

Supporting Information

for

Systematic synthetic study of four diastereomerically distinct limonene-1,2-diols and their corresponding cyclic carbonates

Hiroshi Morikawa, Jun-ichi Yamaguchi, Shun-ichi Sugimura, Masato Minamoto, Yuuta Gorou, Hisatoyo Morinaga and Suguru Motokucho

Beilstein J. Org. Chem. 2019, 15, 130–136. doi:10.3762/bjoc.15.13

Experimental, synthesis, and NMR and FTIR spectra of all the compounds

Table of contents

1. General	S3
2. Synthesis	S4–S10
3. Characteristic data (Tables S1 and S2)	S11

4. NMR Spectra

FULIA

i oi iu		040
	H NMR spectrum	S12
	"C and DEPT135 spectra	S13
	HETCOR spectra	S14
	¹ H- ¹ H COSY spectra	S15–S16
For 1h		
		C17
	C and DEP1135 spectra	
	HETCOR spectra	S19
	¹ H- ¹ H COSY spectra	S20–S21
For 1c	·	
	¹ H NMR spectrum	\$22
	13 C and DEDT125 apactra	022 602
	HEICOR spectra	
	'H-'H COSY spectra	S25–S26
For 1d		
	¹ H NMR spectrum	S27
	¹³ C and DEPT135 spectra	S28
		S20
_	H- H COSY spectra	\$30–\$31
For com	parison among 1a–1d	
	¹ H NMR spectra	S32
	¹³ C NMR spectra	S33
Ear 2a		
FUI Za		004
	"C and DEPT135 spectra	S35
	HETCOR spectra	S36
	¹ H- ¹ H COSY spectra	S37–S38
	HMBC spectra	530
For 2D	1	.
	HNMR spectrum	S41
	LININD anastro (in honzono d'and in CD OD)	-
	H NWR spectra (in benzene- a_6 and in CD_3OD)	S42
	¹³ C and DEPT135 spectra	S42 S43
	¹³ C and DEPT135 spectra HETCOR spectra	S42 S43 S44
	¹³ C and DEPT135 spectra. HETCOR spectra. $^{1}H_{-}^{1}H_{-}^{0}COSY$ spectra.	S42 S43 S44 S44
	¹³ C and DEPT135 spectra HETCOR spectra ¹ H- ¹ H COSY spectra	S42 S43 S44 S45–S46
	¹³ C and DEPT135 spectra HETCOR spectra ¹ H- ¹ H COSY spectra HMBC spectra	
	¹³ C and DEPT135 spectra HETCOR spectra ¹ H- ¹ H COSY spectra HMBC spectra 1,1-ADEQUATE spectrum.	S42 S43 S44 S45–S46 S47 S48
For 2c	¹³ C and DEPT135 spectra HETCOR spectra ¹ H- ¹ H COSY spectra HMBC spectra 1,1-ADEQUATE spectrum	S42 S43 S44 S45–S46 S47 S48
For 2c	¹³ C and DEPT135 spectra HETCOR spectra ¹ H- ¹ H COSY spectra HMBC spectra 1,1-ADEQUATE spectrum	S42 S43 S45–S46 S45–S46 S47 S48 S49
For 2c	¹³ C and DEPT135 spectra. ¹⁴ H NMR spectra. ¹ H- ¹ H COSY spectra. ¹ H- ¹ H COSY spectra. ¹ H- ¹ H COSY spectra. ¹ H- ¹ H NMR spectrum. ¹ H NMR spectrum. ¹³ C and DEPT135 spectra.	
For 2c	¹³ C and DEPT135 spectra. ¹⁴ H NMR spectra. ¹ H- ¹ H COSY spectra. ¹ H- ¹ H COSY spectra. ¹ H- ¹ H COSY spectra. ¹ H NMR spectrum. ¹ H NMR spectrum. ¹ C and DEPT135 spectra. HETCOR spectra	
