Supporting Information

for

Enantioselective Diels-Alder reaction of anthracene by chiral tritylium catalysis

Qichao Zhang, Jian Lv and Sanzhong Luo

Beilstein J. Org. Chem. 2019, 15, 1304-1312. doi:10.3762/bjoc.15.129

Experimental procedures and characterization data of all products, copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, IR, HRMS, and HPLC spectra of all compounds

Table of contents

1. General information and materials S2
2. Experimental section S3
3. Characterization S7
4. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra S19
5. HPLC spectra S35

General information and materials

Commercial reagents were used as received, unless other indicated. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a NMR instrument (400 and 500 MHz for ${ }^{1} \mathrm{H}$ NMR, 100 and 125 MHz for ${ }^{13} \mathrm{C}$ NMR). Tetramethylsilane (TMS) served as the internal standard for ${ }^{1} \mathrm{H}$ NMR, and CDCl_{3} served as the internal standard for ${ }^{13} \mathrm{C}$ NMR. The following abbreviations were used to express the multiplicities: $s=\operatorname{singlet} ; \mathrm{d}=$ doublet; $\mathrm{t}=$ triplet; $\mathrm{q}=$ quartet; $\mathrm{m}=$ multiplet; $\mathrm{br}=$ broad. Silica gel (200-300 mesh) was used for column chromatography. The enantioselective excesses (ee) were determined by HPLC analysis on Chiral Daicel Chiralcel AD-H, OD-H, AS-H and OJ-H columns. Optical rotation were measured on a commercial polarimeter and are reported as follows: $[\alpha]_{\mathrm{D}}{ }^{25}$ $(c=\mathrm{g} / 100 \mathrm{~mL}$, solvent). HRMS were recorded on a commercial apparatus (ESI Source).

Experimental section

Dissociation of latent carbocation by using Lewis acids

General procedure I: TP (0.005 mmol$)$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The corresponding Lewis acid (0.005 mmol), such as $\mathrm{InCl}_{3}, \operatorname{InBr}_{3}, \operatorname{InI}_{3}, \operatorname{In}(\mathrm{OTf})_{3}$, $\mathrm{Sc}(\mathrm{OTf})_{3}, \mathrm{Hf}(\mathrm{OTf})_{4}$, and GaCl_{3}, was added, respectively. After each addition, the solution was stirred for 10 min before UV-vis testing was performed (see Figure 1a).

General procedure II: $\mathrm{Ph}_{3} \mathrm{CBr}(0.005 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and the corresponding chiral Lewis acid (0.005 mmol) was added. After each addition, the solution was stirred for 30 min before UV-vis testing was performed (see Figure 1b). General procedure III: To an oven-dried reaction tube was added the corresponding Lewis acid (0.05 mmol), and distilled anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ was added. Then, a solution of trityl bromide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ was added and the reaction mixture stirred at room temperature. In situ IR spectroscopy was used to monitor the reaction progress (at $1584 \mathrm{~cm}^{-1}$, Figure S 1) as well as for monitoring of the conversion of the free carbocation (Figure S2).

Figure S1: Representative 3D stacking plots of in situ IR spectra of trityl cation generation.

Figure S2: Dissociation progress of $\mathrm{Ph}_{3} \mathrm{CBr}(0.05 \mathrm{mmol})$ in the presence of NaBArF , $\mathrm{FeBr}_{3}, \mathbf{1 c}$, or $\mathbf{2 a}(0.05 \mathrm{mmol})$, monitored by in situ IR at $1584 \mathrm{~cm}^{-1}$.

Figure S3: Proposed transition-state mode.

General procedure for chiral carbocation catalyzed asymmetric Diels-Alder reactions between anthracene and $\boldsymbol{\beta}, \boldsymbol{\gamma}$-unsaturated- α-keto esters: To dichloromethane was added $\mathrm{FeBr}_{3}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and silver salt of chiral phosphoric acid ($0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$). After stirring for $3 \mathrm{~h}, \mathrm{Ph}_{3} \mathrm{CCl}(0.02 \mathrm{mmol}$, $10 \mathrm{~mol} \%$) was added and the reaction mixture was stirred for additional 3 h at rt . Then, β, γ-unsaturated- α-keto esters $4(0.2 \mathrm{mmol})$ and anthracene ($\mathbf{3}, 0.4 \mathrm{mmol}$) were added and the reaction mixture was stirred for up to 3 d at rt . Purification by column chromatography on silica gel with petroleum ether/dichloromethane 2:1 afforded the desired products 5 .

