

# **Supporting Information**

for

Alkylation of lithiated dimethyl tartrate acetonide with unactivated alkyl halides and application to an asymmetric synthesis of the 2,8-dioxabicyclo[3.2.1]octane core of squalestatins/zaragozic acids

Herman O. Sintim, Hamad H. Al Mamari, Hasanain A. A. Almohseni, Younes Fegheh-Hassanpour and David M. Hodgson

Beilstein J. Org. Chem. 2019, 15, 1194-1202. doi:10.3762/bjoc.15.116

Experimental procedures, characterisation data and <sup>1</sup>H and <sup>13</sup>C NMR spectra for all new compounds

#### **Experimental**

#### **General information**

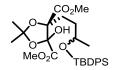
All reactions requiring anhydrous conditions were carried out under an atmosphere of argon in flame-dried glassware. Tetrahydrofuran (THF), dichloromethane (DCM), ether (Et<sub>2</sub>O) and ethyl acetate (EtOAc) were obtained from Grubbs' drying stills [1]. MeOH was dried over 4 Å MS for at least 24 h. Light petrol (petroleum ether) 30-40 °C, or petrol (petroleum ether) 40-60 °C was used in column chromatography. The latter was carried out using silica gel (VWR chemicals, BDH), monitored by thin-layer chromatography (TLC) (Merck 60 F<sub>254</sub>) plates. TLC plates were viewed using ultraviolet light ( $\lambda_{max} = 254/365$  nm) and immersion in KMnO<sub>4</sub>, anisaldehyde or vanillin stains, followed by heating. Except where stated otherwise, commercially available reagents were used as received. Melting points (mp) were obtained using an Electrothermal melting point apparatus to the nearest 1 °C and are uncorrected.  $[\alpha]_D$  values are given in  $10^{-1}$  deg cm<sup>2</sup> g<sup>-1</sup>. Concentrations (c) are given in g/cm<sup>3</sup>. HPLC was performed on a Gilson system with 712 Controller Software (for 17), Dionex UltiMate 3000 (for 33a) and Shimadzu Prominence-i LC-2030 (for 34a). Infrared spectra were obtained using a PerkinElmer FT-IR spectrometer (Universal ATR Sampling Accessory), with absorption maxima quoted in wavenumbers (cm<sup>-1</sup>). Peak intensities are described as broad (br), weak (w), medium (m) or strong (s). Nuclear magnetic resonance (<sup>1</sup>H NMR and <sup>13</sup>C NMR) spectra were recorded on Bruker Avance DPX 200, AVIIIHD 400, AVII 500, and AVIIIHD 500 spectrometers in CDCl<sub>3</sub> (referenced to residual CHCl<sub>3</sub> singlet at δ 7.27 for <sup>1</sup>H NMR spectra, and to the central line of CDCl<sub>3</sub> triplet at δ 77.16 for <sup>13</sup>C NMR spectra), or in C<sub>6</sub>D<sub>6</sub> (referenced to residual  $C_6H_6$  singlet at  $\delta$  7.16 for  $^1H$  NMR spectra, and to the central line of  $C_6D_6$  triplet at  $\delta$  128.06 for <sup>13</sup>C NMR spectra). Chemical shifts are quoted in parts per million (ppm). Coupling constants (*J*) are measured to the nearest 0.5 Hertz (Hz). The splittings are quoted as singlet (s), doublet (d), triplet (t), quartet (q), or multiplet (m). The <sup>13</sup>C NMR peaks were assigned by standard methods using HSQC. High-resolution mass spectra were obtained by electrospray ionisation (ESI) or chemical ionisation (CI) using tetraoctylammonium bromide or sodium dodecyl sulfate as the lock mass.

### 4-Ethyl 1-methyl 2-((tert-butyldimethylsilyl)oxy)-3-diazo-2-methylsuccinate (13).

A mixture of *Z*-hydrazone **12** [2] (87 mg, 0.18 mmol) and NaOMe (5 mL, 0.1 M in MeOH) was stirred at 45 °C. After 3 h, the resulting yellow solution was extracted with  $Et_2O$  (3 × 5 mL), the combined organic layers washed with sat. aq NaCl (5 mL), dried (MgSO<sub>4</sub>) and evaporated under reduced pressure. Purification of the residue twice by column chromatography (50%  $Et_2O$  in light petrol, then 30%  $CH_2Cl_2$  in toluene), gave  $\alpha$ -diazo ester **13** (48 mg, 76%) as a yellow liquid. Data as lit [2].

Dimethyl (4*R*,5*R*)-4-(3-((*tert*-butyldiphenylsilyl)oxy)butyl)-2,2-dimethyl-1,3-dioxolane-4,5-dicarboxylate (17) and dimethyl (4*S*,5*R*)-4-(3-((*tert*-butyldiphenylsilyl)oxy)butyl)-2,2-dimethyl-1,3-dioxolane-4,5-dicarboxylate (18).

To a stirred solution of dimethyl (R,R)-tartrate acetonide (T) (1.1 g, 5 mmol), *tert*-butyl((4-iodobutan-2-yl)oxy)diphenylsilane (T) [3-5] (4.3 g, 10 mmol) and HMPA (3 mL) in THF (12 mL) at -78 °C, was added a precooled (-78 °C) solution of LDA (13 mL, 0.58 M in THF, 7.5 mmol) over 30 min. The temperature was maintained at -78 °C for 24 h, before phosphate buffer pH 7 (5 mL) was added and the reaction mixture extracted with EtOAc (3 × 100 mL). The combined organic layers were washed with sat. aq CuSO<sub>4</sub> (2 × 20 mL), filtered through a short pad of silica and evaporated under reduced pressure. Purification of the residue by column chromatography (10% Et<sub>2</sub>O in light petrol) gave a colourless oil, alkylated tartrate 17 (1.3 g, 50%, 50:50 mixture of epimers in the side-chain by  $^1$ H NMR analysis). The enantiopurity at the acetonide portion of 17 was determined to be >98:2 by HPLC [(Chiralcel OD, 98:2 heptane–i-PrOH, 0.5 mL/min),  $^1$ R(T)-7 derived and (T)-7 derived 10.48 min (an T)-11 mixture of (T)-7 derived and (T)-7 derived 17 gave T0-8 min and 10.64 min; epimers in the side-chain not resolved)].


An otherwise identical reaction to that described above, except being allowed to warm to rt overnight before buffer addition, gave the following, all as colourless oils, alkylated tartrate **17** (1.0 g, 38%, 50:50 mixture of epimers in the side-chain by <sup>1</sup>H NMR analysis), alkylated tartrate **18** (0.3 g, 12%, 60:40 mixture of epimers in the side-chain by <sup>1</sup>H NMR analysis) and recovered *tert*-butyl((4-iodobutan-2-yl)oxy)diphenylsilane (**16**) (3.0 g).

NOE studies: irradiation at the ring methine of alkylated tartrates 17 and 18 gave significant increase in NOE intensities at the side-chain methylene groups (with respect to the acetonide Me NOE intensity) for 18 compared with 17. Also, the OMe NOE intensities of the two esters for 18 show a greater difference compared with 17.

Data for alkylated tartrate 17:  $R_f$  0.60 (50% Et<sub>2</sub>O in light petrol);  $v_{max}/cm^{-1}$  (neat) 3071 m, 2955 s, 2858 s, 1760 s, 1748 s;  $\delta_H$ (400 MHz,  $C_6D_6$ ) 7.79–7.71 (8H, m, Ar–H), 7.26–7.17 (12H, m, Ar–H), 5.16 (1H, s,  $CHCO_2Me$ ), 5.15 (1H, s,  $CHCO_2Me$ ), 3.93–3.79 (2H, m, 2 x SiOCH), 3.33–3.30 (12H, m, 4 x  $CO_2Me$ ), 2.37–2.27, 2.15–2.07, 1.98–1.80, 1.67–1.56 (14H, m, 2 x  $CH_2CH_2$  and  $C(Me)_2$ ), 1.44 (3H, s, C(MeMe)), 1.43 (3H, s, C(MeMe)), 1.16 and 1.15 (18H, 2 s, 2 x  $C(Me)_3$ ), 0.98–0.92 (6H, m, 2 x CHMe);  $\delta_C$ (100 MHz,  $C_6D_6$ ) 172.6 ( $CO_2Me$ ), 169.2 ( $CO_2Me$ ), 169.1 ( $CO_2Me$ ), 136.3 (Ar), 135.2 (Ar), 135.1 (Ar), 134.6 (Ar), 129.9 (Ar), 127.9 (Ar), 113.3 ( $C(Me)_2$ ), 113.2 ( $C(Me)_2$ ), 86.8 (quat.  $CCO_2Me$ ), 86.6 (quat.  $CCO_2Me$ ), 81.1 ( $CHCO_2Me$ ), 69.8 (SiOCH), 69.7 (SiOCH), 52.1 ( $CO_2Me$ ), 51.6 ( $CO_2Me$ ), 51.5 ( $CO_2Me$ ), 34.4 ( $CH_2$ ), 34.2 ( $CH_2$ ), 31.1 ( $CH_2$ ), 30.7 ( $CH_2$ ), 28.3 ( $CM_2$ ), 28.2 ( $CM_2$ ), 27.3 ( $CM_2$ ), 26.8 ( $CM_2$ ), 19.6 ( $CM_2$ ), 19.7 ( $CM_2$ ), 19.7

Data for alkylated tartrate **18**:  $R_f$  0.49 (50% Et<sub>2</sub>O in light petrol);  $\delta_H$ (400 MHz,  $C_6D_6$ ) 7.81–7.67 (8H, m, Ar–H), 7.22–7.20 (12H, m, Ar–H), 4.38 (1H, s, CHCO<sub>2</sub>Me), 4.36 (1H, s, CHCO<sub>2</sub>Me), 3.91–3.82 (2H, m, 2 x SiOCH), 3.41 (3H, s, CO<sub>2</sub>Me), 3.40 (3H, s, CO<sub>2</sub>Me), 3.29 (3H, s, CO<sub>2</sub>Me), 3.28 (3H, s, CO<sub>2</sub>Me), 2.51–2.42 (1H, m, CH<sub>2</sub>CHH), 2.32–2.22 (1H, m, CH<sub>2</sub>CHH), 1.95–1.10 (36H, m, 2 x CH2CH<sub>2</sub>, CH<sub>2</sub>, 2 x C(Me)<sub>2</sub> and 2 x C(Me)<sub>3</sub>), 1.01–0.96 (6H, m, 2 x CHMe);  $\delta_C$ (100 MHz,  $C_6D_6$ ) 171.7 (CO<sub>2</sub>Me), 171.5 (CO<sub>2</sub>Me), 167.9 (CO<sub>2</sub>Me), 167.8 (CO<sub>2</sub>Me), 136.4 (Ar), 136.3 (Ar), 135.1 (Ar), 134.6 (Ar), 130.0 (Ar), 129.9 (Ar), 128.3 (Ar), 128.1 (Ar), 128.0 (Ar), 127.9 (Ar), 127.8 (Ar), 112.1 (C(Me)<sub>2</sub>), 87.2 (quat. CCO<sub>2</sub>Me), 82.1 (CHCO<sub>2</sub>Me), 82.0 (CHCO<sub>2</sub>Me), 69.5 (SiOCH), 51.9 (CO<sub>2</sub>Me), 51.8 (CO<sub>2</sub>Me), 34.2 (CH<sub>2</sub>), 34.1 (CH<sub>2</sub>), 33.0 (CH<sub>2</sub>), 32.8 (CH<sub>2</sub>), 27.3 (Me), 27.2 (Me), 27.1 (Me), 23.3 (Me), 19.6 (Me).

Dimethyl (5*R*)-4-hydroxy-2,2-dimethyl-5-((3-*tert*–butyldiphenylsilyl)oxy)butyl)-1,3-dioxolane-4,5-dicarboxylate (19a).



Alkylated acetonide (R,R)-17 (100 mg, 0.188 mmol) in THF (2 mL) was added dropwise over 15 min to a stirring LDA solution [0.5 mL, 0.57 M, 0.286 mmol, prepared from iPr<sub>2</sub>NH (40  $\mu$ L), THF (0.5 mL) and *n*-BuLi (0.133 mL of 1.5 M in hexane)] at -78 °C. After 15 min at -78 °C, freshly prepared MoOPH [6] (130 mg, 0.3 mmol) was added in one portion and the reaction mixture warmed to -50 °C. After 3 h at -50 °C, the reaction mixture was quenched with sat. aq Na<sub>2</sub>SO<sub>3</sub> (1 mL) and warmed to rt. Et<sub>2</sub>O (20 mL) and H<sub>2</sub>O (5 mL) were added and the layers were separated and the aq layer extracted with Et<sub>2</sub>O (2 x 10 mL). The combined organic layers were washed with sat. aq CuSO<sub>4</sub> (10 mL), dried (MgSO<sub>4</sub>) and evaporated under reduced pressure. Purification of the residue by column chromatography (10-50% Et<sub>2</sub>O in light petrol) gave hydroxy acetonide **19a** (95 mg, 92%, a mixture of 4 diastereomers) as a colourless viscous oil. R<sub>f</sub> 0.35 and 0.27 (50% Et<sub>2</sub>O in light petrol);  $v_{max}/cm^{-1}$  (CHCl<sub>3</sub>) 3493 m, 3018 m, 2956 s, 2953 s, 2859 m, 1753 s;  $\delta_H$  (400 MHz, CDCl<sub>3</sub>) 7.70–7.64 (16H, m, Ar–H), 7.46–7.34 (24H, m, Ar–H), 4.65–4.45 (3H, bs, OH), 3.93-3.67 (28H, m, 4 x SiOCH and 8 x CO<sub>2</sub>Me), 2.20-0.81 (52H, complex m, 4 x CH<sub>2</sub>CH<sub>2</sub>, 4 x C(Me)<sub>2</sub> and 4 x CHMe), 1.05 (36H, s, 4 x C(Me)<sub>3</sub>);  $\delta_C$ (100 MHz, CDCl<sub>3</sub>): 171.7 (CO<sub>2</sub>Me), 171.6 (CO<sub>2</sub>Me), 170.3 (CO<sub>2</sub>Me), 170.2 (CO<sub>2</sub>Me), 170.1 (CO<sub>2</sub>Me), 169.3 (CO<sub>2</sub>Me), 169.2 (CO<sub>2</sub>Me), 136.0 (Ar), 135.9 (Ar), 134.8 (Ar), 134.6 (Ar), 134.3 (Ar), 134.2 (Ar), 129.7 (Ar), 129.6 (Ar), 129.5 (Ar), 127.7 (Ar), 127.6 (Ar), 127.5 (Ar), 114.2 ( $C(Me)_2$ ), 113.5 ( $C(Me)_2$ ), 102.1 (quat.  $OCCO_2Me$ ), 101.9 (quat.

OCCO<sub>2</sub>Me), 101.8 (quat. OCCO<sub>2</sub>Me), 93.0 (quat. CCO<sub>2</sub>Me), 92.7 (quat. CCO<sub>2</sub>Me), 91.4 (quat. CCO<sub>2</sub>Me), 91.2 (quat. CCO<sub>2</sub>Me), 69.2 (SiOCH), 69.1 (SiOCH), 54.0 (CO<sub>2</sub>Me), 53.9 (CO<sub>2</sub>Me), 52.6 (CO<sub>2</sub>Me), 52.5 (CO<sub>2</sub>Me), 33.9, 33.7, 31.8, 31.4, 29.3, 29.2, 28.6, 28.4, 28.3, 27.5, (CH<sub>2</sub> and C(Me)<sub>2</sub>), 27.1 [C(Me)<sub>3</sub>], 23.4, 23.3, 23.2 (Me), 19.4 (SiC(Me<sub>3</sub>)); HRMS *m/z* (M+NH<sub>4</sub><sup>+</sup>) found: 562.2836, C<sub>29</sub>H<sub>44</sub>NO<sub>8</sub>Si requires 562.2833.

Dimethyl (5R)-4-hydroxy-2,2-dimethyl-5-propyl-1,3-dioxolane-4,5-dicarboxylate (19b).

Following the procedure for hydroxy acetonide **19a**, but using propylated tartrate **33a** [7] (219 mg, 0.841 mmol) gave after column chromatography (50% Et<sub>2</sub>O in light petrol) hydroxylated tartrate **19b** (2.54 g, 96%, 3:1 dr) as a yellow oil;  $R_{\rm f}$  0.48 and 0.35 (50% Et<sub>2</sub>O in light petrol);  $v_{\rm max}/{\rm cm}^{-1}$  (neat) 3487 br, 2959 s, 2876 s, 1757 s, 1439 m, 1383 m, 1267 s, 1144 s, 1101 s, 1020 m, 904 m, 864 w, 740 s, 705 s;  $\delta_{\rm H}$ (400 MHz, CDCl<sub>3</sub>) 4.65 (1H, s, OH), 4.58 (1H, s, OH), 3.86 (3H, s, CO<sub>2</sub>Me), 3.75 (3H, s, CO<sub>2</sub>Me), 3.74 (3H, s, CO<sub>2</sub>Me), 3.66 (3H, s, CO<sub>2</sub>Me), 1.94–1.63 (4H, m, CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.53 (6H, s, C(Me)<sub>2</sub>), 1.51 (6H, s, C(Me)<sub>2</sub>), 1.14–1.01 (4H, m, CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 0.90–0.84 (6H, m, CH<sub>2</sub>CH<sub>3</sub>);  $\delta_{\rm C}$ (100 MHz, CDCl<sub>3</sub>) 171.7 (CO<sub>2</sub>Me), 170.2 (CO<sub>2</sub>Me), 170.1 (CO<sub>2</sub>Me), 169.0 (CO<sub>2</sub>Me), 114.0 (CCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 113.3 (CCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 102.1 (quat. COH), 101.7 (quat. COH), 92.7 (C(Me)<sub>2</sub>), 91.3 (C(Me)<sub>2</sub>), 53.7 (CO<sub>2</sub>Me), 52.5 (CO<sub>2</sub>Me), 52.4 (CO<sub>2</sub>Me), 52.3 (CO<sub>2</sub>Me), 37.8 (CCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 37.5 (CCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 29.1 (C(Me)<sub>2</sub>), 28.5 (C(Me)<sub>2</sub>), 28.2 (C(Me)<sub>2</sub>), 27.3 (C(Me)<sub>2</sub>), 17.6 (CCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 17.3 (CCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 14.2 (CCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 14.1

 $(CCH_2CH_2CH_3)$ ; HRMS m/z  $(M+NH_4^+)$  found: 294.1546,  $C_{12}H_{24}NO_7$  requires 294.1547.