For 2c	¹³ C and DEPT135 spectra. ¹⁴ H COSY spectra. ¹ H- ¹ H COSY spectra. ¹ H- ¹ H COSY spectra. ¹ H- ¹ H NMR spectrum. ¹ H NMR spectrum. ¹³ C and DEPT135 spectra. HETCOR spectra. ¹ H ¹ H COSY spectra.	
For 2c	 ¹³C and DEPT135 spectra ¹⁴COR spectra ¹⁴H COSY spectra ¹H-¹H COSY spectra ¹ADEQUATE spectrum ¹ANMR spectrum ¹³C and DEPT135 spectra ¹³C and DEPT135 spectra ¹⁴H COSY spectra ¹⁴H NMR spectrum ¹³C and DEPT135 spectra ¹⁴H COSY spectra ¹⁴H NMR spectrum 	
For 2c	 ¹³C and DEPT135 spectra ¹⁴COR spectra ¹⁴⁻¹H COSY spectra ¹H-1H COSY spectra ¹ADEQUATE spectrum ¹A NMR spectrum ¹³C and DEPT135 spectra ¹³C and DEPT135 spectra ¹⁴H-1H COSY spectra 	
For 2c For 2d	¹³ C and DEPT135 spectra HETCOR spectra ¹ H- ¹ H COSY spectra HMBC spectra 1,1-ADEQUATE spectrum ¹ H NMR spectrum ¹³ C and DEPT135 spectra HETCOR spectra ¹³ C and DEPT135 spectra HETCOR spectra ¹ H- ¹ H COSY spectra HETCOR spectra	
For 2c For 2d	 ¹³C and DEPT135 spectra ¹⁴COR spectra ¹⁴⁻¹H COSY spectra ¹⁴H.¹H COSY spectra ¹³C and DEPT135 spectra ¹³C and DEPT135 spectra ¹³C and DEPT135 spectra ¹⁴H.¹MCOSY spectra ¹⁴H.¹H COSY spectra 	
For 2c For 2d	 ¹³C and DEPT135 spectra ¹⁴COR spectra ¹⁴H COSY spectra ¹H-¹H COSY spectra ¹ADEQUATE spectrum ¹H NMR spectrum ¹³C and DEPT135 spectra ¹H-¹H COSY spectra ¹H-¹H COSY spectra ¹³C and DEPT135 spectra ¹H-¹H COSY spectra ¹H NMR spectrum ¹³C and DEPT135 spectra ¹H NMR spectrum 	
For 2c For 2d	 ¹³C and DEPT135 spectra ¹⁴COR spectra ¹H-¹H COSY spectra ¹HNBC spectra ¹ADEQUATE spectrum ¹A NMR spectrum ¹³C and DEPT135 spectra ¹H-¹H COSY spectra ¹H-¹H COSY spectra ¹H NMR spectrum ¹³C and DEPT135 spectra ¹H-¹H COSY spectra ¹H NMR spectrum ¹A NMR spectrum ¹A DEPT135 spectra ¹H NMR spectrum ¹A NMR spectrum 	
For 2c For 2d	 ¹³C and DEPT135 spectra ¹⁴COR spectra ¹H-¹H COSY spectra ¹H-¹H COSY spectra ¹H NMR spectrum ¹³C and DEPT135 spectra ¹³C and DEPT135 spectra ¹⁴H-¹H COSY spectra ¹⁴H-¹H COSY spectra ¹³C and DEPT135 spectra ¹⁴H-¹H COSY spectra ¹⁴H NMR spectrum ¹³C and DEPT135 spectra ¹⁴H NMR spectra ¹⁴H COSY spectra ¹⁵C and DEPT135 spectra ¹⁴H COSY spectra ¹⁵C and DEPT135 spectra 	

¹ H- ¹ H COSY spectra	
HMBC spectra For comparison among 2a–2d ¹ H NMR spectra ¹³ C NMR spectra	
5. FTIR spectra	S63–S65
6. GC chart (typical example)	S66–S68
7. References	S69