Table S1: Optimization studies for asymmetric catalyzed Diels-Alder reaction of anthracene by TP and different Lewis acids.

entry ${ }^{\text {a }}$	carbocation				
			solvent	yield (\%) ${ }^{\text {b }}$	ee ${ }^{\text {c }}$
	TrX	Lewis acid			
1	TP	None	DCE	9	97
2	TP	InCl_{3}	DCE	62	9
3	TP	InBr_{3}	DCE	94	Rac.
4	TP	InI_{3}	DCE	42	36
5	TP	$\operatorname{In}(\mathrm{OTf})_{3}$	DCE	89	Rac.
6	TP	$\mathrm{Hf}(\mathrm{OTf})_{4}$	DCE	90	Rac.
7	TP	$\mathrm{Sc}(\mathrm{OTf})_{3}$	DCE	86	Rac.
8	TP	GaCl_{3}	DCE	81	-21

${ }^{\text {a }}$ General condition: $\mathbf{3 a}(0.4 \mathrm{mmol}), \mathbf{4 a}(0.2 \mathrm{mmol})$, TP (10 mol\%), and Lewis acid (10 $\mathrm{mol} \%)$ in the reaction solvent $(2 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$.

Characterization

5a: Colorless solid; 70\% yield, $91 \% e e ;[\alpha]_{\mathrm{D}}^{22}=+25.5(\mathrm{c}=1.04) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.09(\mathrm{~m}, 8 \mathrm{H}), 7.03(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.73$ (dd, $J=6.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.6,162.1,144.1,142.5,142.5,140.9,138.5,128.3,128.1,126.9$, $126.9,126.6,126.5,126.4,126.3,125.1,123.5,123.4,56.8,53.0,51.9,46.9,46.8 \mathrm{ppm} ;$ HPLC analysis: Daicel Chiralpak AS-H, hexane/iso-propanol $=97: 3$, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=206 \mathrm{~nm}$, retention time: 9.5 min (major) and 13.1 min (minor); $\mathrm{IR}(\mathrm{KBr}$, $\left.\mathrm{cm}^{-1}\right): 3025,2952,1732,1601,1493,1467,1458,1259,1205,1152,1073,760,702$, 640, 587, 567; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}^{+}: 391.1305$, found: 391.1304.

5b
5b: Colorless solid; 82% yield, $74 \% e e ;[\alpha]_{\mathrm{D}}^{22}=+22.0(\mathrm{c}=1.06) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.06(\mathrm{~m}, 8 \mathrm{H}), 7.00(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=5.2 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.15$ (m, 3H), $3.71(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{t}, J$
$=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.0,161.7,144.0,142.5,140.9$, 138.6, 128.3, 128.0, 126.8, 126.7, 126.5, 126.5, 126.3, 126.2 125.1, 123.4, 123.3, 62.5, 56.7, 51.9, 46.7, 46.7, 13.9 ppm ; HPLC analysis: Daicel Chiralpak AS-H, hexane/isopropanol $=97: 3$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=206 \mathrm{~nm}$, retention time: 8.1 min (major) and 13.2 min (minor); $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3067,3025,2982,2949,1726,1467,1458,1298$, 1256, 1072, 1033, 1019, 760, 702; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}^{+}$: 405.1461, found: 405.1459 .

5c
5c: Colorless solid; 46\% yield, 55\% ee; [$\alpha]_{\mathrm{D}}{ }^{22}=+11.3$ (c = 0.98); ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.06(\mathrm{~m}, 8 \mathrm{H}), 7.00(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.59-6.57(\mathrm{~m}, 2 \mathrm{H}), 5.10-5.04(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.4,161.5$, $144.0,142.6,142.5,140.9,138.7,128.3,128.0,126.8,126.7,126.5,126.5,126.3,126.2$, 125.2, 123.4, 123.3 70.8, 56.6, 52.0, 46.7, 46.7, 21.6, 21.6 ppm; HPLC analysis: Daicel Chiralpak AS-H, hexane/iso-propanol $=97: 3$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=206 \mathrm{~nm}$, retention time: 7.2 min (major) and 11.8 min (minor); $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3067,3025,2982$, 2939, 1722, 1467, 1458, 1259, 1082, 1071, 761, 702; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{O}_{3}{ }^{+}$: 397.1798, found: 397.1794.