Dimethyl (2*R*,*Z*)-2-((*tert*-butyldimethylsilyl)oxy)-2-(3-((*tert*-butyldiphenyl sily)oxy)butyl)-3-(2 tosylhydrazinylidene)succinate (22).

Hydroxy acetonide 19a (370 mg, 0.68 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) was added to a solution of AlCl<sub>3</sub> (182 mg, 1.37 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) at -78 °C, and the mixture then warmed to -50 °C. After 7 h at -50 °C, sat. aq. NaHCO<sub>3</sub> (10 mL) was added and the mixture then warmed to rt. Et<sub>2</sub>O (100 mL) was added and the organic layer was dried (MgSO<sub>4</sub>) and evaporated under reduced pressure to give crude αketoester 20 (276 mg). TBSOTf (0.31 mL, 1.36 mmol) was added to a stirred mixture of 2,6-lutidine (0.23 mL, 2.05 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (0.5 mL) at -10 °C and after 30 min the above crude  $\alpha$ -ketoester **20** (270 mg) in CH<sub>2</sub>Cl<sub>2</sub> (0.5 mL) was added at -10 °C. The mixture was warmed to rt for 2 days before H<sub>2</sub>O (0.2 mL) and Et<sub>2</sub>O (10 mL) was added. The organic layer was dried (MgSO<sub>4</sub>) and evaporated under reduced pressure to give crude tertiary TBS ether 21 (300 mg). A mixture of this crude tertiary TBS ether 21 and TsNHNH<sub>2</sub> (186 mg, 1.0 mmol) in THF (5 mL) was heated at 70 °C. After 30 h, the reaction mixture was evaporated under reduced pressure and the residue purified by column chromatography (10% Et<sub>2</sub>O in light petrol) to give Zhydrazone 22 [8] (266 mg, 51% overall yield from hydroxy acetonide 19a) as a colourless viscous oil (a mixture of diastereomers). R<sub>f</sub> 0.36 (50% Et<sub>2</sub>O in light petrol);  $v_{\text{max}}/\text{cm}^{-1}(\text{CHCl}_3)$  3180 w, 3156 w, 2956 s, 2931 s, 2858 s, 1762 m, 1704 m, 1598 w;  $\delta_{H}(400 \text{ MHz}, \text{CDCl}_{3})$  11.71–11.62 (2H, m, 2 x NH), 7.86–7.76 (4H, m, 4 x Ar–H), 7.71–7.65 (8H, m, 2 x Ar–H), 7.47–7.29 (12H, m, 2 x Ar–H), 7.25–7.19 (4H, m, 2 x Ar–H), 3.84–3.77 (2H, m, 2 x SiOCH), 3.75–3.59 (12H, m, 4 x CO<sub>2</sub>Me), 2.44–2.36 (6H, m, 2 x Ar–*Me*), 2.10–0.70 (32H, m, 2 x CH<sub>2</sub>CH<sub>2</sub>, 2 x C(Me)<sub>3</sub> and 2 x CH*Me*), 1.06 (18H, s, 2 x C(Me)<sub>3</sub>), –0.07 to –0.27 (12H, m, 2 x Si(Me)<sub>2</sub>); δ<sub>C</sub>(100 MHz, CDCl<sub>3</sub>) 172.3 (*C*O<sub>2</sub>Me), 161.7 (*C*O<sub>2</sub>Me), 144.5, 136.9, 135.8, 135.3, 135.2, 134.8, 134.1, 129.7, 129.5, 129.4, 128.1, 127.9, 127.6, 127.4 (Ar, ArMe), 80.5 (quat. *C*CO<sub>2</sub>Me), 80.4 (quat. *C*CO<sub>2</sub>Me), 69.5 (SiOCH), 69.4 (SiOCH), 52.3 (CO<sub>2</sub>Me), 52.1 (CO<sub>2</sub>Me), 36.9, 33.3, 33.1, 32.8 (CH<sub>2</sub>), 27.0, 25.6, 25.5, 23.2, 23.1, 22.9, 21.6, 19.3, 18.4, 18.3, 13.9 (Me, C(Me)<sub>3</sub>), –3.2, –3.3, –3.4 (SiMe); HRMS *m/z* (M+NH<sub>4</sub><sup>+</sup>) found: 786.3634, C<sub>39</sub>H<sub>60</sub>N<sub>3</sub>O<sub>8</sub>SSi requires 786.3640.

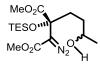
Dimethyl (2*R*)-2-((*tert*-butyldimethylsilyl)oxy)-2-(3-((*tert*-butyldiphenyl silyl)oxy)butyl)-3-diazosuccinate (23).

A 2:1 mixture of CH<sub>2</sub>Cl<sub>2</sub>/Et<sub>3</sub>N (3 mL) was added to hydrazone **22** (200 mg, 0.26 mmol) at rt. After 4 h, the reaction mixture was evaporated under reduced pressure and the residue purified through a short column of silica gel (10% Et<sub>2</sub>O in light petrol) to give α-diazo ester **23** (142 mg, 88%) as a yellow oil.  $R_f$  0.76 (50% Et<sub>2</sub>O in light petrol);  $v_{max}/cm^{-1}$ (CHCl<sub>3</sub>) 2955 s, 2931 s, 2858 s, 2097 s, 1747 m, 1708 s;  $\delta_H$ (400 MHz, CDCl<sub>3</sub>) 7.65 (8H, d, J 7.5, 2 x Ar–H), 7.45–7.34 (12H, m, 2 x Ar–H), 3.86–3.80 (2H, m, 2 x SiOCH), 3.74–3.72 (12H, m, 4 x CO<sub>2</sub>Me), 2.14–0.68 (32H, m, 2 x CH<sub>2</sub>CH<sub>2</sub>, 2 x C(Me)<sub>3</sub> and 2 x CH*Me*), 1.04 (18H, s, 2 x C(Me)<sub>3</sub>), 0.09–0.01 (12H, m, 2 x SiMe<sub>2</sub>);  $\delta_C$ (100 MHz, CDCl<sub>3</sub>) 171.5 (CO<sub>2</sub>Me), 135.8 (Ar), 134.7 (Ar), 129.5 (Ar), 129.4 (Ar), 127.5 (Ar), 127.4 (Ar), 76.1 (quat. CCO<sub>2</sub>Me), 76.0 (quat. CCO<sub>2</sub>Me), 69.2

(SiOCH), 69.1 (SiOCH), 52.6 (CO<sub>2</sub>Me), 51.9 (CO<sub>2</sub>Me), 34.7 (CH<sub>2</sub>), 34.3 (CH<sub>2</sub>), 33.1 (CH<sub>2</sub>), 27.0 (C(Me)<sub>3</sub>), 25.7 (C(Me)<sub>3</sub>), 23.4, 19.2, 18.4 (Me and Si*C*Me<sub>3</sub>), -3.6 (SiMe), -4.1 (SiMe); HRMS *m/z* (M+Na<sup>+</sup>) found: 635.2958, C<sub>32</sub>H<sub>48</sub>N<sub>2</sub>NaO<sub>6</sub>Si<sub>2</sub> requires 635.2949.

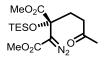
Dimethyl (4*R*,5*R*)-4-(3-((triethylsilyl)oxy)butyl)-2,2-dimethyl-1,3-dioxolane-4,5-dicarboxylate (24).

To a stirred solution of dimethyl (R,R)-tartrate acetonide (7) (2.85 mL, 16 mmol), triethyl((4-iodobutan-2-yl)oxy)silane [9] (5.02 g, 16 mmol) and HMPA (10 mL) in THF (50 mL) at -78 °C was added over 2 h a precooled (-78 °C) solution of LDA [prepared from iPr<sub>2</sub>NH (2.8 mL, 20 mmol) and *n*-BuLi (12.7 mL, 1.57 M in hexane, 20 mmol) in THF (50 mL)]. After 4.5 h at -78 °C, sat. aq NH<sub>4</sub>Cl (10 mL) was added to the mixture and the solution was extracted with Et<sub>2</sub>O (200 mL). The organic layer was dried (MgSO<sub>4</sub>), filtered through a short pad of silica, evaporated in vacuo and the residue (>90:10 dr in the acetonide portion) purified by column chromatography (10% Et<sub>2</sub>O in petrol) to give alkylated acetonide **24** (2.1 g, 32%) as a colourless oil.  $R_{\rm f}$  0.55 (50% Et<sub>2</sub>O in light petrol);  $v_{\rm max}/{\rm cm}^{-1}({\rm CHCl_3})$  2956 s, 1754 s, 1458 m, 1438 m; δ<sub>H</sub>(200 MHz, CDCl<sub>3</sub>) 4.88 (1H, s, CHCO<sub>2</sub>Me), 4.86 (1H, s, CHCO<sub>2</sub>Me), 3.75 (6H, s, 2 x CO<sub>2</sub>Me), 3.73 (6H, s, 2 x CO<sub>2</sub>Me), 3.71–3.59 (2H, m, 2 x SiOC*H*Me), 2.00–1.09 (20H, m, 2 x C(Me)<sub>2</sub> and 2 x CH<sub>2</sub>CH<sub>2</sub>), 1.06 (6H, d, J 6, 2 x CHMe), 0.89 (18 H, t, J 8, 6 x SiCH<sub>2</sub>Me), 0.57–0.44 (12H, m, 6 x SiCH<sub>2</sub>);  $\delta_{\rm C}$ (50 MHz, CDCl<sub>3</sub>) 172.4 (CO<sub>2</sub>Me), 168.9 (CO<sub>2</sub>Me), 168.7 (CO<sub>2</sub>Me), 112.6 (C(Me)<sub>2</sub>), 86.0 (quat. CCO<sub>2</sub>Me), 85.7 (quat. CCO<sub>2</sub>Me), 80.1 (CHCO<sub>2</sub>Me), 68.2 (SiOCH), 68.1 (SiOCH), 52.8 (CO<sub>2</sub>Me), 52.2


(CO<sub>2</sub>Me), 33.8 (CH<sub>2</sub>), 33.6 (CH<sub>2</sub>), 30.9 (CH<sub>2</sub>), 30.5 (CH<sub>2</sub>), 27.7 (Me), 27.6 (Me), 26.1 (Me), 26.0 (Me), 23.9 (Me), 23.8 (Me), 6.9 (SiCH<sub>2</sub>Me), 5.0 (SiCH<sub>2</sub>); HRMS m/z (M+H<sup>+</sup>) found: 405.2307, C<sub>19</sub>H<sub>37</sub>O<sub>7</sub>Si requires 405.2308.

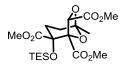
Dimethyl (5*R*)-4-hydroxy-2,2-dimethyl-5-((3-(triethylsilyl)oxy)butyl)-1,3-dioxolane-4,5-dicarboxylate (25).




Following the procedure for hydroxy acetonide 19a, but using alkylated acetonide 24 (1.27 g, 3.14 mmol) gave after column chromatography (10–50% Et<sub>2</sub>O in light petrol) hydroxy acetonide 25 (1.07 g, 81%, a mixture of 4 diastereomers), as a colourless viscous oil.  $R_f$  0.33 and 0.24 (50% Et<sub>2</sub>O in light petrol);  $v_{max}/cm^{-1}$  (CDCl<sub>3</sub>) 3684 w, 3514 w, 3020 s, 1743 m, 1522 w;  $\delta_H$ (400 MHz, CDCl<sub>3</sub>) 4.59 (1H, s, OH), 4.57 (1H, s, OH), 4.48 (1H, s, OH), 3.92-3.68 (28H, m, 8 x CO<sub>2</sub>Me and 4 x SiOCH), 2.17-1.05 (52H, complex m, 4 x CMe<sub>2</sub>, 4 x CH<sub>2</sub>CH<sub>2</sub> and 4 x CH*Me*), 0.94 (36H, td, *J* 7.5, 1.5, 4 x SiCH<sub>2</sub>Me), 0.62–0.49 (24H, m, 4 x SiCH<sub>2</sub>);  $\delta_{\rm C}$ (100 MHz, CDCl<sub>3</sub>) 171.8 (CO<sub>2</sub>Me), 171.6 (CO<sub>2</sub>Me), 170.4 (CO<sub>2</sub>Me), 170.3 (CO<sub>2</sub>Me), 170.1 (CO<sub>2</sub>Me), 169.3 (CO<sub>2</sub>Me), 114.3 (CMe<sub>2</sub>), 114.2 (CMe<sub>2</sub>), 113.5 (CMe<sub>2</sub>), 102.1 (quat. OCCO<sub>2</sub>Me), 101.9 (quat. OCCO<sub>2</sub>Me), 93.0 (quat. CCO<sub>2</sub>Me), 92.7 (quat. CCO<sub>2</sub>Me), 91.4 (quat. CCO<sub>2</sub>Me), 91.2 (quat. CCO<sub>2</sub>Me), 68.3 (SiOCH), 68.2 (SiOCH), 68.0 (SiOCH), 54.1 (CO<sub>2</sub>Me), 54.0  $(CO_2Me)$ , 52.7  $(CO_2Me)$ , 52.5  $(CO_2Me)$ , 34.1, 33.8, 32.3, 31.9, 29.3, 29.2, 28.7, 28.6, 28.5, 28.4, 27.6, 27.5, 24.1, 24.0, 23.9, 23.7, (CH<sub>2</sub>CH<sub>2</sub>, CHMe, CMe<sub>2</sub>), 7.0  $(SiCH_2Me)$ , 5.1  $(SiCH_2)$ , 5.0  $(SiCH_2)$ ; HRMS m/z  $(M+H^+)$  found: 421.2262,  $C_{19}H_{37}O_8Si$  requires 421.2257.

#### Dimethyl (2R)-3-diazo-2-(3-hydroxybutyl)-2-((triethylsilyl)oxy)succinate (27).




A mixture of hydroxy acetonide 25 (800 mg, 1.90 mmol) and ZnCl<sub>2</sub> (2.0 mL, 2.2 M in Et<sub>2</sub>O, 4.4 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (3 mL) was stirred at rt. After 5 h, sat. aq NaHCO<sub>3</sub> (20 mL) was added, the layers were separated and the aq layer was extracted with EtOAc (3 x 100 mL). The combined organic layers were dried (MgSO<sub>4</sub>) and evaporated under reduce pressure to give the crude diol (500 mg). TESCI (1.15 g, 7.6 mmol) was added to a stirred solution of this crude diol and imidazole (613 mg, 9.0 mmol) in DMF (4 mL) at -10 °C. The reaction mixture was slowly warmed to rt and kept at rt for 4 h.  $H_2O$  (10 mL) was then added and the mixture extracted with  $Et_2O$  (2 x 50 mL). The combined organic layers were dried (MgSO<sub>4</sub>) and evaporated under reduced pressure to give crude bis-TES ketone 26 (1.4 g). This crude bis-TES ketone 26 and TsNHNH<sub>2</sub> (400 mg) in THF (5 mL) was stirred at reflux. After 24 h, the reaction mixture was evaporated under reduced pressure to give the corresponding hydrazone (700 mg). Et<sub>3</sub>N (1.0 mL) was added to a solution of this hydrazone (698 mg) in THF (2 mL) at rt. After 4 h, Et<sub>2</sub>O (5 mL) was added, the mixture was filtered through a short pad of silica and evaporated under reduced pressure. A mixture of AcOH, THF and H<sub>2</sub>O (5 mL, 1:2:1) was added to the residue and the mixture was stirred at rt. After 4 h, the mixture was diluted with sat. aq NaHCO<sub>3</sub> (20 mL) and Et<sub>2</sub>O (100 mL). The layers were separated and the organic layer dried (MgSO<sub>4</sub>), evaporated under reduced pressure and purified by column chromatography (10-50% Et<sub>2</sub>O in petrol) to give diazo alcohol **27** (260 mg, 37% from hydroxy acetonide 25, as a 1:1 mixture of diastereomers), as a yellow oil. R<sub>f</sub> 0.28 (50% Et<sub>2</sub>O in light petrol);  $v_{\text{max}}/\text{cm}^{-1}$  (neat) 3434 br, 2957 s, 2878 s, 2098 s, 1747 s, 1710 s, 1438s;  $\delta_{\text{H}}$  (400 MHz, CDCl<sub>3</sub>) 3.81–3.75 (2H, m, 2 x C*H*(OH)Me), 3.74 (6H, s, 2 x CO<sub>2</sub>Me), 3.73 (6H, s, 2 x CO<sub>2</sub>Me), 2.12–2.08 (2H, m, 2 x CH*H*), 1.99–1.94 (2H, m, 2 x CH*H*), 1.60–1.38 (4H, m, 2 x CH<sub>2</sub>), 1.19 (6H, d, *J* 6, 2 x CH(OH)*Me*), 0.93 (18H, t, *J* 8, 6 x SiCH<sub>2</sub>*Me*), 0.64–0.55 (12H, m, 6 x SiCH<sub>2</sub>);  $\delta_{\text{C}}$  (100 MHz, CDCl<sub>3</sub>) 171.8 (*C*O<sub>2</sub>Me), 171.7 (*C*O<sub>2</sub>Me), 165.2 (*C*O<sub>2</sub>Me), 75.9 (quat. C), 67.7 (*C*H(OH)Me), 52.7 (CO<sub>2</sub>*Me*), 51.9 (CO<sub>2</sub>*Me*), 34.6 (CH<sub>2</sub>), 33.0 (CH<sub>2</sub>), 23.6 (Me), 6.8 (SiCH<sub>2</sub>*Me*), 5.6 (SiCH<sub>2</sub>); HRMS m/z (M+NH<sub>4</sub><sup>+</sup>) found: 392.2218, C<sub>16</sub>H<sub>34</sub>N<sub>3</sub>O<sub>6</sub>Si requires 392.2217.

