 198.2, 138.1, 136.8, 136.2, 133.4, 129.7, 129.66, 128.8, 128.3, 101.2, 32.7, 32.6 ppm; HRMS (APCI$^+$) m/z calculated for C$_{16}$H$_{14}$IO$_3$ 365.0039; [M+H]$^+$ found 365.0061.

2-Methyl-1,4-diphenylbutane-1,4-dione (14):[2] Cross-coupling of 1-phenyl-1-trimethylsiloxylethylene (240 mg, 1.248 mmol) with trimethyl((1-phenylprop-1-en-1-yl)oxy)silane (360 mg, 1.747 mmol) following the above general procedure gave 2-methyl-1,4-diphenylbutane-1,4-dione (233 mg, 74%) as a colorless solid; R$_f$: 0.4 (1:9 v/v EtOAc/hexane). 1H NMR (400 MHz, CDCl$_3$): δ 8.06 (dt, J = 8.5, 1.7 Hz, 2H), 7.99 (dt, J = 8.5, 1.7 Hz, 2H), 7.54–7.60 (m, 2H), 7.43–7.51 (m, 4H), 4.19 (ddd, J = 8.4, 7.2, 4.9 Hz, 1H), 3.74 (dd, J = 18.0, 8.5 Hz, 1H), 3.12 (dd, J = 18.0, 4.9 Hz, 1H), 1.29 (d, J = 7.2 Hz, 3H) ppm. 13C NMR (101 MHz, CDCl$_3$): δ 203.5, 198.6, 136.7, 136.2, 133.3, 133.1, 128.8, 128.7, 128.6, 128.2, 42.5, 36.4, 18.1 ppm.

1,2,4-Triphenylbutane-1,4-dione (15)[3]: Cross-coupling of 1-phenyl-1-trimethylsiloxylethylene (192 mg, 1.00 mmol) with ((1,2-diphenylvinyloxy)trimethylsilane (376 mg, 1.400 mmol) following the general procedure gave 1,2,4-triphenylbutane-1,4-dione (173 mg, 55%) as an colorless oil. R$_f$: 0.5 (1:5 v/v EtOAc/hexane). 1H NMR (400 MHz, CDCl$_3$): δ 7.95–8.08 (m, 4H), 7.28–7.60 (m, 10H), 7.18–7.26 (m, 1H), 5.34 (dd, J = 10.0, 3.7 Hz, 1H), 4.23 (dd, J = 18.0, 10.1 Hz, 1H), 3.31 (dd, J = 18.0, 3.7 Hz, 1H) ppm. 13C NMR (101 MHz, CDCl$_3$): δ 199.1, 198.2, 138.8, 136.6, 133.4, 133.0, 129.3, 129.1, 128.8, 128.6, 128.59, 128.4, 128.3, 127.5, 48.9, 44.0 ppm.

2-(2-Oxo-2-phenylethyl)cyclohexan-1-one (16)[4]: Cross-coupling of 1-phenyl-1-trimethylsiloxylethylene (240 mg, 1.248 mmol) with trimethylsilyl enolether of cyclohexanone (255 mg, 1.49 mmol) following the above general procedure gave 2-(2-oxo-2-
phenylethyl)cyclohexan-1-one (103 mg, 38%) as colorless solid. When 3 equivalents (637 mg, 3.744 mmol) of trimethylsilyl enol ether of cyclohexanone was used the yield was 78% (211 mg). \(R_f\) 0.24 (1:4 v/v Et\(_2\)O/Pentane). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.98 (d, 2H), 7.55 (t, 1H), 7.45 (t, 2H), 3.60 (dd, \(J = 17.7, 6.6\) Hz, 1H), 3.10–3.23 (m, 1H), 2.68 (dd, \(J = 17.7, 5.7\) Hz, 1H), 2.43 (dd, \(J = 9.8, 5.0\) Hz, 2H), 2.06–2.24 (m, 2H), 1.56–1.94 (m, 3H), 1.45 (qd, \(J = 12.8, 3.8\) Hz, 1H) ppm. \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta\) 211.7, 198.8, 137.2, 133.13, 128.6, 128.2, 46.6, 42.1, 38.4, 34.4, 28.1, 25.5 ppm.