5d
5d: Colorless solid; 74% yield, $80 \% e e ;[\alpha]_{\mathrm{D}}{ }^{22}=+24.7(\mathrm{c}=1.16) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.08(\mathrm{~m}, 5 \mathrm{H}), 7.02(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{dd}, J=8.5,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H})$, $4.21(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.62(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.3$, $161.9,161.7(\mathrm{~d}, J=243.8 \mathrm{~Hz}), 143.7,142.2,140.6,138.3,138.1,129.3(\mathrm{~d}, J=6.6 \mathrm{~Hz})$, $126.8,126.5,126.4,126.4,126.2,125.0,123.5,123.3,115.0(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 56.8$, 53.0, 51.8, 46.7, 45.8 ppm; HPLC analysis: Daicel Chiralpak AD-H (2x), hexane/isopropanol $=97: 3$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}$, retention time: 31.7 min (minor) and 36.0 min (major); $\mathrm{IR}\left(\mathrm{KBr}^{2} \mathrm{~cm}^{-1}\right)$: 3069, 3044, 3024, 2953, 1733, 1603, 1511, 1458, $1259,1226,1170,1078,837,801.759,703$; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{FNa}^{+}$: 409.1210, found: 409.1210 .

5e: Colorless solid; 68% yield, $75 \% e e ;[\alpha]_{\mathrm{D}}{ }^{22}=+36.2(\mathrm{c}=1.01) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.04(\mathrm{~m}, 7 \mathrm{H}), 6.99(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=1.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.73$ (s, 3H), $3.66(\mathrm{dd}, J=5.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=5.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$; ${ }^{13}{ }^{3} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.3,161.9,143.6,142.2,140.9,140.5,138.3,132.6$, 129.3, 128.3, 126.8, 126.6, 126.4, 126.4, 126.3, 125.0, 123.5, 123.4, 56.7, 52.9, 51.6, 46.6, 46.0; HPLC analysis: Daicel Chiralpak AD-H (2x), hexane/iso-propanol = 97:3, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$, retention time: 36.0 min (minor) and 40.5 min (major); IR (KBr, cm^{-1}): 3069, 3043, 3024, 2952, 1732, 1492, 1458, 1265, 1078, 1013, 830, 759,721 ; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{ClNa}^{+}: 425.0915$, found: 425.0915 .

$5 f$
5f: Colorless solid; 66% yield, $81 \% e e ;[\alpha]_{\mathrm{D}}{ }^{22}=+46.8(\mathrm{c}=1.02) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H})$, 7.22-7.09 (m, 4H), $7.02(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.20$ (s, 1H), $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=5.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.3,161.9,143.6,142.3,141.5,140.5,138.4,131.4,129.7$, 128.0, 126.9, 126.7, 126.5, 126.5, 126.4 125.1, 123.6, 123.4, 120.8, 56.8, 53.1, 51.6, 46.7, 46.2; HPLC analysis: Daicel Chiralpak AD-H (2x), hexane/iso-propanol = 97:3, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 39.0 min (minor) and 42.1 min (major); IR (KBr, cm ${ }^{-1}$): 3032, 3023, 2951, 1729, 1489, 1458, 1264, 1076, 1009, 816, 759; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{BrNa}^{+}: 469.0410$, found: 469.0409 .