1. General

(*R*)-Limonene oxide (LO) comprising a mixture of *cis*- and *trans*-isomers (43:57) was purchased from Wako (Osaka, Japan) and was used as received. Pure *trans*-LO (>99% de) and *cis*-LO (96% de) were individually prepared from the LO mixture [1]. Triphosgene (TCI, Japan), tetrabutylammonium chloride (TBAC, TCI, Japan) and lithium aluminium hydride (LAH, Wako, Japan) were used as received. Carbon dioxide was used as dry-ice. Pyridine, diethyl ether and CH_2CI_2 were dried by distillation over CaH_2 , CaH_2 and P_2O_5 , respectively. All other reagents and solvents were reagent grade and used as received. Syntheses of **1a**, **1d** and **2d** were performed in a similar manner to the previous study [2].

¹H and ¹³C NMR spectra (400 MHz ¹H; 100 MHz ¹³C), DEPT 135 and twodimensional NMR spectra (¹H-¹H COSY, HETCOR, HMBC) were recorded on a JEOL JNM-ECA 400 spectrometer at room temperature. The solvents were CDCl₃ except for **2b** in CD₃OD or in benzene- d_6 in Supporting Information page S42. The concentration was adjusted to 5–15 mg mL⁻¹ dependent on the measurements. Chemical shifts were determined using tetramethylsilane as an internal standard. All the chemical shift values (ppm) in ¹³C NMR analyses of the LM5CCs and LMdiols are listed in Tables 1 and 2. 1,1-ADEQUATE spectra were measured at the Office for Research Initiative and Development / Common Facilities Division in Nagasaki University by a Varian NMR System 500 at 24 °C in CDCl₃, and operated using VnmrJ 4.2 Rev. A software. The concentration was adjusted to approximately 100 mg mL⁻¹.

FTIR spectra were recorded on a JASCO FTIR 460 spectrometer, and the transmission spectra were measured from KBr discs. High-resolution mass spectra (HRMS) were recorded using a JEOL JMS-700N instrument using electron ionisation

S3

(EI) mass spectrometry, and measured at the Office for Research Initiative and Development / Common Facilities Division in Nagasaki University. Melting point (mp) was measured on a YANAKO MP-500D hot-stage apparatus. Optical rotations were measured in a 100 mm length cell on a JASCO Model P-2200 digital polarimeter at 25 °C, and an average value from ten measurements was calculated. Gas chromatography (GC) analysis was performed on a SHIMADZU GC2014. The injector and detector temperatures were set at 230 and 350 °C, respectively, The temperature of column (Rxi-5Sil MS column, GL Sciences Inc., Japan) was initially at 100 °C for 1min, then raised to 330 °C at 20 °C /min, and finally hold at 330 °C. Kovats retention index of each compound was estimated according to the literature [3] as references to mixed hydrocarbon standards (C9–C40) in *n*-hexane (GL Sciences Inc., Japan).

Thin-layer chromatography (TLC) was performed using GF254 silica gel plates (Merck). Acidic *p*-anisaldehyde was used for TLC visualisation.

2. Synthesis

Synthesis of carbonate 1a from trans-LO

Conditions (a) in Scheme 3

LM5CC **1a** was synthesised by a modification of the procedure from our previous report [2]. Briefly, a mixture of pure *trans*-LO (762 mg, 5.01 mmol), TBAC (140 mg, 0.504 mmol), and dry-ice was heated in a autoclave (Type TVS-N2, Taiatsu Glass Kogyo Co., Japan) with stirring at 100 °C for 72 h under 5 MPa CO₂. After carbonation, the reaction mixture was purified using SiO₂ column chromatography (*n*-hexane/ethyl acetate (10:1, v/v) as an eluent) to afford **1a** (829 mg, 4.23 mmol) as a white solid in an 84% yield. Though the mp and ¹H and ¹³C NMR were measured

previously [2], their measurements were re-performed in this study for more detail characterization.