2-(2-Oxo-2-phenylethyl)-3,4-dihyronaphthalen-1(2H)-one (17)[5]: Cross-coupling of 1-phenyl-1-trimethylsiloxyethylene (192 mg, 1.00 mmol) with ((3,4-dihyronaphthalen-1-yl)oxy)trimethylsilane (306 mg, 1.400 mmol) following the general procedure gave 2-(2-oxo-2-phenylethyl)-3,4-dihyronaphthalen-1(2H)-one (133 mg, 50%) as an white solid; \(R_f\) 0.6 (1:5 v/v EtOAc/hexane); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.97–8.10 (m, 3H), 7.52–7.65 (m, 1H), 7.42–7.52 (m, 3H), 7.24–7.34 (m, 2H), 3.87 (dd, \(J = 17.5, 4.6\) Hz, 1H), 3.33 (ddt, \(J = 13.3, 7.1, 4.6\) Hz, 1H), 3.19 (ddd, \(J = 17.0, 12.7, 4.5\) Hz, 1H), 2.99 (ddd, \(J = 17.6, 7.2, 2.9\) Hz, 2H), 2.25–2.36 (m, 1H), 1.99 (qd, \(J = 13.0, 4.3\) Hz, 1H) ppm. \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta\) 199.2, 198.7, 144.3, 137.2, 133.5, 133.3, 132.5, 128.9, 128.8, 128.3, 127.7, 126.8, 44.4, 39.2, 29.7, 29.6 ppm.

1,6-Diphenylhex-5-ene-1,4-dione (18): Cross-coupling of 1-phenyl-1-trimethylsiloxyethylene (231 mg, 1.2 mmol) with trimethyl((4-phenylbuta-1,3-dien-2-yl)oxy)silane (366 mg, 1.678 mmol) following the above general procedure gave 1,6-diphenylhex-5-ene-1,4-dione (206 mg, 65%) as colorless solid. \(R_f\) 0.26 (1:4 v/v Et\(_2\)O/pentane). FT-IR: 3041, 1686, 1619, 1395, 1353, 1207, 1103, 749 cm\(^-1\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.94–8.03 (m, 2H), 7.65 (d, \(J = 16.2\) Hz, 1H), 7.57 (dd, \(J = 6.6, 2.9\) Hz, 3H), 7.48 (t, \(J = 7.6\) Hz, 2H), 7.37–7.43 (m, 3H), 6.83 (d, \(J = 16.2\) Hz, 1H), 3.41 (t, \(J = 6.5\) Hz,
2H), 3.17 (t, J = 6.5 Hz, 2H). 13C NMR: (101 MHz, CDCl3): δ 198.8, 198.78, 143.0, 136.9, 134.7, 133.3, 130.6, 129.1, 128.7, 128.5, 128.3, 126.3, 34.6, 32.7 ppm. HRMS (APCI+): m/z calculated for C18H17O2 265.1229 [M+H]+; found 297.1517.

6-(2-Oxo-2-phenylethyl)cyclohex-2-enone (19): Cross-coupling of 1-phenyl-1-trimethylsiloxyethylene (240 mg, 1.248 mmol) with (cyclohexa-1,5-dien-1-yloxy)trimethylsilane (294 mg, 1.747 mmol) following the above general procedure gave 6-(2-oxo-2-phenylethyl)cyclohex-2-enone (136 mg, 51%) as a colorless liquid; Rf: 0.4 (1:3 v/v EtOAc/hexane). FT-IR: 2931, 2859, 1686, 1452, 1181, 1103, 983, cm⁻¹. 1H NMR (400 MHz, CDCl3): δ 7.99 (dt, J = 8.5, 1.7 Hz, 2H), 7.54 (tt, J = 7.4, 1.3 Hz, 1H), 7.45 (tt, J = 7.3, 1.6 Hz, 2H), 6.97 (dddd, J = 9.7, 5.6, 2.3, 1.5 Hz, 1H), 5.05 (ddd, J = 10.0, 2.9, 1.0 Hz, 1H), 3.75 (dd, J = 17.6, 6.4 Hz, 1H), 3.12 (ddt, J = 13.5, 7.6, 4.5 Hz, 1H), 2.82 (dd, J = 17.6, 7.5 Hz, 1H), 2.35–2.60 (m, 2H), 2.15–2.20 (m, 1H), 1.82 (tdd, J = 13.3, 11.5, 5.1 Hz, 1H) ppm. 13C NMR (101 MHz, CDCl3): δ 200.3, 198.7, 150.2, 137.1, 133.2, 129.5, 128.7, 128.2, 43.1, 38.6, 29.2, 26.2 ppm. HRMS (APCI+): m/z calculated for C14H15O2 215.1072 [M+H]+; found 215.1066.