5g
5g: Colorless solid; 77\% yield, 76\% ee; [$\alpha]_{\mathrm{D}}{ }^{22}=+25.6(\mathrm{c}=1.14) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.27-7.11 (m, 5H), $7.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.24$ $(\mathrm{d}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.1, 161.9, 146.6, 143.5, 142.3, 140.4, 138.4, $129.2(\mathrm{q}, J=32.3 \mathrm{~Hz}), 128.4,127.0,126.8,126.6$, $126.6,126.5,125.3(\mathrm{q}, J=3.9 \mathrm{~Hz}), 125.2,124.2(\mathrm{q}, J=270.5 \mathrm{~Hz}), 123.7,123.5,56.7$, 53.1, 51.5, 46.8, 46.5 ppm; HPLC analysis: Daicel Chiralpak AD-H (2x), hexane/isopropanol $=97: 3$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}, \lambda=206 \mathrm{~nm}$, retention time: 31.2 min (minor) and 35.1 min (major); $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3071,3044,3025,2954,1732,1618,1458,1326$, $1259,1166,1114,1069,1017,842,759,660$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~F}_{3}$: 435.1214, found: 435.1213 .

5h
5h: Colorless solid; 48% yield, $80 \% e e ;[\alpha]_{\mathrm{D}}^{22}=+46.8(\mathrm{c}=0.92) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.08(\mathrm{~m}, 5 \mathrm{H}), 7.04(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.22(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{dd}, J=6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=$
$5.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 192.6, 162.0, 144.1, $142.4,140.9,139.4,138.5,136.3,128.9,127.8,126.7,126.5,126.4,126.3,126.1,125.0$, 123.4, 123.3, 56.8, 52.8, 51.9, 46.8, 46.3, 21.0 ppm ; HPLC analysis: Daicel Chiralpak AS-H, hexane/iso-propanol $=97: 3$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=206 \mathrm{~nm}$, retention time: 8.6 min (minor) and 12.3 min (major); $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3023,2951,1733,1514,1467$, 1078, 813, 758, 722; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}^{+}: 405.1460$, found: 405.1461 .

$5 i$
5i: Colorless solid; 68% yield, $93 \% e e ;[\alpha]_{\mathrm{D}}{ }^{22}=+60.5(\mathrm{c}=1.02) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.46-6.98(\mathrm{~m}, 15 \mathrm{H}), 6.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.83(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.61 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ 192.4, 161.9, 143.9, 142.3, 141.4, 140.7, 140.4, 139.5, 138.4, 128.7, 128.3, 127.2, 126.8, 126.7, 126.4, 126.4, 126.3, 126.1, 125.0, 123.4, 123.3, 56.7, 52.7, 51.7, 46.7, 46.3 ppm; HPLC analysis: Daicel Chiralpak AS-H, hexane/iso-propanol $=97: 3$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, retention time: 13.4 min (major) and 28.8 min (minor); $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3026,2951,1733,1486,1458$, $1265,1216,1078,1007,840,764,698,634$; HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}^{+}$: 467.1618, found: 467.1618.

5j
5j: Colorless solid; 92% yield, $91 \% e e ;[\alpha]_{\mathrm{D}}{ }^{22}=+31.9(\mathrm{c}=1.11) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.00(\mathrm{~m}, 8 \mathrm{H}), 6.54$ (s, 1H), $6.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ (s, 3 H), $3.66(\mathrm{dd}, J=5.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=5.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 192.2,161.9,144.6,143.6,142.2,140.5,138.4,134.1,129.5$, $128.3,127.0,126.9,126.7,126.5,126.5,126.4,126.1,125.1,123.7,123.5,56.7,53.1$, 51.6, 46.7, 46.3 ppm ; HPLC analysis: Daicel Chiralpak AD-H (2x), hexane/isopropanol $=97: 3$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}$, retention time: 30.4 min (minor) and 34.9 min (major); $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3069,3043,3024,2952,1732,1595,1467,1264$, 1077, 783, 760, 701; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Cl}^{-}: 401.0950$, found: 401.0948 .

5k
5k: Colorless solid; 86% yield, $87 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{22}=+26.7(\mathrm{c}=1.04) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.07(\mathrm{~m}, 6 \mathrm{H}), 7.02(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}$, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.61(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.2, 161.9, 144.8,
$143.5,142.2,140.4,138.3,131.3,129.9,129.8,126.9,126.7,126.5,126.5,126.4,125.1$, 123.6, 123.5, 122.3, 56.7, 53.1, 51.5, 46.7, 46.3 ppm; HPLC analysis: Daicel Chiralpak AD-H (2x), hexane/iso-propanol $=97: 3$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}$, retention time: 30.6 min (minor) and 38.4 min (major); $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3068,3043,3023,2952$, 1732, 1592, 1566, 1467, 1458, 1432, 1264, 1076, 782, 759, 698; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{BrNa}^{+}: 469.0410$, found: 469.0411 .