1a [2,4,5]: mp 35–37 °C (lit [2]; 37–38 °C); ¹H NMR (CDCl₃) δ 4.76 (q, *J* = 1.4 Hz, 1H), 4.72 (s, 1H), 4.37 (dd, *J* = 9.6 and 6.9 Hz, 1H), 2.31 (ddd, *J* = 15.5, 3.7 and 3.7 Hz, 1H), 2.28–2.22 (m, 1H), 1.92 (dddd, *J* = 11.9, 11.9, 3.2 and 3.2 Hz, 1H), 1.72 (s, 3H), 1.71–1.59 (m, 2H), 1.51–1.40 (m, 2H), 1.47 (s, 3H). The IR, HRMS data and the optical rotation value were reported previously [2].

Synthesis of carbonate 1d from *cis*-LO

Conditions (a) in Scheme 3

In a similar manner to that used for **1a**, **1d** [2] was synthesised from a mixture of pure *cis*-LO (766 mg, 5.03 mmol), TBAC (136 mg, 4.89 mmol) and dry-ice, which was reacted under 5 MPa CO₂ at 100 °C for 72 h. The carbonate **1d** (301 mg, 1.53 mmol) was obtained as a white solid in a 30% yield following SiO₂ column chromatography (*n*-hexane/ethyl acetate (10:1, v/v) as an eluent). Though the mp and ¹H and ¹³C NMR were measured previously [2], their measurements were re-performed in this study for more detail characterization.

1d[2]: mp 40–41 °C(lit [2]; 40–41 °C); ¹H NMR (CDCl₃) δ 4.78 (q, *J* = 1.4 Hz, 1H), 4.72 (m, 1H), 4.44 (dd, *J* = 3.2 and 2.3 Hz, 1H), 2.31–2.22 (m, 2H), 2.01 (ddd, *J* = 13.3, 4.6 and 4.1 Hz, 1H), 1.88–1.79 (m, 2H), 1.74 (s, 3H), 1.56 (ddd, *J* = 14.3, 13.3 and 3.6 Hz, 1H), 1.51 (s, 3H), 1.25–1.15 (m, 1H). The IR, HRMS data and the optical rotation value were reported previously [2].

Synthesis of carbonate 1a from diol 2a

Conditions (c) in Scheme 3

In a 100 mL round-bottomed flask, **2a** (341.7 mg, 2.007 mmol) and dry pyridine (652.9 mg, 8.254 mmol) were dissolved in dry CH_2Cl_2 (18 mL). Triphosgene (289.7 mg, 0.9763 mmol) in dry CH_2Cl_2 (2 mL) was added to the solution under cooling in an ice bath. After stirring at room temperature for 2 h under N₂ atmosphere, the consumption of **2a** was confirmed by TLC. Then, water (20 mL) was added to the solution. The organic layer was separated and washed with saturated aqueous NH₄Cl solution. The organic layer was collected, dried over anhydrous MgSO₄ and filtered. After evaporation, the crude product was purified by SiO₂ column chromatography eluted with *n*-hexane/ethyl acetate (10:1, v/v) to obtain **1a** (370.5 mg, 1.888 mmol) in a 94% yield. The spectroscopic data were identical to those of an authentic sample prepared from *trans*-LO and CO₂.

Synthesis of carbonate 1d from diol 2d

Conditions (c) in Scheme 3

LM5CC **1d** was synthesised in a similar manner to that used to prepare **1a** from **2a** and triphosgene. From **2d** (346.8 mg, 2.037 mmol) and triphosgene (286.0 mg, 0.9638 mmol), **1d** (374.5 mg, 1.908 mmol) was obtained as a white solid in a 94% yield. The spectroscopic data were identical to those of the authentic sample prepared from *cis*-LO and CO₂.

Synthesis of carbonate 1b from diol 2b

Conditions (c) in Scheme 3

LM5CC **1b** was synthesised in a similar manner to **1a**. From **2b** (340.5 mg, 2.000 mmol) and triphosgene (623.6 mg, 2.102 mmol), **1b** (96.1 mg, 0.489 mmol) was obtained as a white solid in a 24% yield.