## Dimethyl (R)-3-diazo-2-(3-oxobutyl)-2-((triethylsilyl)oxy)succinate (28).



Dess-Martin periodinane (61.1 mg, 0.14 mmol) was added to a stirred solution of diazo alcohol **27** (20 mg, 0.05 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (1 mL) at rt. After 2 h, the reaction mixture was diluted with Et<sub>2</sub>O (30 mL), filtered through a short pad of silica gel and evaporated under reduced pressure. Purification of the residue by column chromatography (20–40% Et<sub>2</sub>O in light petrol) gave diazoketone **28** (19 mg, 96%) as a yellow oil.  $R_f$  0.42 (50% Et<sub>2</sub>O in light petrol). [ $\alpha$ ]<sub>D</sub><sup>26</sup> +6.3 (c 1.0, CHCl<sub>3</sub>);  $v_{max}/cm^{-1}$  (CHCl<sub>3</sub>) 3019 s, 2955 m, 2877 w, 2102 s, 1742 m, 1703 s, 1438 s;  $\delta_H$ (400 MHz, CDCl<sub>3</sub>) 3.76 (3H, s, CO<sub>2</sub>Me), 3.75 (3H, s, CO<sub>2</sub>Me), 2.65–2.57 (1H, m, C*H*HCH<sub>2</sub>CO), 2.49–2.42 (1H, m, C*H*HCH<sub>2</sub>CO), 2.30–2.20 (2H, m, CH<sub>2</sub>CO), 2.16 (3H, s, CH<sub>2</sub>CO*Me*), 0.93 (9H, t, *J* 8, SiCH<sub>2</sub>*Me*), 0.66–0.56 (6H, m, SiCH<sub>2</sub>);  $\delta_C$ (100 MHz, CDCl<sub>3</sub>) 207.2 (CO), 171.3 (*C*O<sub>2</sub>Me), 165.0 (NCCO<sub>2</sub>Me), 75.3 (C=N<sub>2</sub>), 52.8 (CO<sub>2</sub>Me), 51.9 (CO<sub>2</sub>Me), 37.9 (CH<sub>2</sub>), 32.2 (CH<sub>2</sub>), 30.0 (CH<sub>2</sub>CO*Me*), 6.8 (SiCH<sub>2</sub>Me), 5.6 (SiCH<sub>2</sub>); HRMS m/z (M+NH<sub>4</sub><sup>+</sup>) found: 390.2060, C<sub>16</sub>H<sub>32</sub>N<sub>3</sub>O<sub>6</sub>Si requires 390.2053.

Trimethyl (1*S*,2*R*,5*S*,7*S*)-5-methyl-2-((triethylsilyl)oxy)-6,8-dioxabicyclo[3.2.1] octane-1,2,7-tricarboxylate (29).



Rh<sub>2</sub>(OAc)<sub>4</sub> (~1 mg, cat.) was added to a stirred solution of diazoketone **28** (40 mg, 0.106 mmol) in toluene (0.3 mL) and freshly distilled methyl glyoxylate [10] (43.9 mg, 0.5 mmol) at 110 °C. After 4 h, the reaction mixture was cooled, diluted with Et<sub>2</sub>O (5 mL), filtered through celite and evaporated under reduced pressure. Purification of the residue by column chromatography (20% Et<sub>2</sub>O in light petrol) gave cycloadduct **29** (29 mg, 63%) as a colourless oil.  $R_{\rm f}$  0.36 (50% Et<sub>2</sub>O in light petrol); [ $\alpha$ ]<sub>D</sub><sup>26</sup> +46.0 (c 1.0, CHCl<sub>3</sub>);  $v_{\rm max}/cm^{-1}$ (CHCl<sub>3</sub>) 2955 m, 1753 s, 1298 m;  $\delta_{\rm H}$ (400 MHz, CDCl<sub>3</sub>) 5.54 (1H, s, C*H*CO<sub>2</sub>Me), 3.80 (3H, s, CO<sub>2</sub>Me), 3.70 (3H, s, CO<sub>2</sub>Me), 3.67 (3H, s, CO<sub>2</sub>Me), 2.44–2.34 (1H, m, TESO(CO<sub>2</sub>Me)CH*H*), 1.95–1.83 (1H, m, TESO(CO<sub>2</sub>Me)CH<sub>2</sub>CH*H*), 1.75–1.64 (2H, m, TESO(CO<sub>2</sub>Me)C*H*H, TESO(CO<sub>2</sub>Me)CH<sub>2</sub>C*H*H and 3H, s, Me), 0.93 (9H, t, *J* 9, SiCH<sub>2</sub>*Me*), 0.73–0.55 (6H, m, SiCH<sub>2</sub>);  $\delta_{\rm c}$ (100 MHz, CDCl<sub>3</sub>) 173.5 ( $CO_2$ Me), 169.7 ( $CO_2$ Me), 166.8 ( $CO_2$ Me), 110.4 (O–C–O), 90.5 (quat.C), 79.7 (quat. C), 77.6 ( $CHCO_2$ Me), 52.8 ( $CO_2$ Me), 52.6 ( $CO_2$ Me), 52.6 ( $CO_2$ Me), 30.9 ( $CH_2$ ), 30.1 ( $CH_2$ ), 24.0 (Me), 7.1 ( $SiCH_2$ Me), 6.7 ( $SiCH_2$ ); HRMS m/z ( $CO_2$ Me), 160.1 433.1903,  $CO_2$ Ha $O_2$ Me requires 433.1894.

Trimethyl (1*S*,2*R*,5*S*,7*S*)-2-hydroxy-5-methyl-6,8-dioxabicyclo [3.2.1]octane-1,2,7-tricarboxylate (30) and trimethyl (1*S*,3*S*,4*S*,5*R*)-4-hydroxy-1-methyl-2,8-dioxabicyclo[3.2.1]octane-3,4,5-tricarboxylate (31).

A solution of cycloadduct **29** (30 mg, 0.07 mmol) in a mixture of  $CH_2Cl_2$ , TFA and  $H_2O$  (1 mL, 20:10:1) was stirred at rt. After 48 h, the reaction mixture was evaporated under reduced pressure. Analysis of the residue by <sup>1</sup>H NMR indicated a 40:60 ratio of alcohols **30:31**, by data comparison with lit [11].

## Dimethyl (4R,5R)-2,2,4-trimethyl-1,3-dioxolane-4,5-dicarboxylate (32).

A solution of dimethyl (R,R)-tartrate acetonide (T) (1.0 mL, 5.45 mmol), MeI (1.0 mL, 16.4 mmol) and anhydrous LiCl (1.39 g, 32.7 mmol) in THF (6 mL) was cooled to -78 °C. To this mixture was added dropwise a pre-cooled (-78 °C) solution of LiHMDS (prepared by adding n-BuLi (2.6 mL, 2.5 M in hexanes, 6.54 mmol) dropwise to freshly distilled HMDS (1.5 mL, 7.09 mmol) in THF (4 mL) at 0 °C). The reaction mixture was slowly warmed to rt and stirred for 16 h. The mixture was then poured into EtOAc (20 mL) and washed with H<sub>2</sub>O (3 × 20 mL), brine (30 mL), dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, evaporated under reduced pressure and purified by column chromatography (20% EtOAc in petrol) to give methylated tartrate 32 (0.48 g, 39%) as colourless oil.  $R_f$  0.47 (20 % EtOAc in petrol); [ $\alpha$ ]<sub>D</sub><sup>25</sup> -66.6 (c 1.0, CHCl<sub>3</sub>);  $v_{max}$ /cm<sup>-</sup>

<sup>1</sup>(neat) 2993 w, 2956 w, 1739 s, 1116 s;  $\delta_H$ (400 MHz, CDCl<sub>3</sub>) 5.11 (1H, s, CH), 3.82 (3H, s, CO<sub>2</sub>Me), 3.79 (3H, s, CO<sub>2</sub>Me), 1.60 (3H, s, CO<sub>2</sub>MeCC*H*<sub>3</sub>), 1.41 (3H, s, one of C(CH<sub>3</sub>)<sub>2</sub>, 1.40 (3H, s, one of C(CH<sub>3</sub>)<sub>2</sub>);  $\delta_c$ (100 MHz, CDCl<sub>3</sub>) 172.7 (*C*O<sub>2</sub>Me), 169.2 (*C*O<sub>2</sub>Me), 112.5 (*C*(CH<sub>3</sub>)<sub>2</sub>), 83.0 (CO<sub>2</sub>Me*C*CH<sub>3</sub>), 79.7 (CO<sub>2</sub>Me*C*H), 53.2 (CO<sub>2</sub>Me), 52.4 (CO<sub>2</sub>Me), 27.9 (CO<sub>2</sub>MeC*C*H<sub>3</sub>), 26.1 (C*C*H<sub>3</sub>), 20.8 (C*C*H<sub>3</sub>); HRMS *m/z* (M+Na<sup>+</sup>) found: 255.0839, C<sub>10</sub>H<sub>16</sub>NaO<sub>6</sub> requires 255.0839.

Dimethyl (4*R*,5*R*)-2,2-dimethyl-4-propyl-1,3-dioxolane-4,5-dicarboxylate (33a) and dimethyl (4*RS*,5*RS*)-2,2-dimethyl-4,5-dipropyl-1,3-dioxolane-4,5-dicarboxylate (*rac*-34a).

A stirred solution of dimethyl (R,R)-tartrate acetonide (T) (4.76 g, 21.8 mmol), 1-iodopropane (2.00 mL, 20.5 mmol) and freshly distilled HMPA (20 mL) in THF (100 mL) was cooled to -78 °C. To this mixture was added dropwise over 1 h a precooled (-78 °C) solution of LDA (freshly prepared by adding n-BuLi (17 mL, 1.6 M in hexanes, 27 mmol) dropwise to a solution of freshly distilled iPr<sub>2</sub>NH (3.2 g, 30 mmol) in THF (100 mL) at 0 °C. The reaction mixture was further stirred for 48 h at -78 °C, then quenched at that temperature with sat. aq NH<sub>4</sub>Cl (50 mL) and extracted with EtOAc (3 × 100 mL). The combined organic layers were washed with sat. aq CuSO<sub>4</sub> (100 mL), dried (MgSO<sub>4</sub>), evaporated under reduced pressure and purified by column chromatography to give propylated tartrate **33a** (3.51 g, 66%) as a colourless oil. The er was determined to be 97:3 by HPLC [(Chiralcel OD-H, 99:1 hexane—iPrOH, 1.0 mL/min,  $\lambda$  = 220 nm, 25 µL injection) t<sub>R</sub>(minor) 8.43 min, t<sub>R</sub>(major) 10.92

min].  $R_f$  0.4 (10% Et<sub>2</sub>O in petrol);  $[\alpha]_D^{25}$  –54.6 (c 1.0, CHCl<sub>3</sub>);  $v_{max}/cm^{-1}$  (neat) 2963 s, 2859 s, 1736 s, 1655 m, 1561 m, 1459 s, 1375 m, 1214 s, 1104 s, 1023 s, 849 m;  $\delta_{H}(500 \text{ MHz}, \text{CDCl}_{3}) \delta 4.83 \text{ (1H, s, C} HCO_{2}Me), 3.71 \text{ (3H, s, CO_{2}Me), 3.70 (3H, s,$ CO<sub>2</sub>Me), 1.66 (1H, dt, J 12, 5, CHHCH<sub>2</sub>CH<sub>3</sub>), 1.49 (3H, s, on of C(CH<sub>3</sub>)<sub>2</sub>), 1.48–1.43 (1H, m,  $CHHCH_2CH_3$ ), 1.40–1.33 (1H, m,  $CH_2CHHCH_3$ ), 1.31 (3H, s, one of  $C(CH_3)_2$ ), 1.20–1.08 (1H, m,  $CH_2CHHCH_3$ ), 0.79 (3H, t, J 7.0,  $CH_2CH_3$ );  $\delta_c$ (125 MHz, CDCl<sub>3</sub>) 172.5 (CO<sub>2</sub>Me),168.9 (CO<sub>2</sub>Me), 112.4  $(C(CH_3)_2),$ 85.9  $(CO_2MeCCH_2CH_2CH_3)$ , 79.9  $(CHCO_2Me)$ , 52.6  $(CO_2Me)$ , 52.2  $(CO_2Me)$ , 36.3  $(CH_2CH_2CH_3)$ , 27.6 and 25.9  $(C(CH_3)_2)$ , 17.2  $(CH_2CH_2CH_3)$ , 14.1  $(CH_2CH_2CH_3)$ ; HRMS m/z (M+H<sup>+</sup>), found 261.1335,  $C_{12}H_{21}O_6$  requires 261.1333.

Also isolated was *trans*-dipropylated tartrate *rac*-34a (209 mg, 7%) as a yellow liquid;  $R_{\rm f}$  0.18 (10% Et<sub>2</sub>O in petrol);  $v_{\rm max}/{\rm cm}^{-1}$  (KBr) 2932 s, 2862 s, 1763 s, 1658 s, 1443 s, 1381 s, 1321 s, 1221 s, 1143 s, 1059 s, 933 s, 850 s;  $\delta_{\rm H}$  (400 MHz, CDCl<sub>3</sub>) 3.78 (6H, s, 2 × CO<sub>2</sub>Me), 1.89 (2H, ddd, *J* 13, 12 and 4.5, 2 × CH*H*CH<sub>2</sub>CH<sub>3</sub>), 1.63–1.45 (10H, m, 2 × C*H*HCH<sub>2</sub>CH<sub>3</sub>, 2 × CH<sub>2</sub>C*H*HCH<sub>3</sub> and C(CH<sub>3</sub>)<sub>2</sub>), 1.12–1.02 (2H, m, 2 × CH*H*), 0.86 (6H, t, *J* 7, 2 × CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>);  $\delta_{\rm C}$  (100 MHz, CDCl<sub>3</sub>) 171.0 (*C*O<sub>2</sub>Me), 112.0 (*C*(CH<sub>3</sub>)<sub>2</sub>), 90.1 (*C*CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 52.5 (CO<sub>2</sub>Me), 37.6 (CCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 29.2 (C(*C*(H<sub>3</sub>)<sub>2</sub>), 17.5 (CCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 14.2 (CH<sub>2</sub>CH<sub>3</sub>); HRMS m/z (M+H<sup>+</sup>) found: 303.1807, C<sub>15</sub>H<sub>27</sub>O<sub>6</sub> requires 303.1802.

Dimethyl (4R,5R)-2,2-dimethyl-4,5-dipropyl-1,3-dioxolane-4,5-dicarboxylate ((R,R)-34a).

A stirred solution of mono-propylated tartrate **33a** (228 mg, 0.87 mmol), 1-iodopropane (100  $\mu$ L, 1.04 mmol) and HMPA (0.7 mL) in THF (3.5 mL) was cooled to -78 °C. To this reaction mixture was added dropwise a pre-cooled (-78 °C) solution of LDA [freshly prepared by adding dropwise n-BuLi (0.45  $\mu$ L, 2.5 M in hexanes, 1.13 mmol) to a solution of freshly distilled iPr<sub>2</sub>NH (170  $\mu$ L, 1.21 mmol) in THF (3.5 mL) at 0 °C]. The reaction mixture was warmed to -50 °C and stirred for 62 h, then quenched at that temperature with sat. aq NH<sub>4</sub>Cl (30 mL) and extracted with EtOAc (3 × 40 mL). The combined organic layers were washed with sat. aq CuSO<sub>4</sub> (20 mL), dried (MgSO<sub>4</sub>), evaporated under reduced pressure and purified by column chromatography to give *trans*-dipropylated tartrate (*R*,*R*)-34a (90 mg, 34%) as a colourless oil. The er was determined to be 98:2 by HPLC [(Chiralpak IC-3, 99:1 heptane–iPrOH, 1.0 mL/min,  $\lambda$  = 230 nm, 10  $\mu$ L injection) t<sub>R</sub>(minor) 4.19 min, t<sub>R</sub>(major) 4.61 min]; [ $\alpha$ ]<sup>25</sup> -1.1 (c 1.4, CHCl<sub>3</sub>). Other data as above for *rac*-34a.

Dimethyl (4*R*,5*R*)-4-butyl-2,2-dimethyl-1,3-dioxolane-4,5-dicarboxylate (33b) and dimethyl (4*RS*,5*RS*)-4,5-dibutyl-2,2-dimethyl-1,3-dioxolane-4,5-dicarboxylate (34b).

A solution of LDA (prepared from iPr<sub>2</sub>NH (420 µL, 3.0 mmol) and *n*-BuLi (1.9 mL, 1.6 M in hexanes, 3.0 mmol) in THF (7.0 mL) at -78 °C) was added dropwise over 3 h to a solution of dimethyl (R,R)-tartrate acetonide (7) (500 µL, 2.7 mmol) and Bul (470 mL, 4.1 mmol) in a mixture THF/HMPA (9.5 mL, 3/1 (v/v)) at -78 °C. The reaction mixture was stirred at -78 °C. After 24 h, sat. aq NH<sub>4</sub>Cl was added. The mixture was warmed to rt and diluted with Et<sub>2</sub>O and H<sub>2</sub>O. The aq layer was extracted with Et<sub>2</sub>O and the organic layer dried (MgSO<sub>4</sub>) and concentrated under reduced pressure. Purification of the residue by column chromatography (10–20% Et<sub>2</sub>O in petrol) gave butylated tartrate **33b** (311 mg, 42%) as a yellow oil;  $R_f$  0.29 (20% Et<sub>2</sub>O in petrol);  $[\alpha]_D^{26}$  –43.8 (c 2.5, CHCl<sub>3</sub>);  $v_{max}/cm^{-1}$ (neat) 2958 w, 1753 s, 1439 w, 1384 w, 1214 m;  $\delta_{H}(400 \text{ MHz}, \text{CDCl}_{3})$  4.93 (1H, s, CHCO<sub>2</sub>Me), 3.80 (3H, s, CO<sub>2</sub>Me), 3.79 (3H, s,  $CO_2Me$ ), 1.77 (1H, ddd, J 13, 12 and 4.5, ( $CO_2Me$ )CCHH), 1.66–1.56 (4H, m,  $(CO_2Me)CCH$  and one of  $(CH_3)_2$ , 1.41 (3H, s, one of  $(CH_3)_2$ ), 1.34–1.14 (4H, m.  $CH_2CH_2CH_3$ ), 0.86 (3H, t, J 7.5,  $CH_2CH_3$ );  $\delta_C(100 \text{ MHz}, CDCl_3)$  172.8 ( $CO_2Me$ ), 169.1 ( $CO_2Me$ ), 112.6 ( $C(CH_3)_2$ ), 86.1 (( $CO_2Me$ ) $CCH_2$ ), 80.1 ( $CHCO_2Me$ ), 52.9  $(CO_2Me)$ , 52.4  $(CO_2Me)$ , 34.0  $((CO_2Me)CCH_2)$ , 27.8 and 26.1  $(C(CH_3)_2)$ , 26.1  $(CH_2)$ , 22.9 (CH<sub>2</sub>), 14.0 (CH<sub>2</sub>CH<sub>3</sub>); HRMS m/z (M+H<sup>+</sup>) found: 275.1514, C<sub>13</sub>H<sub>23</sub>O<sub>6</sub> requires 275.1495.