51
51: Colorless solid; 76% yield, $89 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{22}=+25.0(\mathrm{c}=1.15) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-6.94(\mathrm{~m}, 8 \mathrm{H}), 6.39(\mathrm{~s}$, $1 \mathrm{H}), 6.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{dd}, J=6.0$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 192.6,162.1,144.1,142.4,141.0,138.5,137.8,129.1,128.2,128.0,127.5$, $126.8,126.6,126.5,126.3,126.2,125.1,124.9,123.5,123.4,56.8,53.0,51.9,46.9$, 46.6, 21.5 ppm ; HPLC analysis: Daicel Chiralpak AD-H (2x), hexane/iso-propanol $=$ 97:3, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}, \lambda=206 \mathrm{~nm}$, retention time: 25.9 min (minor) and 30.5 \min (major); $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3042,3023,2951,1729,1467,1458,1262,1078,785,758$, 707; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{O}_{3} \because$: 381.1496, found: 381.1495 .

5m
5m: Colorless solid; 85% yield, $73 \% e e ;[\alpha]_{\mathrm{D}}{ }^{22}=+46.8(\mathrm{c}=1.05) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.09(\mathrm{~m}, 6 \mathrm{H}), 7.02(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}$, $1 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.0$, $161.9,143.3,142.8,142.1,140.2,138.3,132.2,130.9,130.2,130.2,127.3,127.0,126.9$, 126.6, 126.6, 126.5, 125.1, 123.7, 123.5, 56.8, 53.2, 51.5, 46.7, 45.8; HPLC analysis: Daicel Chiralpak AD-H (2x), hexane/iso-propanol $=97: 3$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}, \lambda=$ 230 nm , retention time: 33.0 min (minor) and 41.0 min (major); $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3069$, 3043, 3024, 2952, 1729, 1468, 1264, 1080, 1029, 758, 709; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{Cl}_{2}{ }^{-}: 435.0560$, found: 435.0564 .

5n: Colorless solid; 42\% yield, $83 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{22}=+47.4(\mathrm{c}=0.97) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.72-7.71 (m, 1H), 7.59-7.57 (m, 2H), $7.51(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.34(\mathrm{~m}$, $3 \mathrm{H}), 7.27-7.07(\mathrm{~m}, 7 \mathrm{H}), 6.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.86(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.81(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.6$,
$162.1,144.0,142.4,141.0,139.9,138.6,133.3,132.4,128.0,127.9,127.8,127.6,126.9$, 126.9, 126.6, 126.6, 126.5, 126.3, 126.2, 126.1, 125.8, 125.2, 123.6, 123.5, 56.8, 53.0, 52.0, 46.9, 46.9; HPLC analysis: Daicel Chiralpak AD-H, hexane/iso-propanol = 97:3, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=267 \mathrm{~nm}$, retention time: 16.1 min (minor) and 23.1 min (major); $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3053,3023,2951,1729,1466,1458,1262,1079,818,746$; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{O}_{3}{ }^{-}: 417.1496$, found: 417.1494.

50
50: Colorless solid; 93\% yield, $23 \% e e ;$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{~d}, J=7.2$ Hz, 1H), 7.35 (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.04$ (m, 9H), 6.38 (br, 2H), 3.80 (d, $J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.3,162.4,146.9,145.7,143.2,141.4,141.1,128.1,127.5,127.1$, $126.3,126.2,126.1,125.7,123.6,122.8,120.4,120.4,120.4,61.3,56.4,52.9,46.1$, 45.4, 16.5, 16.2; HPLC analysis: Daicel Chiralpak AD-H (2x), hexane/iso-propanol = 97:3, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=206 \mathrm{~nm}$, retention time: 32.6 min (major) and 34.1 \min (minor); $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3063,3028,1969,2881,1733,1493,1453,1381,1271$, 1096, 1068, 765, 750, 702; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}^{+}$: 419.1618, found: 419.1618.