1-Phenyl-4-(thiophen-2-yl)butane-1,4-dione (20)[6]: Cross-coupling of 1-phenyl-1-trimethylsiloxyethylene (240 mg, 1.248 mmol) with trimethyl((1-(thiophen-2-yl)vinyl)oxy)silane (346 mg, 1.747 mmol) following the above general procedure gave 1-phenyl-4-(thiophen-2-yl)butane-1,4-dione (156 mg, 51%) as a colorless solid; Rf: 0.4 (1:3 v/v EtOAc/hexane). FT-IR: 2926, 2869, 1681, 1655, 1400, 1348, 1181 cm⁻¹. 1H NMR (400 MHz, CDCl3): δ 8.03 (dt, J = 7.1, 1.0 Hz, 2H), 7.84 (dd, J = 3.8, 1.1 Hz, 1H), 7.65 (dd, J = 5.0, 1.1 Hz, 1H), 7.58 (tt, J = 7.4, 1.2 Hz, 1H), 7.48 (tt, J = 7.3, 1.6 Hz, 2H), 7.16 (dd, J = 4.9, 3.8 Hz, 1H), 3.38–3.48 (m, 4H) ppm. 13C NMR: (101 MHz, CDCl3): δ 198.6, 191.8, 144.1, 136.8, 133.7, 133.4, 132.2, 128.8, 128.3, 33.3, 32.4 ppm.
2,3-Dimethyl-1,4-diphenylbutane-1,4-dione (meso-23 and rac-23): Cross-coupling of trimethyl((1-phenylprop-1-en-1-yl)oxy)silane (257 mg, 1.247 mmol) with trimethyl((1-phenylprop-1-en-1-yl)oxy)silane (360 mg, 1.746 mmol) following the above general procedure gave 2,3-dimethyl-1,4-diphenylbutane-1,4-dione (188 mg, 57%), where \(\text{rac:meso} = 1:6.2 \).

meso-2,3-Dimethyl-1,4-diphenylbutane-1,4-dione (meso-23)[7]: Colourless solid. \(R_f \): 0.5 (1:9 v/v EtOAc/hexane). \(^1H\) NMR (400 MHz, CDCl\(_3\)): \(\delta \) 8.05 (dt, \(J = 7.1, 1.4 \) Hz, 4H), 7.59 (tt, \(J = 7.4, 1.3 \) Hz, 2H), 7.50 (tt, \(J = 7.3, 1.6 \), 4H), 4.02–4.08 (m, 2H), 1.14 (dd, \(J = 4.5, 2.0 \) Hz, 6H) ppm. \(^{13}C\) NMR: (101 MHz, CDCl\(_3\)): \(\delta \) 203.9, 137.0, 133.5, 128.9, 128.6, 43.5, 17.6 ppm.

rac-2,3-Dimethyl-1,4-diphenylbutane-1,4-dione (rac-23)[7]: Colourless solid. \(R_f \): 0.45 (1:9 v/v EtOAc/hexane). \(^1H\) NMR (400 MHz, CDCl\(_3\)): \(\delta \) 7.99 (dt, \(J = 7.1, 1.4 \) Hz, 4H), 7.55 (tt, \(J = 7.4, 1.3 \) Hz, 2H), 7.46 (tt, \(J = 7.3, 1.6 \), 4H), 3.93–4.01 (m, 2H), 1.29 (dd, \(J = 4.5, 2.0 \) Hz, 6H) ppm. \(^{13}C\) NMR: (101 MHz, CDCl\(_3\)): \(\delta \) 204.5, 136.3, 133.1, 128.7, 128.6, 43.8, 15.6 ppm.
References

^{1}H NMR of 8 (CDCl$_3$, 400 MHz)

13C NMR of 8 (CDCl$_3$, 101 MHz)
1H NMR of 9 (CDCl$_3$, 400 MHz)

13C NMR of 9 (CDCl$_3$, 101 MHz)
1H NMR of 10 (CDCl$_3$, 400 MHz)

13C NMR of 10 (CDCl$_3$, 101 MHz)
1H NMR of 11 (CDCl$_3$, 400 MHz)

13C NMR of 11 (CDCl$_3$, 101 MHz)
1H NMR of 12 (CDCl$_3$, 400 MHz)

13C NMR of 12 (CDCl$_3$, 101 MHz)
1H NMR of 13 (CDCl$_3$, 400 MHz)

13C NMR of 13 (CDCl$_3$, 101 MHz)
1H NMR of 14 (CDCl$_3$, 400 MHz)

13C NMR of 14 (CDCl$_3$, 101 MHz)
1H NMR of 15 (CDCl$_3$, 400 MHz)

13C NMR of 15 (CDCl$_3$, 101 MHz)
13C NMR of 16 (CDCl$_3$, 101 MHz)

1H NMR of 16 (CDCl$_3$, 400 MHz)
1H NMR of 17 (CDCl$_3$, 400 MHz)

13C NMR of 17 (CDCl$_3$, 101 MHz)
$^{1}\text{H NMR of 18 (CDCl}_3, 400 \text{ MHz)}$
1H NMR of 19 (CDCl$_3$, 400 MHz)

13C NMR of 19 (CDCl$_3$, 101 MHz)
1H NMR of 20 (CDCl$_3$, 400 MHz)

13C NMR of 20 (CDCl$_3$, 101 MHz)
1H NMR of 23 (CDCl$_3$, 400 MHz)

13C NMR of 23 (CDCl$_3$, 101 MHz)
1H NMR of 23 (CDCl$_3$, 400 MHz)

13C NMR of 23 (CDCl$_3$, 101 MHz)