Also isolated was *trans*-dibutylated tartrate **34b** (90 mg, 10%) as a yellow oil;  $R_{\rm f}$  0.51 (20% Et<sub>2</sub>O in petrol);  $v_{\rm max}/cm^{-1}$ (neat) 2960 w, 1748 m, 1460 w, 1383 w, 1217 w;  $\delta_{\rm H}$ (400 MHz, CDCl<sub>3</sub>) 3.79 (6H, s, 2 x CO<sub>2</sub>Me), 1.92 (2H, ddd, *J* 13, 12 and 4.5, 2 x (CO<sub>2</sub>Me)CC*H*H), 1.66–1.61 (2H, ddd, *J* 13, 12 and 4.5, 2 x (CO<sub>2</sub>Me)CCH*H*), 1.55 (6H, s, (CH<sub>3</sub>)<sub>2</sub>), 1.52–1.42 (2H, m, 2 x CH*H*), 1.29–123 (4H, m, 2 x CH<sub>2</sub>), 1.10–0.99 (2H, m, 2 x CH*H*), 0.85 (6H, t, *J* 7.5, CH<sub>2</sub>C*H*<sub>3</sub>);  $\delta_{\rm C}$ (100 MHz, CDCl<sub>3</sub>) 171.0 (2 x CO<sub>2</sub>Me), 112.0 (C(CH<sub>3</sub>)<sub>2</sub>), 90.1 (2 x (CO<sub>2</sub>Me)CCH<sub>2</sub>), 52.5 (2 x CO<sub>2</sub>Me), 35.2 (2 x (CO<sub>2</sub>Me)CCH<sub>2</sub>), 29.2 (2 x CH<sub>2</sub>), 26.3 (C(CH<sub>3</sub>)<sub>2</sub>), 22.8 (2 x CH<sub>2</sub>), 14.0 (2 x CH<sub>2</sub>CH<sub>3</sub>); HRMS m/z (M+Na<sup>+</sup>) found: 353.1934,  $C_{17}H_{30}O_6$ Na requires 353.1934.

Dimethyl (4R,5R)-4-hexyl-2,2-dimethyl-1,3-dioxolane-4,5-dicarboxylate (33c) and dimethyl (4RS,5RS)-4,5-dihexyl-2,2-dimethyl-1,3-dioxolane-4,5-dicarboxylate (34c).

$$CO_2Me$$
 $CO_2Me$ 
 $CO_2Me$ 
 $CO_2Me$ 
 $CO_2Me$ 
 $CO_2Me$ 
 $CO_2Me$ 
 $CO_2Me$ 
 $CO_2Me$ 
 $CO_2Me$ 

A solution of LDA (prepared from iPr<sub>2</sub>NH (2.00 mL, 14.3 mmol) and *n*-BuLi (6.20 mL, 1.6 M in hexanes, 9.92 mmol) in THF (50 mL) at -78 °C) was added dropwise over 4 h to a mixture of dimethyl (R,R)-tartrate acetonide ( $\mathbf{7}$ ) (1.40 mL, 7.62 mmol) and 1-iodohexane (1.00 mL, 6.78 mmol) in THF (50 mL) and HMPA (10 mL) at -78 °C. After 12 h, sat. aq NH<sub>4</sub>Cl (50 mL) was added, the organic layer was separated, and the aq layer was extracted with Et<sub>2</sub>O (3 × 100 mL). The combined organic layers were dried (MgSO<sub>4</sub>) and concentrated under reduced pressure. Purification of the residue by column chromatography (10% Et<sub>2</sub>O in petrol) gave monohexylated tartrate **33c** (967 mg, 47%) as a yellow oil; Rf 0.14 (10% Et<sub>2</sub>O in petrol); [ $\alpha$ ]<sub>D</sub><sup>23</sup> -27.5

(c 1.0, CHCl<sub>3</sub>);  $v_{\text{max}}/\text{cm}^{-1}(\text{neat})$  2956 s, 2859 s, 1761 s, 1438 m, 1374 m, 1209 s, 1105 s, 995 m, 864 m;  $\delta_{\text{H}}(400 \text{ MHz}, \text{CDCl}_3)$  4.93 (1H, s, CHCO<sub>2</sub>Me), 3.81 (3H, s, CO<sub>2</sub>Me), 3.80 (3H, s, CO<sub>2</sub>Me), 1.82–1.73 (1H, m, (CO<sub>2</sub>Me)CCHH), 1.67–1.62 (1H, m, (CO<sub>2</sub>Me)CCHH), 1.60 (3H, s, one of C(CH<sub>3</sub>)<sub>2</sub>), 1.41 (3H, s, one of C(CH<sub>3</sub>)<sub>2</sub>), 1.29–1.17 (8H, m, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 0.86 (3H, t, J 7, CH<sub>2</sub>CH<sub>3</sub>);  $\delta_{\text{C}}(100 \text{ MHz}, \text{CDCl}_3)$  172.8 (CO<sub>2</sub>Me), 169.2 (CO<sub>2</sub>Me), 112.7 (C(CH<sub>3</sub>)<sub>2</sub>), 86.2 ((CO<sub>2</sub>Me)CCH<sub>2</sub>), 80.1 (CHCO<sub>2</sub>Me), 52.9 (CO<sub>2</sub>Me), 52.4 (CO<sub>2</sub>Me), 34.4 ((CO<sub>2</sub>Me)CCH<sub>2</sub>), 31.7 (CH<sub>2</sub>), 29.5 (CH<sub>2</sub>), 27.8 and 26.2 (C(CH<sub>3</sub>)<sub>2</sub>), 23.9 (CH<sub>2</sub>), 22.6 (CH<sub>2</sub>), 14.1 (CH<sub>2</sub>CH<sub>3</sub>); HRMS m/z (M+H<sup>+</sup>) found: 303.1803, C<sub>15</sub>H<sub>27</sub>O<sub>6</sub> requires 303.1802.

Also isolated was *trans*-dihexylated tartrate **34c** (236 mg, 9%) as a yellow oil;  $R_{\rm f}$  0.47 (10% Et<sub>2</sub>O in petrol);  $v_{\rm max}/{\rm cm}^{-1}$  (neat) 2932 s, 2862 s, 1756 s, 1658 s, 1459 s, 1380 s, 1321 s, 1242 s, 1143 s, 1058 s, 910 s, 859 s;  $\delta_{\rm H}$  (400 MHz, CDCl<sub>3</sub>) 3.75 (6H, s, 2 × CO<sub>2</sub>Me), 1.88 (1H, ddd, J 13, 12 and 4.5, (CO<sub>2</sub>Me)CCHH), 1.62–1.41 (10H, m, 2 × (CO<sub>2</sub>Me)CCHH, CH<sub>2</sub> and C(CH<sub>3</sub>)<sub>2</sub>), 1.29–1.13 (12H, m, 5 × CH<sub>2</sub> and 2 × CHH), 1.07–0.94 (2H, m, 2 × CHH), 0.81 (6H, t, J 7, 2 × CH<sub>2</sub>CH<sub>3</sub>);  $\delta_{\rm C}$ (100 MHz, CDCl<sub>3</sub>) 171.0 (2 x CO<sub>2</sub>Me), 112.0(C(CH<sub>3</sub>)<sub>2</sub>), 90.1 (2 x (CO<sub>2</sub>Me)CCH<sub>2</sub>), 52.4 (2 x CO<sub>2</sub>Me), 35.5 ((CO<sub>2</sub>Me)CCH<sub>2</sub>), 31.6 (2 x CH<sub>2</sub>), 29.3 (C(CH<sub>3</sub>)<sub>2</sub>), 29.1 (2 x CH<sub>2</sub>), 24.0 (2 x CH<sub>2</sub>), 22.5 (2 x CH<sub>2</sub>), 14.0 (2 x CH<sub>2</sub>CH<sub>3</sub>); HRMS m/z (M+H<sup>+</sup>) found: 387.2741, C<sub>21</sub>H<sub>39</sub>O<sub>6</sub> requires 387.2741.

Dimethyl (4R,5R)-4-benzyl-2,2-dimethyl-1,3-dioxolane-4,5-dicarboxylate (33d) and dimethyl (4RS,5RS)-4,5-dibenzyl-2,2-dimethyl-1,3-dioxolane-4,5-dicarboxylate (34d).

A solution of LDA [prepared from iPr<sub>2</sub>NH (0.700 mL, 4.99 mmol) and *n*-BuLi (2.80 mL, 1.6 M in hexanes, 4.48 mmol) in THF (15 mL) at -78 °C1 was added dropwise over 3 h to a mixture of dimethyl (*R*,*R*)-tartrate acetonide (**7**) (1.10 mL, 4.11 mmol) and BnBr (0.50 mL, 4.20 mmol) in THF (15 mL) and HMPA (3 mL) at -78 °C. After 12 h, sat. aq NH<sub>4</sub>Cl (20 mL) was added, the organic layer was separated and the aq layer was extracted with Et<sub>2</sub>O (3 × 20 mL). The combined organic layers were dried (MgSO<sub>4</sub>) and concentrated under reduced pressure. Purification of the residue by column chromatography (10% Et<sub>2</sub>O in petrol) gave monobenzylated tartrate 33d [12,13] (781 mg, 60%) as a yellow oil;  $R_{\rm f}$  0.12 (10% Et<sub>2</sub>O in petrol);  $[\alpha]_{\rm D}^{23}$  -38.3  $(c=1.0, CHCl_3)$ ;  $v_{max}/cm^{-1}$  (neat) 2993 s, 2955 s, 1757 s, 1605 s, 1497 s, 1439 s, 1375 s, 1230 s, 922 m, 858 m;  $\delta_H$ (500 MHz, CDCl<sub>3</sub>) 7.29-7.16 (5H, m, ArH), 4.95 (1H, s, CHCO<sub>2</sub>Me), 3.86 (3H, s, CO<sub>2</sub>Me), 3.66 (3H, s, CO<sub>2</sub>Me), 3.12 (1H, d, J 14.5, CHHPh), 2.91 (1H, d, J 14.5, CHHPh), 1.71 (3H, s, one CH<sub>3</sub> of C(CH<sub>3</sub>)<sub>2</sub>), 1.42 (3H, s, one CH<sub>3</sub> of  $C(CH_3)_2$ );  $\delta_C(125 \text{ MHz}, CDCl_3)$  172.1 ( $CO_2Me$ ), 168.9 ( $CO_2Me$ ), 134.9 (quat. ArC), 130.4 (ArC), 128.4 (ArC), 127.2 (ArC), 113.3 (C(CH<sub>3</sub>)<sub>2</sub>), 86.3 (CCH<sub>2</sub>Ph), 80.4  $(CHCO_2Me)$ , 52.7  $(CO_2Me)$ , 52.7  $(CO_2Me)$ , 40.6  $(CH_2Ph)$ , 27.9  $(C(CH_3)_2)$ , 25.9  $(C(CH_3)_2)$ ; HRMS m/z (M+H<sup>+</sup>) found: 309.1334,  $C_{16}H_{21}O_6$  requires 309.1332.

Also isolated was *trans*-dibenzylated tartrate **34d** (211 mg, 13%) as a white solid;  $R_f$  0.14 (10% Et<sub>2</sub>O in petrol); mp 40–43 °C;  $v_{max}/cm^{-1}$ (KBr) 3055 m, 2987 m, 2306 w, 1753 s, 1643 s, 1422 m, 1266 s, 1092 w, 896 m;  $\delta_H$ (400 MHz, CDCl<sub>3</sub>) 7.29–7.18 (10H, m, ArH), 3.73 (6H, s, 2 × CO<sub>2</sub>Me), 3.41 (2H, d, *J* 13.5, 2 × CH*H*Ph), 2.90 (2H, d, *J* 13.5, 2 × C*H*HPh), 1.75 (6H, s, 2 × C(C*H*<sub>3</sub>)<sub>2</sub>);  $\delta_C$ (100 MHz, CDCl<sub>3</sub>) 170.5 (CO<sub>2</sub>Me), 135.1 (quat. ArC), 130.6 (ArC), 128.4 (ArC), 127.2 (ArC), 113.7 (*C*(CH<sub>3</sub>)<sub>2</sub>), 91.1 (*C*CH<sub>2</sub>Ph), 52.5 (CO<sub>2</sub>*Me*), 41.9 (*C*H<sub>2</sub>Ph), 29.6 (C(*C*H<sub>3</sub>)<sub>2</sub>); HRMS m/z (M+NH<sub>4</sub><sup>+</sup>) found: 416.2070, C<sub>23</sub>H<sub>30</sub>NO<sub>6</sub> requires 416.2068.

Dimethyl (4R,5R)-4-allyl-2,2-dimethyl-1,3-dioxolane-4,5-dicarboxylate (33e) and dimethyl (4RS,5RS)-4,5-diallyl-2,2-dimethyl-1,3-dioxolane-4,5-dicarboxylate (34e).

s, 923 s;  $\delta_{H}(400 \text{ MHz}, \text{CDCl}_3)$  5.80–5.67 (1H, m,  $\text{CH}_2\text{C}H=\text{CH}_2$ ), 5.12–5.03 (2H, m,  $\text{CH}_2\text{CH}=\text{C}H_2$ ), 4.97 (1H, s,  $\text{C}H\text{CO}_2\text{Me}$ ), 3.78 (3H, s,  $\text{CO}_2\text{Me}$ ), 3.77 (3H, s,  $\text{CO}_2\text{Me}$ ), 2.56 (1H, dd, *J* 14 and 7,  $\text{C}H\text{H}\text{CH}=\text{CH}_2$ ), 2.43 (1H, dd, *J* 14 and 7,  $\text{C}H\text{H}\text{CH}=\text{CH}_2$ ), 1.60 (3H, s, one CH<sub>3</sub> of C(C $H_3$ )<sub>2</sub>), 1.40 (3H, s, one CH<sub>3</sub> of C(C $H_3$ )<sub>2</sub>);  $\delta_{\text{C}}(100 \text{ MHz}, \text{CDCl}_3)$  172.0 ( $\text{CO}_2\text{Me}$ ), 168.8 ( $\text{CO}_2\text{Me}$ ), 131.4 ( $\text{CH}_2=\text{CH}$ ), 119.5 ( $\text{CH}_2=\text{CH}$ ), 112.8 ( $\text{C}(\text{CH}_3)_2$ ), 85.5 ( $\text{C}\text{C}\text{H}_2\text{C}\text{H}=\text{CH}_2}$ ), 79.6 ( $\text{C}\text{H}\text{C}\text{O}_2\text{Me}$ ), 52.9 ( $\text{C}\text{O}_2\text{Me}$ ), 52.4 ( $\text{C}\text{O}_2\text{Me}$ ), 39.0 ( $\text{C}\text{H}_2\text{C}\text{H}=\text{CH}_2$ ), 27.6 ( $\text{C}(\text{C}\text{H}_3)_2$ ), 26.0 ( $\text{C}(\text{C}\text{H}_3)_2$ ); HRMS m/z (M+NH<sub>4</sub><sup>+</sup>) found: 276.1442,  $\text{C}_{12}\text{H}_{22}\text{NO}_6$  requires 276.1442.

Also isolated was *trans*-diallylated tartrate **34e** (201 mg, 14%) as a yellow oil;  $R_{\rm f}$  0.2 (10% Et<sub>2</sub>O in petrol);  $v_{\rm max}/{\rm cm}^{-1}$  (neat) 3081 m, 2988 s, 2953 s, 1756 s, 1643 s, 1437 s, 1372 s, 1321 s, 1221 s, 1141 s, 1057 s, 997 s, 924 s;  $\delta_{\rm H}$  (400 MHz, CDCl<sub>3</sub>) 5.71–5.10 (2H, m, 2 × CH<sub>2</sub>CH=CH<sub>2</sub>), 5.07–5.00 (4H, m, 2 × CH<sub>2</sub>CH=CH<sub>2</sub>), 3.72 (6H, s, 2 × CO<sub>2</sub>Me), 2.67 (2H, dd, J 13.5 and 8, 2 × CHHCH=CH<sub>2</sub>), 2.35 (2H, dd, J 13.5 and 6, 2 × CHHCH=CH<sub>2</sub>), 1.53 (6H, s, 2 × C(CH<sub>3</sub>)<sub>2</sub>);  $\delta_{\rm C}$ (100 MHz, CDCl<sub>3</sub>) 170.3 (CO<sub>2</sub>Me), 131.6 (CH<sub>2</sub>=CH), 119.7 (CH<sub>2</sub>=CH), 112.9 (C(CH<sub>3</sub>)<sub>2</sub>), 89.8 (CCH<sub>2</sub>CH=CH<sub>2</sub>), 52.5 (CO<sub>2</sub>Me), 40.3 (CH<sub>2</sub>CH=CH<sub>2</sub>), 29.0 (C(CH<sub>3</sub>)<sub>2</sub>); HRMS m/z (M+H<sup>+</sup>) found: 299.1488, C<sub>15</sub>H<sub>23</sub>O<sub>6</sub> requires 299.1489.

