

Supporting Information

for

Bambusuril analogs based on alternating glycoluril and xylylene units

Tomáš Lízal and Vladimír Šindelář

Beilstein J. Org. Chem. 2019, 15, 1268-1274. doi:10.3762/bjoc.15.124

MS and NMR spectra, computational details and crystallographic data for macrocycles 1a and 1b

Table of contents

MALDI:	S2
HPLC	S2
HR-MS:	S3
NMR	S4
Determination of energy difference of conformers:	S7
Computational details	S8
X-ray crystallography	S8

Figure S2: HPLC-MS analysis of the crude product.

C₂₈H₃₂N₈O₄

APCI + (MMI)

nitrogen flow 5 L/min, gas temperature 325°C, nebulizer 45 psig, skimmer 65 V, vaporizer 200°C, fragmentor 40 V, dissolved in methanol

C₂₈H₃₂N₈O₄

exact mass: 544.2547

APCI + (MMI)

nitrogen flow 5 L/min, gas temperature 325°C, nebulizer 45 psig, skimmer 65 V, vaporizer 200°C, fragmentor 20 V, dissolved in methanol

Figure S4: HR-MS analysis of 1b.

Figure S5: Variable-temperature ¹H NMR spectrum of **1a** measured at 30 °C, -10 °C and -40 °C in MeCN-*d*₃.

Figure S6: ¹H NMR spectrum of **1a** measured at -40 °C in MeCN-*d*₃, [#]HDO signal, *MeCN signal.

Figure S7: ¹³C APT NMR spectrum of 1a measured at -40 °C in MeCN- d_3 .

Figure S8: ROESY NMR spectrum of 1a measured at -40 °C in MeCN-d₃.

¹⁸ 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 $\frac{4.6}{\delta (ppm)}$ 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 **Figure S9:** ¹H NMR spectrum of **1b** measured at -40 °C in MeCN-*d*₃.

Figure S10: ¹³C APT NMR spectrum of 1b measured at -40 °C in MeCN- d_3 .

Figure S11: ROESY NMR spectrum of 1b measured at -40 °C in MeCN-d₃.

Determination of energy difference of conformers:

Application of Boltzmann equation:

The energy differences in of the conformers were calculated using equation $(1)^1$,

$$\frac{N_i}{N_j} = e^{\frac{-(E_i - E_j)}{kT}} \to \ln \frac{N_i}{N_j} kT = -(E_i - E_j)$$

$$\tag{1}$$

where N_i is the population of conformer *i*, N_j is the population of conformer *j*, *k* is the Boltzmann constant (kcal mol⁻¹), *T* is the temperature of measurement (233.15 K).

1a (MeCN, -40 °C):
$$\ln \frac{4}{3} 0.001987 \times 233.15 = -(E_i - E_j) = 0.13 \, kcal/mol$$

1b (MeCN, -40 °C):
$$\ln \frac{82}{1} 0.001987 \times 233.15 = -(E_i - E_j) = 2.04 \, kcal/mol$$

Computational details

Computational methods available in Spartan '18 software² were employed to determine geometries and properties of macrocycle conformers. The structures of **1a-1**, **1a-2**, **1b-1** and **1b-2** were built in silico. The geometry of the structures were optimized at the CAM-B3LYP/6-31G(d) level of theory using C-PCM solvation model of acetonitrile.

X-ray crystallography

Diffraction data were collected at 120 K on Rigaku Saturn944+ diffractometer with graphite-monochromated Mo K α radiation. The structures were solved by direct methods and refined using ShelXTL software package³.

CCDC No.	1898386
Empirical formula	$C_{30}H_{36}Cl_4N_8O_4$
Formula weight	714.47
Crystal system	Orthorhombic
Space group	Pca2 ₁
a [Å]	30.482(10)
<i>b</i> [Å]	9.034(3)
<i>c</i> [Å]	22.961(7)
Volume [Å ³]	6323(4)
Ζ	8
$\mu [\mathrm{mm}^{-1}]$	0.426
Crystal size [mm]	0.18 imes 0.13 imes 0.10
θ range [°]	1.1–27.5
Reflections collected/unique	19956/9563
R _{int}	0.042
Data/restraints/parameters	9563/745/837
Final <i>R</i> indices $[I > 2\sigma(I)]$	0.045
$\Delta \rho_{\rm max} / \Delta \rho_{\rm min} [e {\rm \AA}^{-3}]$	0.47/-0.47

Figure S12: Molecular structure of 1b-1. Thermal ellipsoids are drawn at the 50% probability level.

References:

- (1) Anslyn, E. V.; Dougherty, D. A. *Modern Physical Organic Chemistry*; University Science, 2006.
- (2) *Spartan'18*; Wavefunction: Irvine, CA, USA, 2018.
- (3) Sheldrick, G. M. Crystal Structure Refinement with *SHELXL. Acta Crystallogr. Sect. C Struct. Chem.* **2015**, *71* (1), 3–8. https://doi.org/10.1107/S2053229614024218.