Procedure for gram-scale reaction of 3 a and 4 k , and transformation to cycloadduct 5k: To dichloromethane was added $\mathrm{FeBr}_{3}(0.5 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and silver
salt of chiral phosphoric acid ($1 \mathrm{mmol}, 20 \mathrm{~mol} \%$). After stirring for $3 \mathrm{~h}, \mathrm{Ph}_{3} \mathrm{CCl}$ ($0.5 \mathrm{mmol}, 10 \mathrm{~mol} \%$) was added and the reaction mixture was stirred for 3 h at rt . After the addition of the β, γ-unsaturated- α-ketoester $\mathbf{4 k}$ (5 mmol) and anthracene ($\mathbf{3 a}, 10$ $\mathrm{mmol})$, the reaction mixture was stirred for 3 d at rt . The reaction mixture was purified by column chromatography on silica gel with petroleum ether/dichloromethane $2: 1$ to afford the desired product $\mathbf{5 k}$ in 88% yield and 87% ee. To an oven-dried reaction tube was added cycloadduct 5k (4.4 mmol), sulfonyl hydrazide $\mathbf{6}$ (5.3 mmol), and MgSO_{4} (22.0 mmol) and distilled anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The mixture was stirred for 12 h at rt . Purification of the mixture by column chromatography on silica gel gave product 7.

7: colorless solid; 83% yield, $82 \% e e ;[\alpha]_{\mathrm{D}}{ }^{25}=+226.7 ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $11.52(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.17(\mathrm{~m}, 5 \mathrm{H})$, 7.11-7.04 (m, 4H), 6.97-6.90 (m, 2H), $6.65(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=7.45 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~s}$, $1 \mathrm{H}), 4.12(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.2,146.1,144.1,144.0,143.8,140.3,138.8$, 136.7, 135.4, 131.2, 129.7, 129.7, 129.5, 127.8, 126.4, 126.4, 126.2, 126.1, 126.0, 125.9, 123.3, 122.6, 122.1, 52.6, 51.5, 50.6, 48.6, 48.1, 21.8; HPLC analysis: Daicel Chiralpak AD-H, hexane/iso-propanol $=90: 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=206 \mathrm{~nm}$, retention time: 8.7 min (minor) and 14.9 min (major); $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right.$): 3212, 3068, 3023, 2954,

1699, 1592, 1565, 1458, 1377, 1169, 1085, 761, 698, 665; HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{BrNa}^{+}: 637.0767$, found: 637.0764.

NMR Spectra

ppm (t1)

(1)

(

HPLC Spectra

mAU

〈Peak Results〉
PDA Ch1 206 nm

Index	Time／min	Height／mAU	Quantity／Area	Area $\% / \%$
1	9.181	440333	21247318	48.669
2	12.669	213771	22409639	51.331

mAU

〈Peak Results〉
PDA Ch1 206 nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	9.454	247520	12712948	95.421
2	13.118	7960	610026	4.579

mAU

〈Peak Results〉
PDA Ch1 206nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	7.843	268981	9186776	50.418
2	12.242	102174	9034453	49.582

mAU

〈Peak Results＞
PDA Ch1 206nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	8.061	720599	29467553	86.829
2	13.166	41188	4469754	13.171

mAU

〈Peak Results>
PDA Ch1 206nm

Index	Time/min	Height/mAU	Quantity/Area	Area \%/\%
1	7.119	716402	25480269	49.411
2	11.182	298863	26087405	50.589

mAU

〈Peak Results>
PDA Ch1 206nm

Index	Time/min	Height/mAU	Quantity/Area	Area \%/\%
1	7.201	406002	14844113	77.688
2	11.822	42816	4263235	22.312

mAU

〈Peak Results＞
PDA Ch1 206nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	31.925	595421	23645482	49.952
2	36.364	540898	23690963	50.048

mAU

〈Peak Results〉
PDA Ch1 230nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	31.727	90762	3346172	10.114
2	35.978	665705	29736945	89.886

mAU

〈Peak Results〉
PDA Ch1 210nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	36.224	1292603	56691467	50.213
2	40.844	1167899	56209909	49.787

mAU

〈Peak Results〉
PDA Ch1 210nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	36.010	387751	15448626	12.572
2	40.469	1948797	107428429	87.428