Dimethyl (4*R*,5*R*)-2,2-dimethyl-4-(3-methylbut-2-enyl)-1,3-dioxolane-4,5-dicarboxylate (33f) and dimethyl (4*RS*,5*RS*)-2,2-dimethyl-4,5-bis(3-methylbut-2-enyl)-1,3-dioxolane-4,5-dicarboxylate (34f).

A solution of LDA (prepared from iPr<sub>2</sub>NH (2.00 mL, 14.3 mmol) and *n*-BuLi (7.00 mL, 1.6 M in hexanes, 11.2 mmol) in THF (40 mL) at -78 °C) was added dropwise over 1 h to a mixture of dimethyl (R,R)-tartrate acetonide (7) (1.70 mL, 9.26 mmol) and 4-bromo-2-methyl-2-butene (1.0 mL, 8.68 mmol) in THF (50 mL) and HMPA (10 mL) at -78 °C. After 12 h, sat. aq NH<sub>4</sub>Cl (40 mL) was added, the organic layer was separated and the ag. layer was extracted with Et<sub>2</sub>O (3 × 100 mL). The combined organic layers were dried (MgSO<sub>4</sub>) and concentrated under reduced pressure. Purification of the residue by column chromatography (10% Et<sub>2</sub>O in petrol) gave monoprenylated tartrate **33f** [12,15] (1.67 g, 67%) as a yellow oil;  $R_f$  0.11 (10% Et<sub>2</sub>O in petrol);  $[\alpha]_D^{23} - 38.8$  (c 1.0, CHCl<sub>3</sub>), lit [15]  $[\alpha]_D^{20} - 30.2$  (c 9.5, CHCl<sub>3</sub>);  $v_{max}/cm^{-1}$  (neat) 2992 s, 2954 s, 1761 s, 1764 s, 1438 m, 1383 m, 1210 s, 1108 s, 1015 m, 854 m;  $\delta_{H}(400 \text{ MHz}, \text{CDCl}_{3})$  5.06 (1H, t, J 7, CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>), 4.97 (1H, s, CHCO<sub>2</sub>Me), 3.77 (3H, s,  $CO_2Me$ ), 3.76 (3H, s,  $CO_2Me$ ), 2.52 (1H, dd, J 14.5 and 7,  $CHHCH=C(CH_3)_2$ ), 2.39 (1H, dd, J 14.5 and 7,  $CHHCH=C(CH_3)_2$ ), 1.67 (3H, s, one  $CH_3$  of  $CH=C(CH_3)_2$ ), 1.60 (3H, s, one  $CH_3$  of  $C(CH_3)_2$ ), 1.56 (3H, s, one  $CH_3$  of CH=C(C $H_3$ )<sub>2</sub>), 1.39 (3H, s, one CH<sub>3</sub> of C(C $H_3$ )<sub>2</sub>);  $\delta_C$ (100 MHz, CDCl<sub>3</sub>) 172.5  $(CO_2Me)$ , 169.1  $(CO_2Me)$ , 136.1  $(CH=C(CH_3)_2)$ , 116.6  $(CH=C(CH_3)_2)$ , 112.7  $(C(CH_3)_2)$ , 86.0  $(CCH_2CH=C(CH_3)_2)$ , 79.5  $(CHCO_2Me)$ , 52.8  $(CO_2Me)$ , 52.3  $(CO_2Me)$ , 33.4  $(CH_2CH=(CH_3)_2)$ , 27.6  $(C(CH_3)_2)$ , 26.1  $(CH=C(CH_3)_2)$ , 26.0  $(C(CH_3)_2)$ , 18.1  $(CH=C(CH_3)_2)$ ; HRMS m/z  $(M+H^+)$  found: 287.1489,  $C_{14}H_{23}O_6$  requires 287.1489.

Also isolated was *trans*-diprenylated tartrate **34f** [15] (443 mg, 14%) as a yellow crystalline solid;  $R_f$  0.27 (10% Et<sub>2</sub>O in petrol); mp 36–38 °C;  $v_{max}/cm^{-1}$ (KBr) 2937 s, 2801 s, 1752 s, 1455 s, 1385 s, 1316 s, 1233 s, 1180 s, 1080 s, 945 m, 848 m;  $\delta_H$ (400 MHz, CDCl<sub>3</sub>) 5.02 (2H, t, J7, 2 × CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>), 3.70 (6H, s, 2 × CO<sub>2</sub>Me), 2.71 (2H, dd, J 14 and 8, 2 × CHHCH=C(CH<sub>3</sub>)<sub>2</sub>), 2.18 (2H, dd, J 14 and 6, 2 × CHHCH=C(CH<sub>3</sub>)<sub>2</sub>), 1.60 (6H, s, C(CH<sub>3</sub>)<sub>2</sub>), 1.52 (12H, s, 2 × CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>);  $\delta_C$ (100 MHz, CDCl<sub>3</sub>) 170.9 ( $CO_2$ Me), 135.8 (CH=C(CH<sub>3</sub>)<sub>2</sub>), 117.1 (CH=C(CH<sub>3</sub>)<sub>2</sub>), 112.5 (C(CH<sub>3</sub>)<sub>2</sub>), 89.9 (CCH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>), 52.2 ( $CO_2$ Me), 34.8 (CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>), 28.9 (CH=C(CH<sub>3</sub>)<sub>2</sub>), 25.9 (C(CH<sub>3</sub>)<sub>2</sub>), 18.1 (CH=C(CH<sub>3</sub>)<sub>2</sub>); HRMS m/z (M+H<sup>+</sup>) found: 355.2115,  $C_{19}H_{31}O_6$  requires 355.2115.

Dimethyl (4R,5R)-2,2-dimethyl-4-(but-3-enyl)-1,3-dioxolane-4,5-dicarboxylate (38a).

A solution of LDA (prepared from iPr<sub>2</sub>NH (2.00 mL, 14.3 mmol) and n-BuLi (9.0 mL, 1.6 M in hexane, 14.4 mmol) in THF (40 mL) at -78 °C) was added dropwise over 1 h to a mixture of dimethyl (R,R)-tartrate acetonide (T) (2.00 mL, 10.9 mmol) and 4-bromo-1-butene (1.00 mL, 9.85 mmol) in THF (50 mL) and HMPA (10 mL) at -78 °C. After 12 h, saturated aq NH<sub>4</sub>Cl (40 mL) was added, the organic layer was separated and the aqueous layer was extracted with Et<sub>2</sub>O (3 × 100 mL). The combined organic

layers were dried (MgSO<sub>4</sub>) and concentrated under reduced pressure. Purification of the residue by column chromatography (10% Et<sub>2</sub>O in petrol) gave monoalkylated tartrate **38a** (341 mg, 13%) as a yellow oil;  $R_i$  0.06 (10% Et<sub>2</sub>O in petrol);  $[\alpha]_D^{23}$  –28.2 (c 1.0, CHCl<sub>3</sub>);  $v_{max}/cm^{-1}$  (neat) 3079 m, 2993 s, 2955 s, 1760 s, 1643 s, 1459 s, 1383 s, 1212 s, 995 s, 916 s;  $\delta_H$ (400 MHz, CDCl<sub>3</sub>) 5.74–5.62 (1H, m, CH<sub>2</sub>CH=CH<sub>2</sub>), 4.97–4.89 (2H, m, CH<sub>2</sub>CH=CH<sub>2</sub>), 4.87 (1H, s, CHCO<sub>2</sub>Me), 3.75 (3H, s, CO<sub>2</sub>Me), 3.74 (3H, s, CO<sub>2</sub>Me), 2.17–2.07 (1H, m, CH<sub>2</sub>CHHCH=CH<sub>2</sub>), 2.01–1.90 (1H, m, CH<sub>2</sub>CHHCH=CH<sub>2</sub>), 1.84 (1H, ddd, J 13.5, 11.5 and 5, CHHCH<sub>2</sub>CH=CH<sub>2</sub>), 1.66 (1H, ddd, J 13.5, 11.5 and 5, CHHCH<sub>2</sub>CH=CH<sub>2</sub>), 1.54 (3H, s, one CH<sub>3</sub> of C(CH<sub>3</sub>)<sub>2</sub>), 1.37 (3H, s, one CH<sub>3</sub> of C(CH<sub>3</sub>)<sub>2</sub>);  $\delta_C$ (100 MHz, CDCl<sub>3</sub>) 172.3 (CO<sub>2</sub>Me), 168.7 (CO<sub>2</sub>Me), 137.3 (CH=CH<sub>2</sub>), 115.1 (CH=CH<sub>2</sub>), 112.6 (C(CH<sub>3</sub>)<sub>2</sub>), 85.4 (CCH<sub>2</sub>CH<sub>2</sub>CH=CH<sub>2</sub>), 80.1 (CHCO<sub>2</sub>Me), 52.8 (CO<sub>2</sub>Me), 52.3 (CO<sub>2</sub>Me), 33.4 (CH<sub>2</sub>CH<sub>2</sub>CH=CH<sub>2</sub>), 28.1 (CH<sub>2</sub>CH<sub>2</sub>CH=CH<sub>2</sub>), 27.6 (C(CH<sub>3</sub>)<sub>2</sub>), 26.0 (C(CH<sub>3</sub>)<sub>2</sub>); HRMS m/z [M+H<sup>+</sup>] found: 273.1332, C<sub>13</sub>H<sub>21</sub>O<sub>6</sub> requires 273.1333.

## (((3-Methylenepent-4-en-1-yl)oxy)methyl)benzene (39).

A stirred solution of dimethyl (R,R)-tartrate acetonide (**7**) (6.90 g, 31.6 mmol, 2 equiv.), iodide **37b** (5.00 g, 15.8 mmol, 1 equiv) and freshly distilled HMPA (21.2 mL) in THF (50 mL) was cooled to -78 °C. To this reaction mixture was added dropwise a pre-cooled (-78 °C) solution of LDA (prepared from iPr<sub>2</sub>NH (3.30 g, 31.6 mmol) and n-BuLi (20.3 mL, 1.6 M in hexanes, 31.6 mmol) in THF (50 mL) at 0 °C) over 1 h. The reaction mixture was further stirred for 48 h at -78 °C, and then quenched at the same temperature with sat. aq NH<sub>4</sub>Cl (100 mL), extracted with EtOAc (3 × 100 mL),

washed with sat. aq CuSO<sub>4</sub> (100 mL) and the combined organic layers were dried (MgSO<sub>4</sub>), filtered, evaporated under reduced pressure and purified by column chromatography (40% Et<sub>2</sub>O in petrol). First eluted diene **39** (1.07g, 36%) as a colourless liquid.  $R_{\rm I}$  0.54 (10% Et<sub>2</sub>O in petrol);  $v_{\rm max}/{\rm cm}^{-1}$  (neat) 3087 w, 3030 w, 2857 m, 1595 m, 1495 m, 1454 s, 1204 s, 1101 s, 897 s, 734 s; <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>)  $\delta$  7.39–7.26 (5H, m, ArCH), 6.40 (1H, dd, J 18 and 11, CCH=CH<sub>2</sub>), 5.27 (1H, d, J 18, 1H of C=CH<sub>2</sub>), 5.10 (3H, d, J 11, 1H of C=CH<sub>2</sub> and CH=CH<sub>2</sub>), 4.55 (2H, s, CH<sub>2</sub>Ph), 3.65 (2H, t, J 7, CH<sub>2</sub>OBn), 2.58 (2H, t, J 7, CH<sub>2</sub>CH<sub>2</sub>OBn); <sup>13</sup>C NMR (100 MHz; CDCl<sub>3</sub>)  $\delta$  143.2 (C=CH<sub>2</sub>), 138.8 (CH=CH<sub>2</sub>), 138.6 (ArC), 128.5 (2xArCH), 127.8 (2xArCH), 127.7 (ArCH), 117.2 (C=CH<sub>2</sub>), 113.6 (CH=CH<sub>2</sub>), 73.1 (CH<sub>2</sub>Ph), 69.2 (CH<sub>2</sub>OBn), 31.8 (CH<sub>2</sub>CH<sub>2</sub>OBn); HRMS m/z [M+H<sup>+</sup>] found: 189.1275, C<sub>13</sub>H<sub>17</sub>O requires 189.1273. Second eluted a mixture of alkylated tartrate **38b** with tartrate **7** (~12 g), which was distilled under reduced pressure (0.2 mbar at ~160 °C) to give alkylated tartrate **38b** (3.85 g, 60%) as a colourless oil. Data as lit [7].

Dimethyl (4R,5S)-2,2-dimethyl-4-(3-methylbut-2-enyl)-1,3-dioxolane-4,5-dicarboxylate (epi-33f).

Prenylated tartrate **33f** (25 mg, 0.08 mmol) and NaOMe (5.5 mg, 0.1 mmol) in MeOH (1.3 ml) was heated at reflux for 30 h.  $H_2O$  (0.5 mL) was then added and the reaction mixture extracted with  $Et_2O$  (2 × 5 mL). The combined organic layers were washed with brine (2 mL), dried ( $Na_2SO_4$ ) and evaporated under reduced pressured. <sup>1</sup>H NMR analysis of the residue indicated 75:25 *epi-***33f**:**33f**. Purification of the residue by gradient column chromatography (0–10%  $Et_2O$  in petrol) gave the epimeric

prenylated tartrate *epi*-**33f** [15] (14.5 mg, 58%) as a colourless liquid.  $R_f$  0.21 (20% Et<sub>2</sub>O in petrol); [ $\alpha$ ]<sub>D</sub><sup>25</sup> -12.8 (c 0.6, CHCl<sub>3</sub>);  $v_{max}/cm^{-1}$ (neat) 2989 m, 2954 m, 2917 m, 1850 w, 11764 s, 1738 s, 1437 m, 1381 m, 1220 s, 1107 s, 867 w;  $\delta_H$ (400 MHz, CDCl<sub>3</sub>) 5.22 (1H, t, J 7.5, CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>), 4.50 (1H, s, CHCO<sub>2</sub>Me), 3.80 (3H, s, CO<sub>2</sub>Me), 3.71 (3H, s, CO<sub>2</sub>Me), 2.75 (1H, dd, J 15 and 7, CHHCH=C(CH<sub>3</sub>)<sub>2</sub>), 2.63 (1H, dd, J 15 and 8, CHHCH=C(CH<sub>3</sub>)<sub>2</sub>), 1.74 (3H, s, one CH<sub>3</sub> of C(CH<sub>3</sub>)<sub>2</sub>), 1.66 (3H, s, one CH<sub>3</sub> of C(CH<sub>3</sub>)<sub>2</sub>), 1.60 (3H, s, one CH<sub>3</sub> of CH=C(CH<sub>3</sub>)<sub>2</sub>), 1.40 (3H, s, one CH<sub>3</sub> of CH=C(CH<sub>3</sub>)<sub>2</sub>);  $\delta_C$ (100 MHz, CDCl<sub>3</sub>) 171.8 (CO<sub>2</sub>Me), 168.2 (CO<sub>2</sub>Me), 137.3 (CH=C(CH<sub>3</sub>)<sub>2</sub>), 116.8 (CH=C(CH<sub>3</sub>)<sub>2</sub>), 111.8 (C(CH<sub>3</sub>)<sub>2</sub>), 86.8 (CCH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>), 79.5 (CHCO<sub>2</sub>Me), 52.7 (CO<sub>2</sub>Me), 52.6 (CO<sub>2</sub>Me), 33.6 (CH<sub>2</sub>CH=(CH<sub>3</sub>)<sub>2</sub>), 26.9 (CH=C(CH<sub>3</sub>)<sub>2</sub>), 26.6 (CH=C(CH<sub>3</sub>)<sub>2</sub>), 26.2 (C(CH<sub>3</sub>)<sub>2</sub>), 18.2(C(CH<sub>3</sub>)<sub>2</sub>); HRMS m/z (M+H<sup>+</sup>) found: 287.1489, C<sub>14</sub>H<sub>23</sub>O<sub>6</sub> requires 287.1489.

Dimethyl (4R,5S)-2,2-dimethyl-4-propyl-1,3-dioxolane-4,5-dicarboxylate (epi-33a).

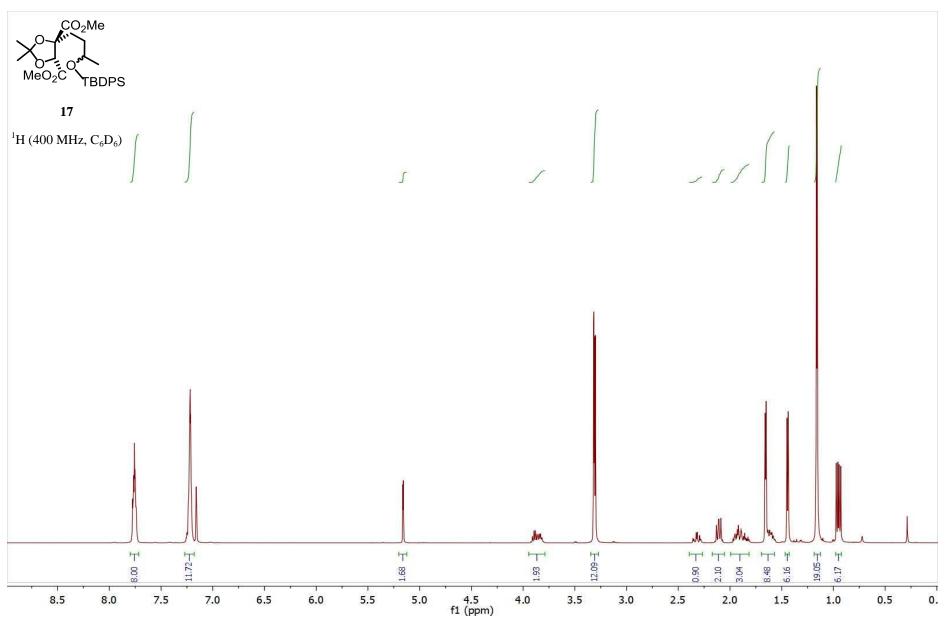
$$\begin{array}{c} \begin{array}{c} \text{CO}_2\text{Me} \\ \\ \text{CO}_2\text{Me} \end{array}$$

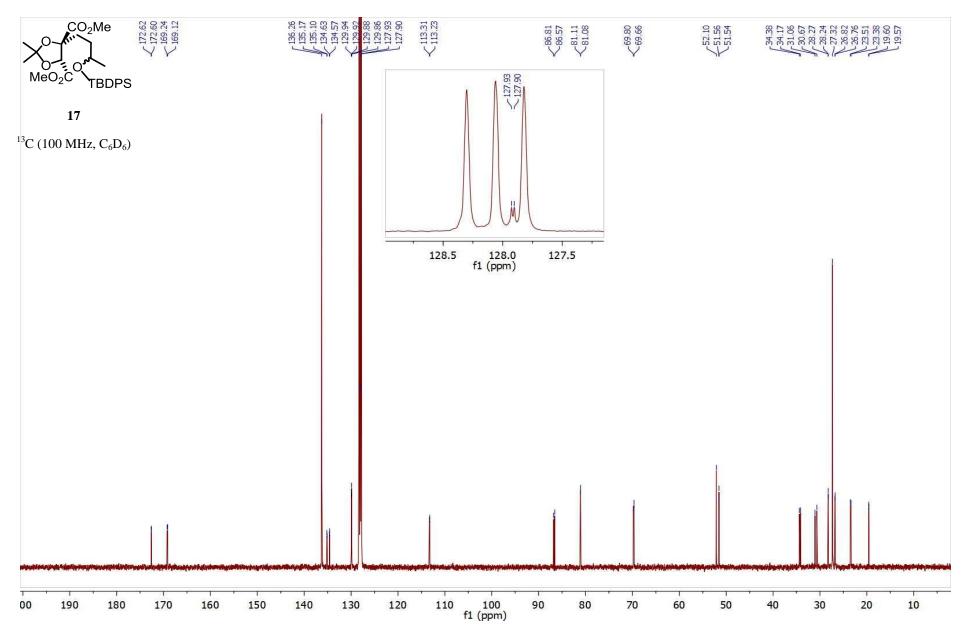
Following the procedure for *epi*-33f above, but using propylated tartrate 33a (56 mg, 0.21 mmol), gave a residue (72:28, *epi*-33a:33a) which was purified by gradient column chromatography (0–10% Et<sub>2</sub>O in petrol), to give *epi*-33a (30 mg, 54%) as a colourless liquid.  $R_f$  0.13 (20% Et<sub>2</sub>O in petrol);  $[\alpha]_D^{25}$  –38.5 (c 1.0, CHCl<sub>3</sub>);  $v_{max}/cm^{-1}$  (neat) 2959 m, 2876 w, 1764 s, 1737 s, 1438 m, 1381 m, 1218 s, 1136 s, 1102 s, 1023 m, 959 w;  $\delta_H$ (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.45 (1H, s, C*H*CO<sub>2</sub>Me), 3.79 (3H, s, CO<sub>2</sub>Me),

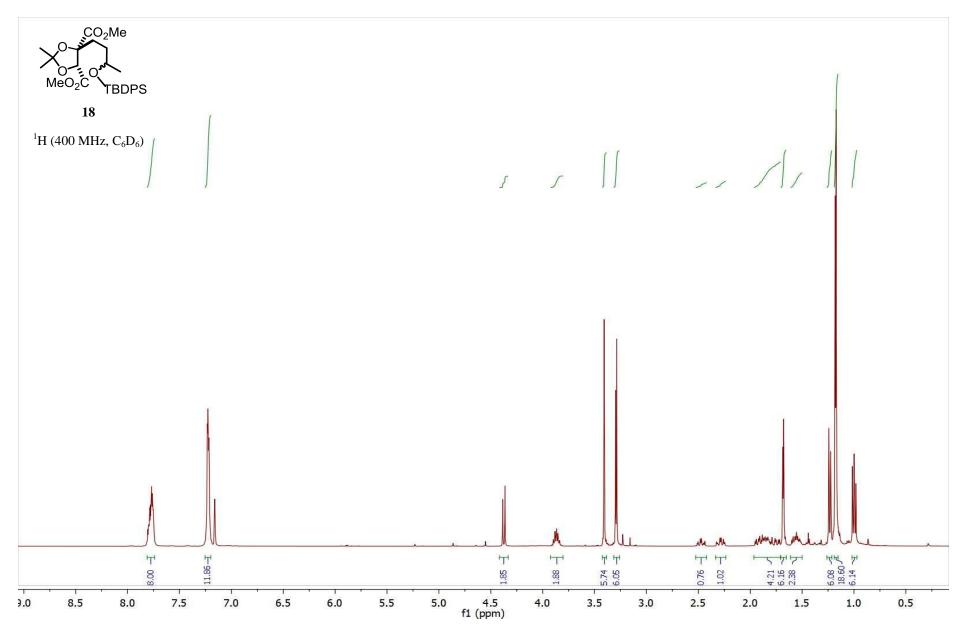
3.70 (3H, s,  $CO_2Me$ ), 2.10 (1H, ddd, J 14, 12 and 4.5,  $CHHCH_2CH_3$ ), 1.76 (1H, ddd, J 14, 12 and 5,  $CHHCH_2CH_3$ ), 1.60 (3H, s, one  $CH_3$  of  $C(CH_3)_2$ ), 1.56–1.45 (1H, m,  $CH_2CHHCH_3$ ), 1.41 (3H, s, one  $CH_3$  of  $C(CH_3)_2$ ), 1.38–1.28 (1H, m,  $CH_2CHHCH_3$ ), 0.94 (3H, t, J 7.5,  $CH_2CH_3$ );  $\delta_c$ (100 MHz,  $CDCI_3$ ) 171.9 ( $CO_2Me$ ), 168.1 ( $CO_2Me$ ), 111.8 ( $C(CH_3)_2$ ), 86.9 ( $CCH_2CH_2CH_3$ ), 80.9 ( $CHCO_2Me$ ), 52.6 ( $CO_2Me$ ), 52.6 ( $CO_2Me$ ), 38.4 ( $CH_2CH_2CH_3$ ), 26.9 (2 x  $C(CH_3)_2$ ), 17.5 ( $CH_2CH_2CH_3$ ), 14.3 ( $CH_2CH_2CH_3$ ); HRMS m/z ( $M+H^+$ ) found 261.1332,  $C_{12}H_{21}O_6$  requires 261.1332.

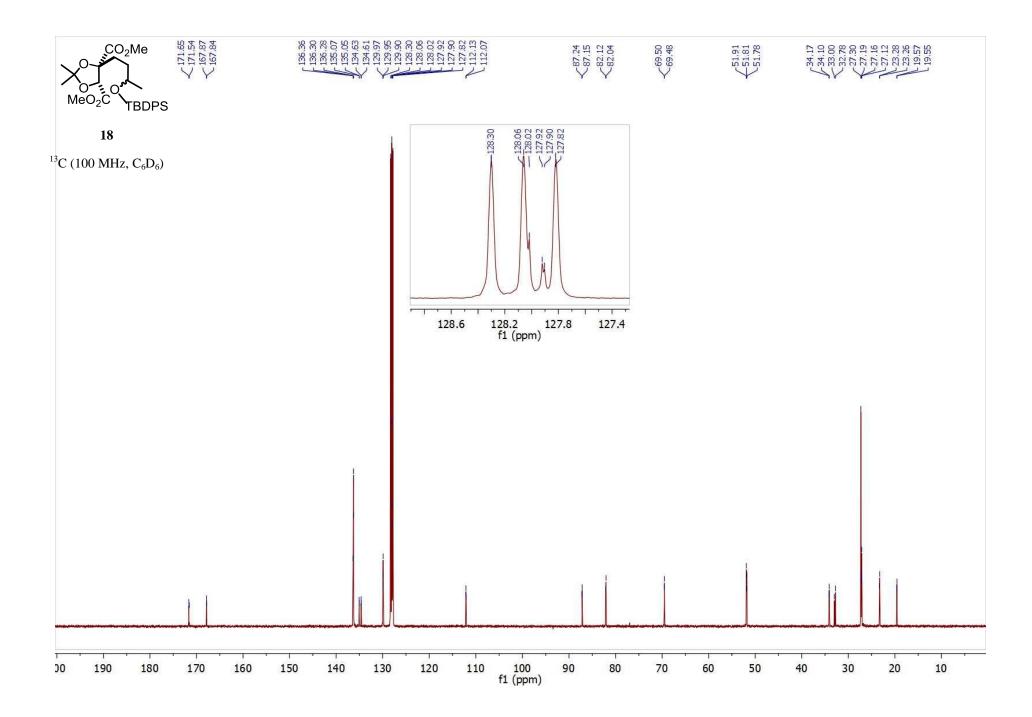
Dimethyl (4*R*,5*S*)-4-benzyl-2,2-dimethyl-1,3-dioxolane-4,5-dicarboxylate (*epi*-33d)

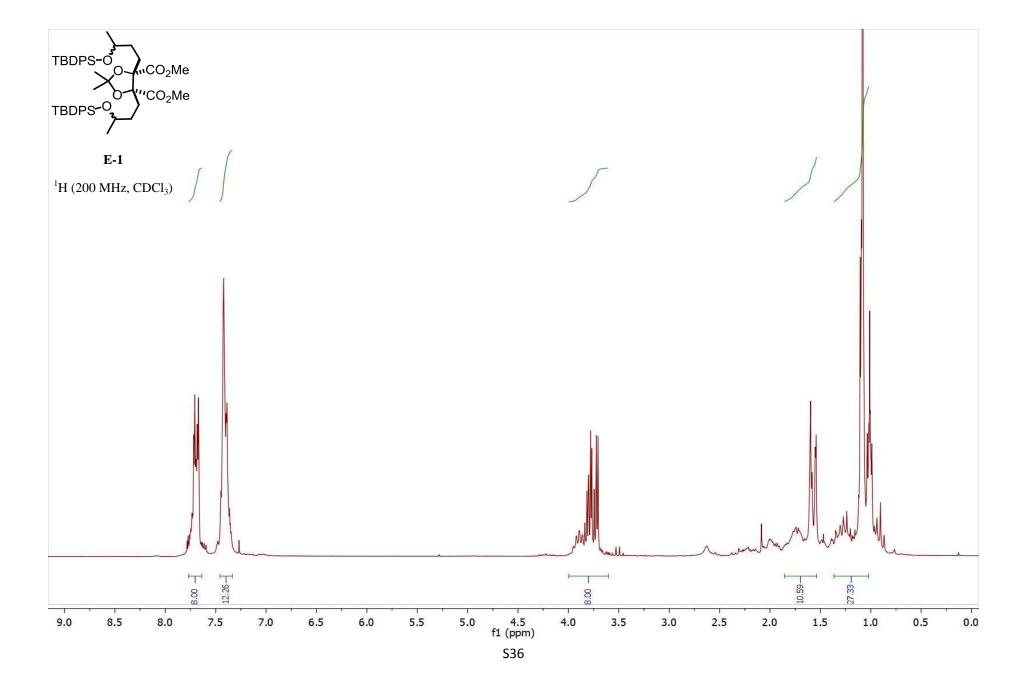
Following the procedure for epi-33f above, but using benzylated tartrate 33d (49 mg, 0.16 mmol), gave a residue (83:17, epi-33d:33d) which was purified by gradient column chromatography (0–10% Et<sub>2</sub>O in petrol), to give epi-33d (33 mg, 67%) as a colourless liquid.  $R_f$  0.22 (20% Et<sub>2</sub>O in petrol);  $[\alpha]_D^{25}$  -4.1 (c 1.0, CHCl<sub>3</sub>);  $v_{max}/cm^{-1}$  (film) 2988 w, 2953 w, 1765 s, 1735 s, 1437 m, 1382 m, 1209 s, 1140 s, 1139 w, 774 w, 701 m;  $\delta_H$ (400 MHz, CDCl<sub>3</sub>) 7.37–7.23 (5H, m, ArH), 4.39 (1H, s, CHCO<sub>2</sub>Me), 3.87 (3H, s, CO<sub>2</sub>Me), 3.76 (3H, s, CO<sub>2</sub>Me), 3.36 (1H, d, J 14, CHHPh), 3.22 (1H, d, J 14, CHHPh), 1.56 (3H, s, one CH<sub>3</sub> of C(CH<sub>3</sub>)<sub>2</sub>), 1.00 (3H, s, one CH<sub>3</sub> of C(CH<sub>3</sub>)<sub>2</sub>);  $\delta_C$ (100 MHz, CDCl<sub>3</sub>) 171.8 ( $CO_2$ Me), 168.0 ( $CO_2$ Me), 134.5 (quat. ArC), 131.4 (ArC), 128.4 (ArC), 127.4 (ArC), 111.7 (C(CH<sub>3</sub>)<sub>2</sub>), 86.2 (CCH<sub>2</sub>Ph), 78.4 (CHCO<sub>2</sub>Me), 52.8 ( $CO_2$ Me), 52.7 ( $CO_2$ Me), 39.9 (CH<sub>2</sub>Ph), 26.9 (C(CH<sub>3</sub>)<sub>2</sub>), 26.3 (C(CH<sub>3</sub>)<sub>2</sub>); HRMS m/z [M+H<sup>+</sup>] found: 309.1333,  $C_{16}$ H<sub>21</sub>O<sub>6</sub> requires 309.1332.

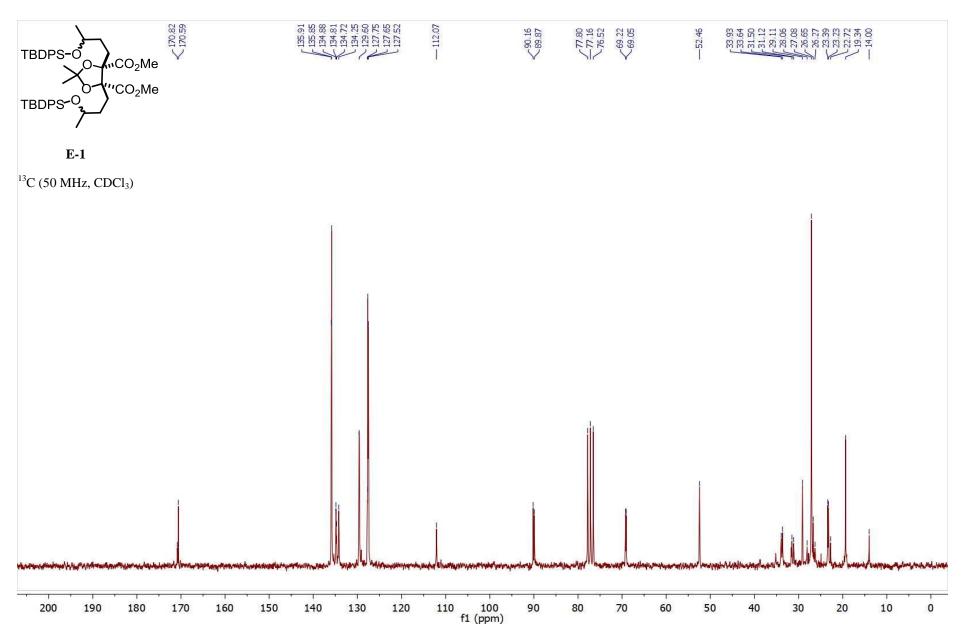

Dimethyl (4R,5S)-2,2-dimethyl-4-(but-3-enyl)-1,3-dioxolane-4,5-dicarboxylate (epi-38a).

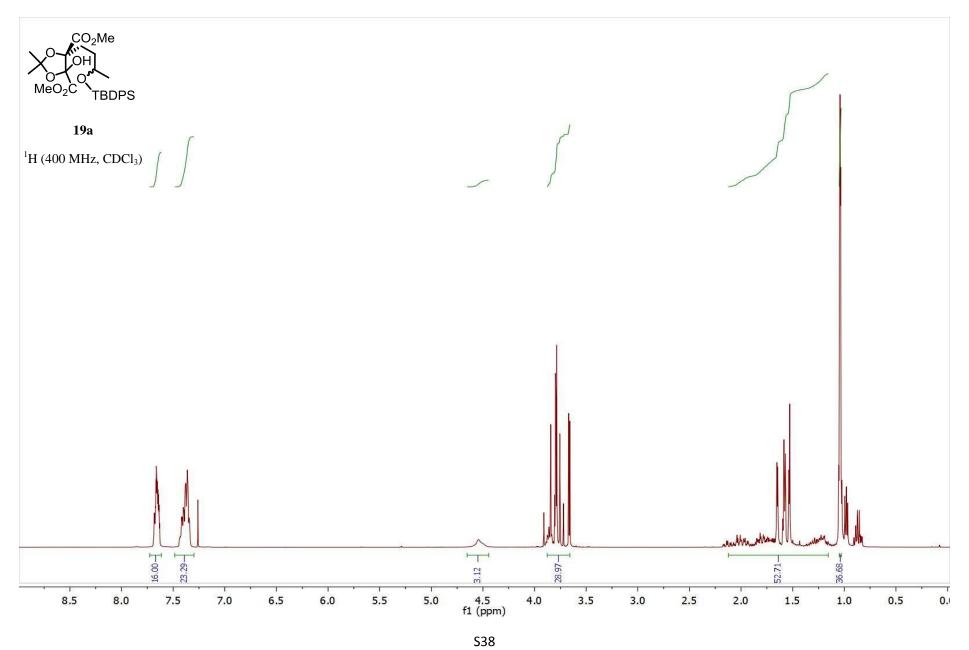

Following the procedure for *epi-*33f above, but using butenylated tartrate 38a (49 mg, 0.18 mmol), gave a residue (75:25, *epi-*38a:38a) which was purified by gradient column chromatography (0–10% Et<sub>2</sub>O in petrol), to give *epi-*38a (30 mg, 61%) as a colourless liquid.  $R_f$  0.21 (20% Et<sub>2</sub>O in petrol);  $[\alpha]_D^{25}$  –24.6 (c 1.0, CHCl<sub>3</sub>);  $v_{max}/cm^{-1}$  (neat) 2985 m, 2954 m, 1767 s, 1736 s, 1438 m, 1382 m, 1247 m, 1210 s, 1107 s, 668 m;  $\delta_H$ (400 MHz, CDCl<sub>3</sub>) 5.86–5.74 (1H, m, CH<sub>2</sub>CH=CH<sub>2</sub>), 5.08–4.95 (2H, m, CH<sub>2</sub>CH=CH<sub>2</sub>), 4.48 (1H, s, CHCO<sub>2</sub>Me), 3.79 (3H, s, CO<sub>2</sub>Me), 3.71 (3H, s, CO<sub>2</sub>Me), 2.31–2.20 (2H, m, CHHCH<sub>2</sub>CH=CH<sub>2</sub> and CH<sub>2</sub>CHHCH=CH<sub>2</sub>), 2.13–2.03 (1H, m, CH<sub>2</sub>CHHCH=CH<sub>2</sub>), 1.94–1.84 (1H, m, CHHCH<sub>2</sub>CH=CH<sub>2</sub>), 1.61 (3H, s, one CH<sub>3</sub> of C(CH<sub>3</sub>)<sub>2</sub>), 1.42 (3H, s, one CH<sub>3</sub> of C(CH<sub>3</sub>)<sub>2</sub>);  $\delta_C$ (100 MHz, CDCl<sub>3</sub>) 171.6 (CO<sub>2</sub>Me), 168.0 (CO<sub>2</sub>Me), 137.3 (CH=CH<sub>2</sub>), 115.4 (CH=CH<sub>2</sub>), 112.0 (C(CH<sub>3</sub>)<sub>2</sub>), 86.4 (CCH<sub>2</sub>CH<sub>2</sub>CH=CH<sub>2</sub>), 80.9 (CHCO<sub>2</sub>Me), 52.7 (CO<sub>2</sub>Me), 52.6 (CO<sub>2</sub>Me), 35.5 (CH<sub>2</sub>CH<sub>2</sub>CH=CH<sub>2</sub>), 28.3 (CH<sub>2</sub>CH<sub>2</sub>CH=CH<sub>2</sub>), 26.9 (C(CH<sub>3</sub>)<sub>2</sub>), 26.9 (C(CH<sub>3</sub>)<sub>2</sub>); HRMS m/z (M+H<sup>+</sup>) found: 273.1332, C<sub>13</sub>H<sub>21</sub>O<sub>6</sub> requires 273.1332.