mAU

〈Peak Results＞
PDA Ch1 206nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	39.247	884106	40573007	50.001
2	43.174	826677	40572136	49.999

mAU

〈Peak Results〉
PDA Ch1 254nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	38.964	86055	3762892	9.556
2	42.131	546441	35612485	90.444

mAU

〈Peak Results〉
PDA Ch1 206nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	31.007	1099049	46113008	49.621
2	34.824	1014885	46818102	50.379

mAU

〈Peak Results〉
PDA Ch1 206nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	31.191	110353	4221185	11.967
2	35.089	704606	31053812	88.033

mAU

〈Peak Results>
PDA Ch1 206nm

Index	Time/min	Height/mAU	Quantity/Area	Area \%/\%
1	8.383	767827	31416617	49.975
2	11.199	396346	31448599	50.025

mAU

<Peak Results>
PDA Ch1 206nm

Index	Time/min	Height/mAU	Quantity/Area	Area \%/\%
1	8.627	444257	20331403	89.811
2	12.280	21930	2306487	10.189

mAU

〈Peak Results＞
PDA Ch1 210nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	13.617	409603	41067371	50.476
2	27.893	74839	40292421	49.524

mAU

〈Peak Results〉
PDA Ch1 254nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	13.378	363706	32931600	96.380
2	28.830	2986	1236955	3.620

mAU

〈Peak Results>
PDA Ch1 206nm

Index	Time/min	Height/mAU	Quantity/Area	Area \%/\%
1	30.519	651739	26535831	51.426
2	35.210	580219	25064688	48.574

mAU

<Peak Results>
PDA Ch1 230nm

Index	Time/min	Height/mAU	Quantity/Area	Area \%/\%
1	30.353	41177	1330066	4.568
2	34.937	633255	27790162	95.432

mAU

〈Peak Results＞
PDA Ch1 206nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	30.735	761910	29784586	49.535
2	38.724	651779	30343271	50.465

mAU

〈Peak Results〉
PDA Ch1 230nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	30.574	64523	2329933	6.714
2	38.379	677163	32372519	93.286

mAU

<Peak Results>
PDA Ch1 206nm

Index	Time/min	Height/mAU	Quantity/Area	Area \%/\%
1	25.593	1983723	88419646	48.983
2	30.061	1836493	92092492	51.017

mAU

〈Peak Results>
PDA Ch1 206nm

Index	Time/min	Height/mAU	Quantity/Area	Area \%/\%
1	25.912	74891	2439703	5.471
2	30.505	985695	42156800	94.529

mAU

〈Peak Results>
PDA Ch1 230nm

Index	Time/min	Height/mAU	Quantity/Area	Area \%/\%
1	33.039	1490359	69674211	48.611
2	41.135	1328321	73655228	51.389

mAU

〈Peak Results>
PDA Ch1 230nm

Index	Time/min	Height/mAU	Quantity/Area	Area \%/\%
1	32.956	229901	8694359	13.447
2	40.997	1088312	55961394	86.553

mAU

〈Peak Results＞
PDA Ch1 206nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	16.056	627084	20266235	50.445
2	23.266	427529	19908796	49.555

mAU

〈Peak Results〉
PDA Ch1 267nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	16.059	71061	2051838	8.700
2	23.062	419346	21533171	91.300

mAU

〈Peak Results〉
PDA Ch1 210nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	32.709	1066540	46063802	48.780
2	34.203	1030215	48367155	51.220

mAU

〈Peak Results〉
PDA Ch1 206nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	32.577	869874	38127719	61.407
2	34.053	526539	23962041	38.593

mAU

〈Peak Results〉
PDA Ch1 210nm

Index	Time/min	Height/mAU	Quantity/Area	Area \%/\%
1	32.693	339816	13941973	17.288
2	34.197	1369764	66703674	82.712

mAU

〈Peak Results〉
PDA Ch1 254 nm

Index	Time／min	Height／mAU	Quantity／Area	Area $\% / \%$
1	8.809	112158	2218414	50.019
2	15.284	67531	2216685	49.981

mAU

〈Peak Results＞
PDA Ch1 254nm

Index	Time／min	Height／mAU	Quantity／Area	Area \％／\％
1	8.661	54495	988047	9.017
2	14.874	299383	9969296	90.983