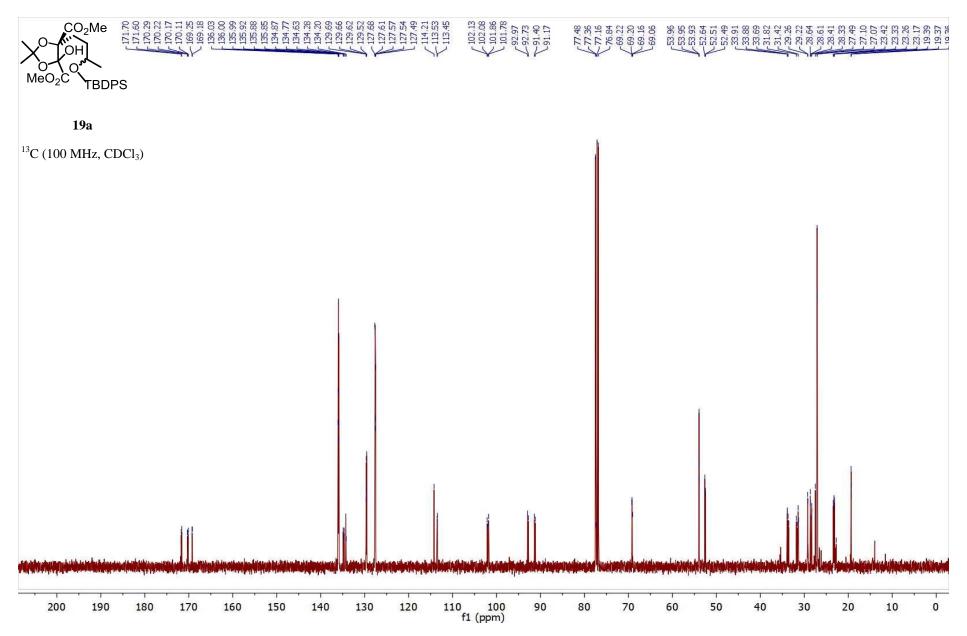

#### References

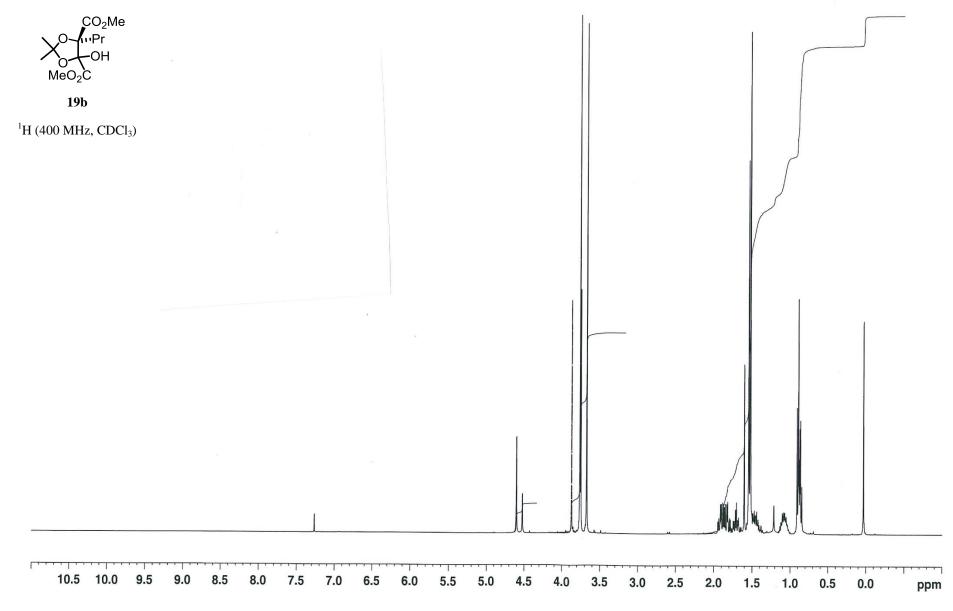

- 1. Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F.
- J. Organometallics **1996**, *15*, 1518–1520.
- 2. Fegheh-Hassanpour, Y.; Ebrahim, F.; Arif, T.; Sintim, H. O.; Claridge, T. D. W.; Amin, N. T.; Hodgson, D. M. *Org. Biomol. Chem.* **2018**, *16*, 2876–2884.
- 3. Snider, B. B.; Shi, Z. J. Am. Chem. Soc. 1994, 116, 549-557.
- 4. Louwrier, S.; Ostendorf, M.; Boom, A.; Hiemstra, H.; Speckamp, W. N. *Tetrahedron* **1996**, *52*, 2603–2628.
- 5. Baggelaar, M. P.; Huang, Y.; Feringa, B. L; Dekker, F. J.; Minnaard, A. J. *Bioorg. Med. Chem.* **2013**, *21*, 5271–5274.
- 6. Vedejs, E.; Engler, D. A.; Telschow, J. E. J. Org. Chem. 1978, 43, 188-196.
- 7. Fegheh-Hassanpour, Y.; Arif, T.; Sintim, H. O.; Al-Mamari, H. A.; Hodgson, D. M. Org. Lett. **2017**, *19*, 3540–3543; *corrigendum* **2018**, *20*, 5528.
- 8. Vinczer, P.; Novak, L.; Szántay, C. *Synth. Commun.* **1984,** *14*, 281–288. See for <sup>1</sup>H NMR shift for NH of δ ~12 being indicative of *Z*–hydrazone configuration.
- 9. Grzywacz, P.; Chiellini, G.; Plum, L. A.; Clagett-Dame, M.; DeLuca, H. F. *J. Med. Chem.* **2010**, *53*, 8642–8649.
- 10. Hook, J. M. Synth. Commun. 1984, 14, 83-87.
- 11. Hodgson, D. M.; Villalonga–Barber, C.; Goodman, J. M.; Pellegrinet, S. C. *Org. Biomol. Chem.* **2010**, *8*, 3975–3984.
- 12. Naef, R. Chiral enolates, Dissertation No. 7442, ETH Zürich, Switzerland, 1983.
- 13. Mukhopadhyay, T.; Seebach, D. Helv. Chim. Acta 1982, 65, 385-391.
- 14. Molander, G. A.; Harris, C. R. J. Am. Chem. Soc. 1996, 118, 4059-4071.
- 15. Zhang, G.-L.; Li, S.-B.; Li, Y.-L. Acta. Chim. Sin. 1989, 47, 1087–1092.

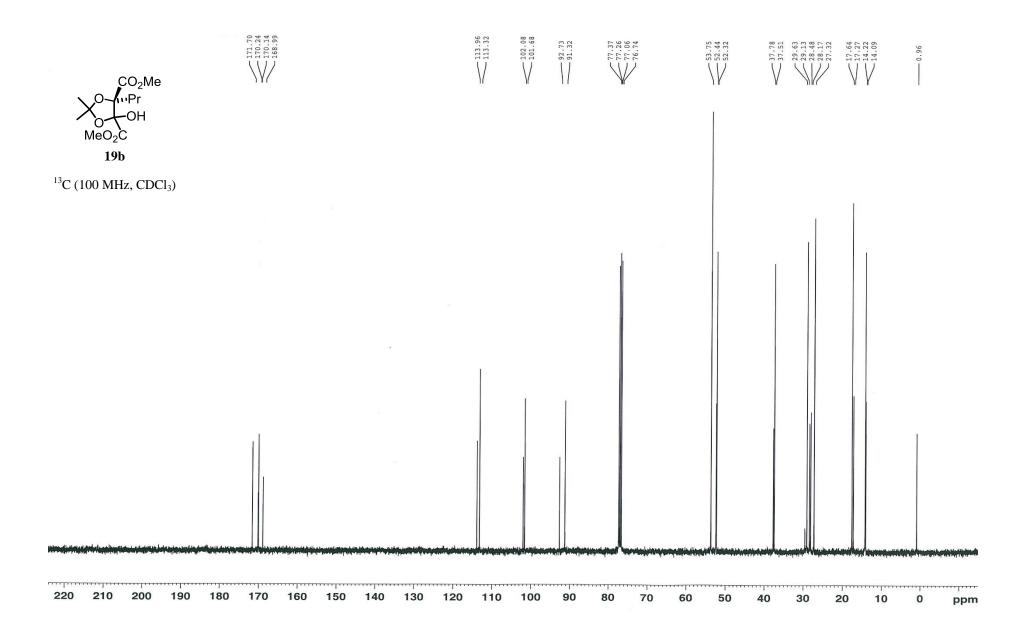

# <sup>1</sup>H and <sup>13</sup>C NMR Spectra

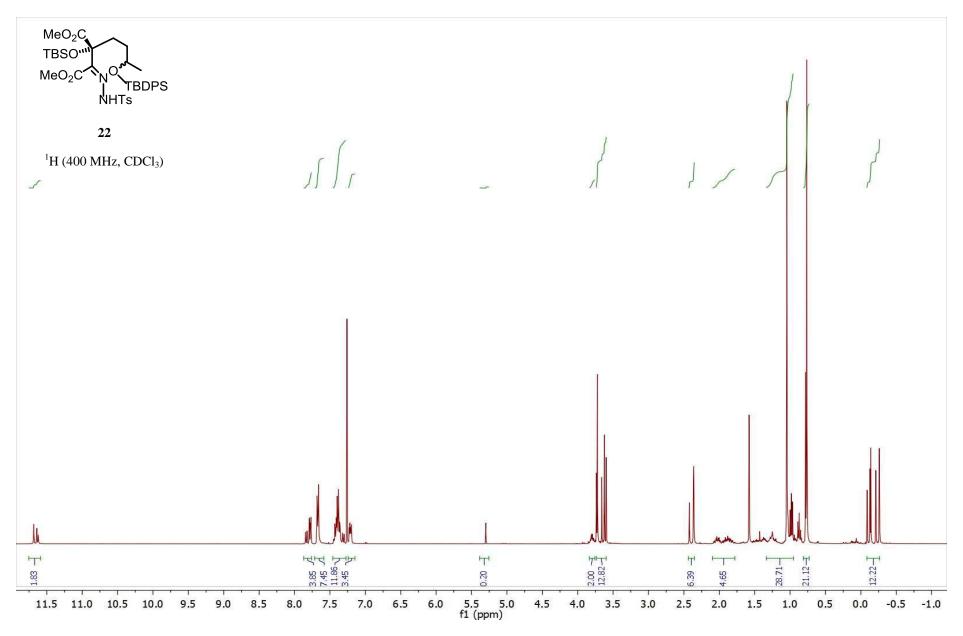


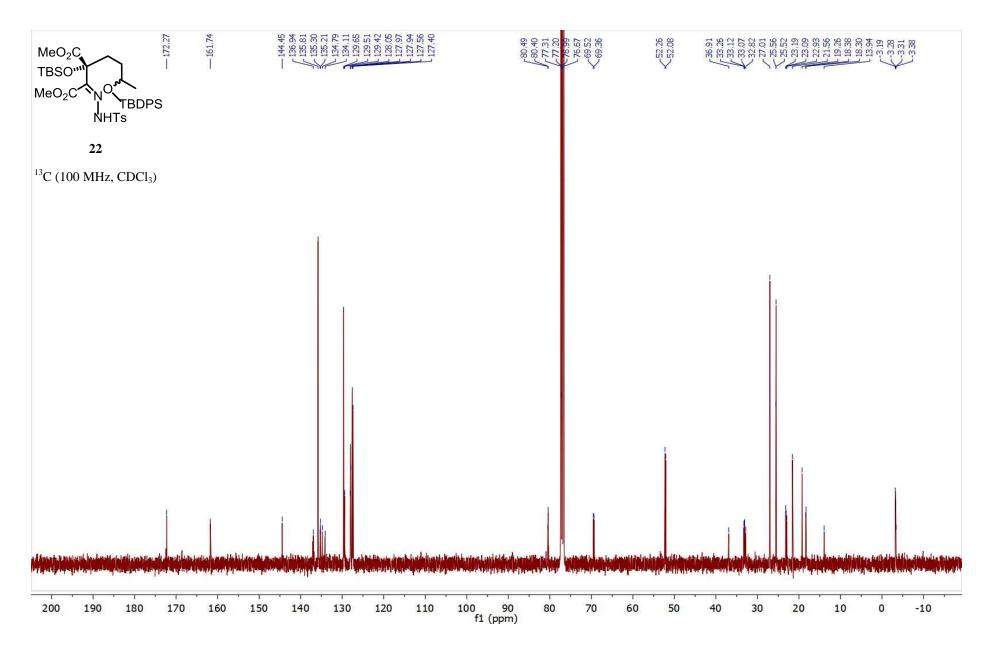



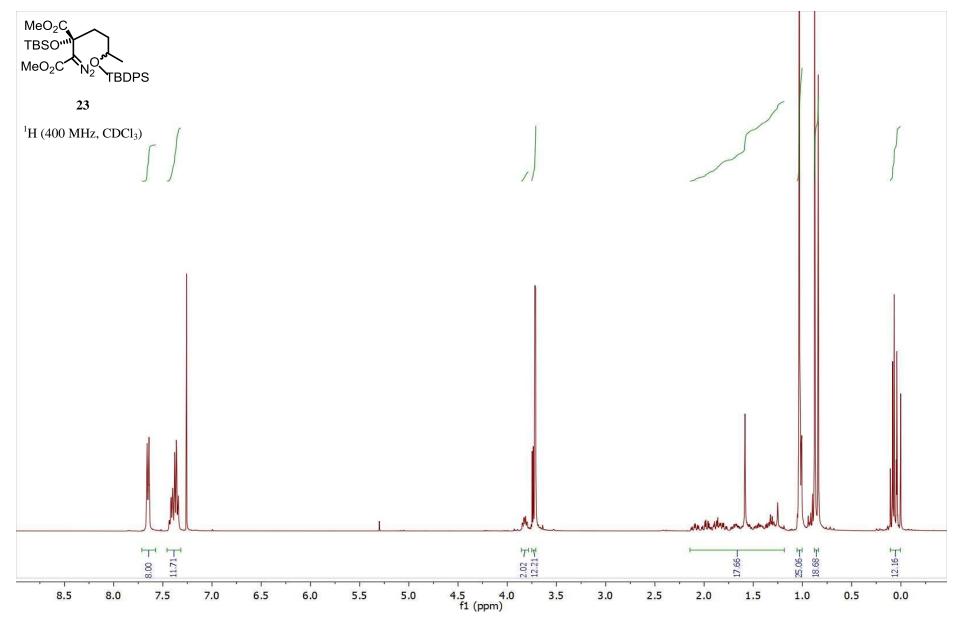



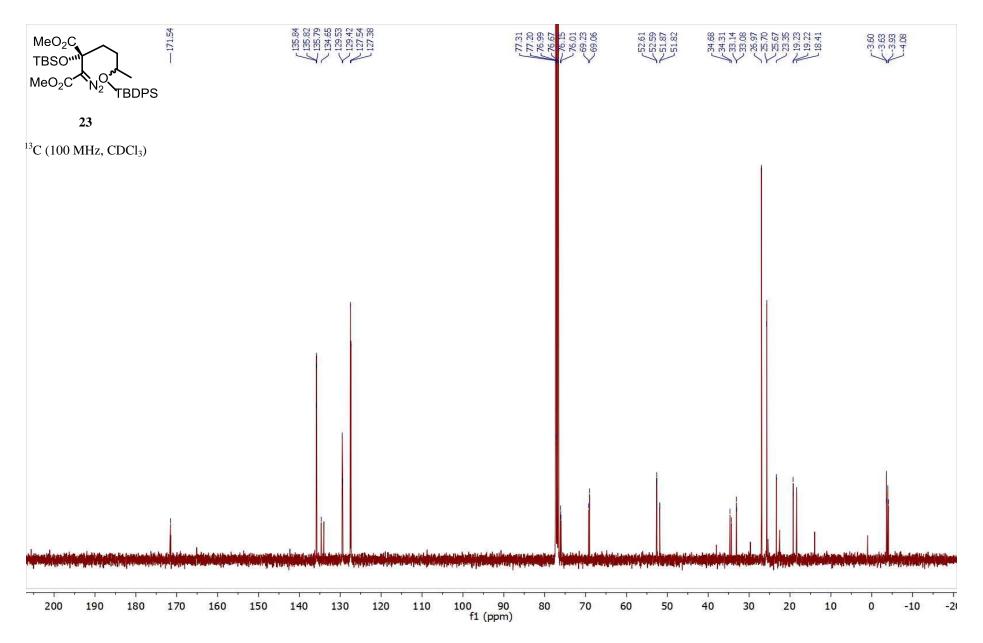



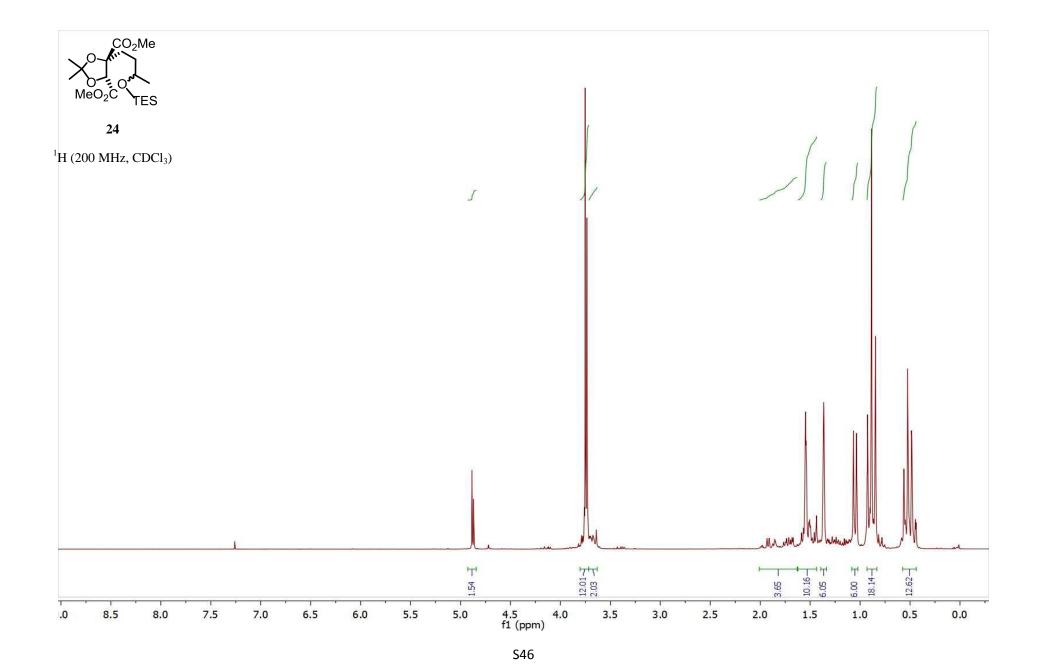



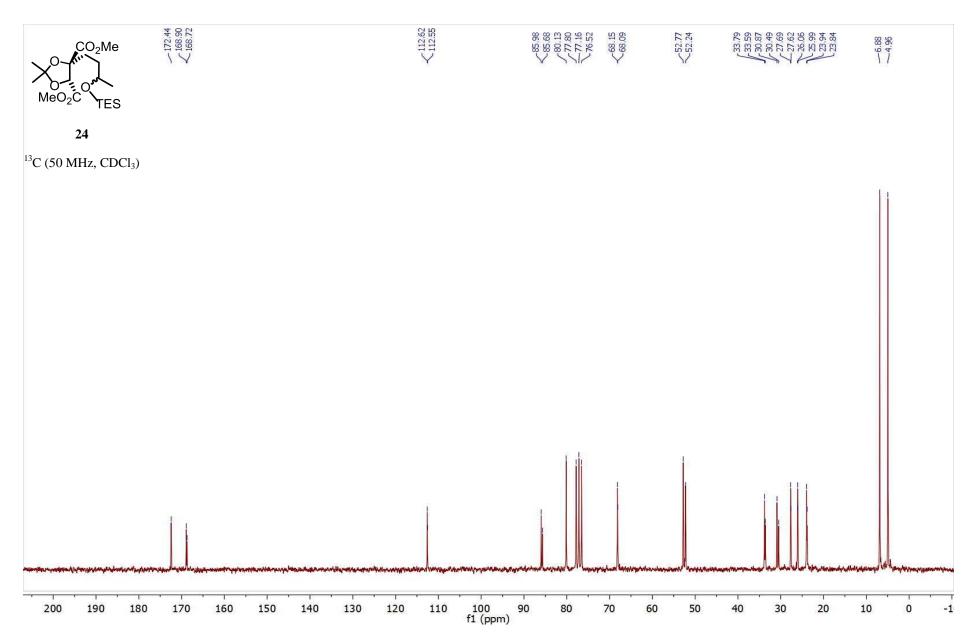



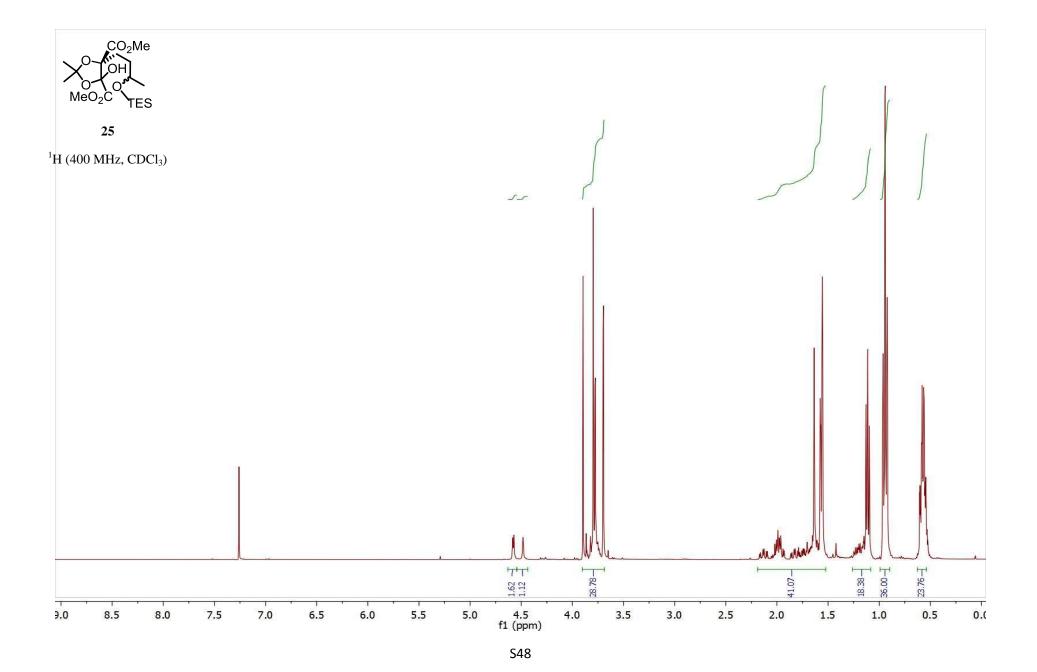



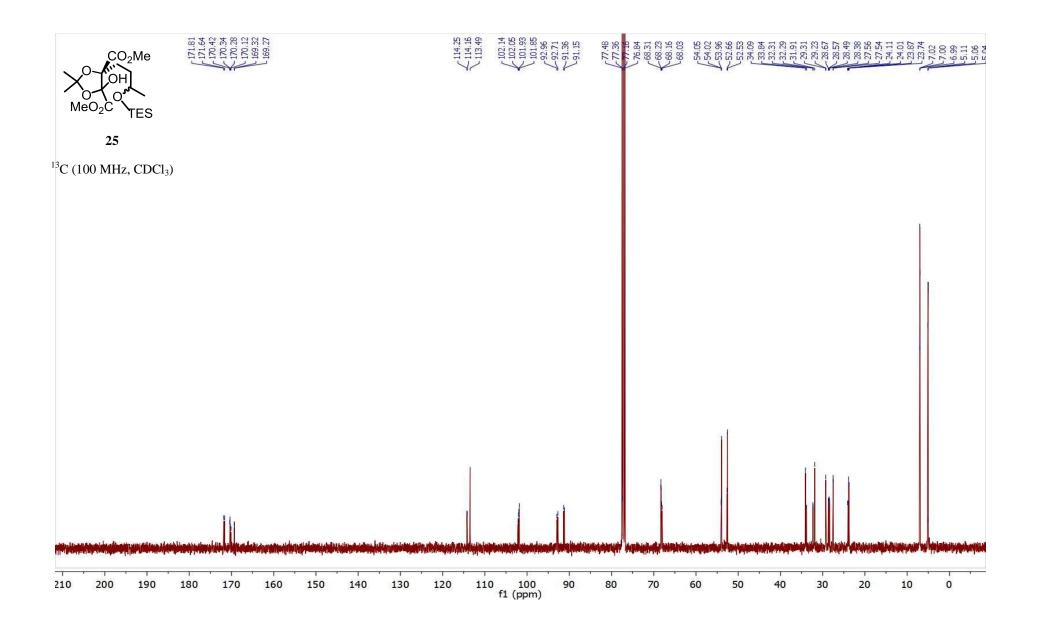



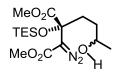



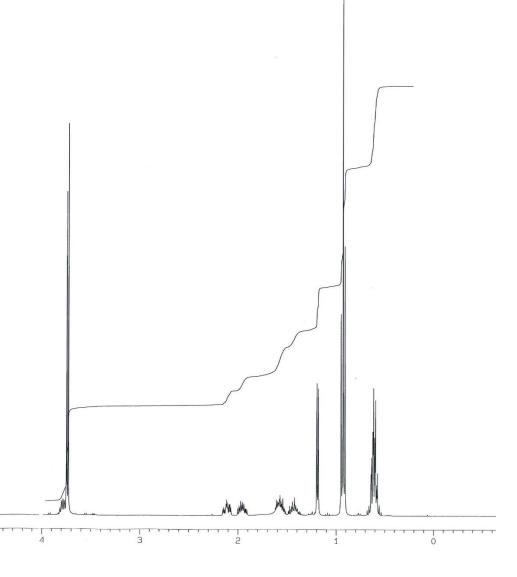



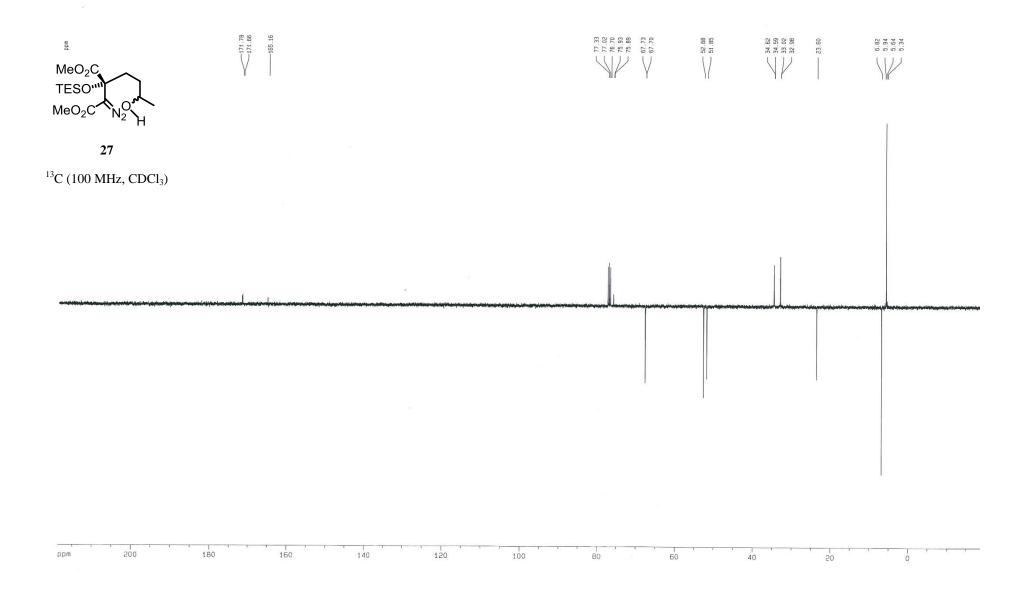



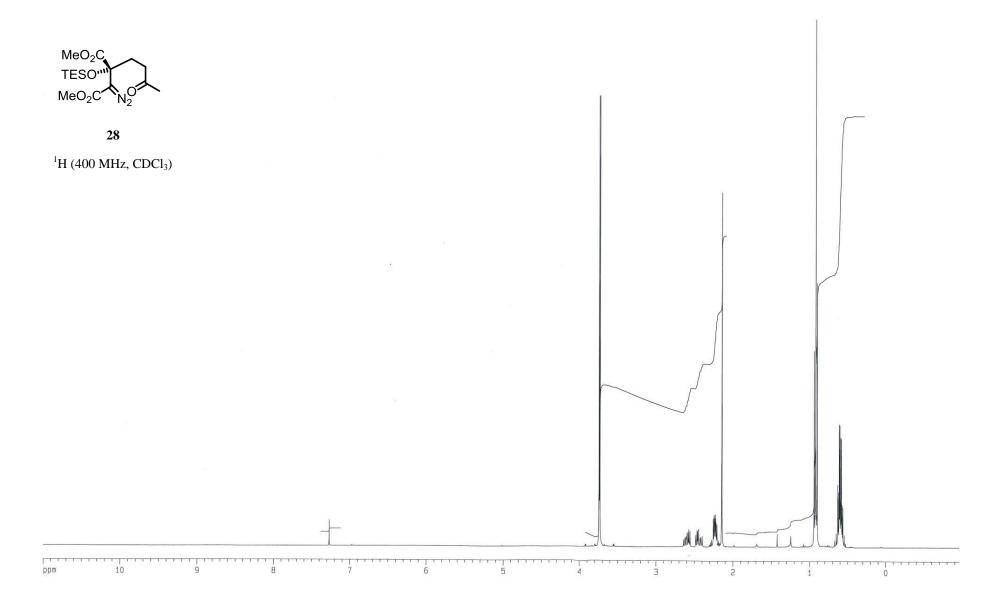



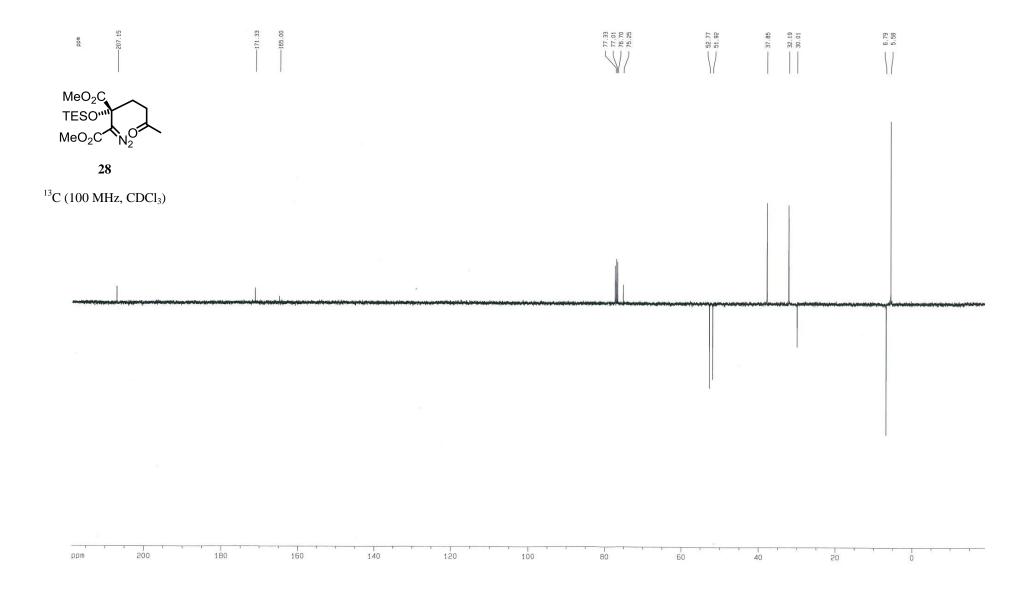


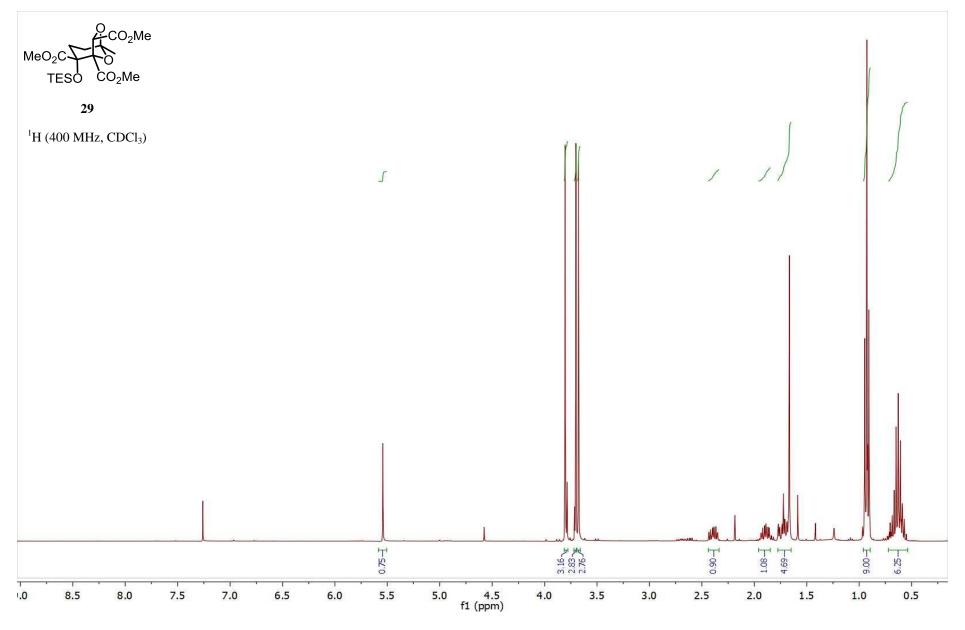




27


<sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)