1b: mp 35–36 °C; IR (KBr) $v_{C=0}$ 1805 cm⁻¹; ¹H NMR (CDCl₃) δ 4.98 (bs, 1H), 4.89 (s, 1H), 4.37 (dd, J = 13.7 and 3.7 Hz, 1H), 2.61 (t, J = 5.0 Hz,1H), 2.30 (ddd, J = 12.4, 1.8 and 1.8 Hz, 1H), 2.17–2.12 (m, 1H) 2.13–2.03 (m, 1H), 1.98–1.95 (m, 1H), 1.89 (ddd, J = 12.8, 12.8 and 6.0 Hz, 1H), 1.79 (s, 3H), 1.77–1.71 (m, 1H), 1.41 (s, 3H); HRMS (EI, m/z) [M]⁺ Calcd. for C₁₁H₁₆O₃, 196.1099; found, 196.1099; [α]²⁵_D = -25.4 (*c* 1.00, CHCl₃).

Synthesis of carbonate 1c from diol 2c

Conditions (c) in Scheme 3

LM5CC **1c** was synthesised in a similar manner to **1a**. From **2c** (341.3 mg, 2.004 mmol) and triphosgene (609.0 mg, 2.053 mmol), **1c** (227.3 mg, 1.158 mmol) was obtained as a white solid in a 58% yield.

1c: mp 34–36 °C; IR (KBr) $v_{C=O}$ 1806 cm⁻¹; ¹H NMR (CDCl₃) δ 4.80 (q, J = 1.4 Hz, 1H), 4.78 (s, 1H), 4.17 (dd, J = 12.8 and 3.7 Hz, 1H), 2.28 (dddd, J = 12.4, 11.9, 4.6 and 4.1 Hz, 1H), 2.20 (ddd, J = 11.9, 3.7 and 3.2 Hz, 1H), 2.11–2.06 (m, 1H), 1.96–1.85 (m, 2H), 1.76 (s, 3H), 1.75 (ddd, J = 12.8, 11.9 and 11.9 Hz, 1H), 1.55–1.45(m, 1H), 1.38 (s, 3H); HRMS (EI, m/z) [M]⁺ Calcd. for C₁₁H₁₆O₃, 196.1099; found, 196.1092; [α]²⁵_D = +3.3 (*c* 1.00, CHCl₃).

Synthesis of diol 2a from carbonate 1a

Conditions (b) in Scheme 3

In a 200-mL round-bottomed flask, **1a** (2.0177 g, 10.28 mmol) was dissolved in dry diethyl ether (40 mL) under N₂ atmosphere. The flask was immersed into an ice bath and LAH (726.7 mg, 19.14 mmol) was added portionwise with cooling. After stirring for 2 h at room temperature, the consumption of **1a** was confirmed by TLC. Then, ethyl acetate (100 mL) and brine (100 mL) were carefully added to the mixture. The S7

organic layer was separated, dried over anhydrous MgSO₄, and filtered. After evaporation and purification using SiO₂ column chromatography (*n*-hexane/ethyl acetate, 1:5, v/v), **2a** (1.6135 g, 9.4773 mmol) was obtained as a white solid in a 92% yield.

2a: mp 75 °C; IR (KBr) v_{OH} 3348, v_{C-H} 2933, 2860 cm⁻¹; ¹H NMR (CDCl₃) δ 4.71–4.69 (m, 2H), 3.41(dd, J = 11.4 and 4.6 Hz, 1H), 1.96 (dddd, J = 12.4, 11.9, 3.2 and 3.2Hz, 1H), 1.84 (ddd, J = 13.7, 3.2 and 3.2 Hz, 1H), 1.79 (ddd, J = 12.4, 3.3 and 3.2 Hz, 1H), 1.73 (s, 3H), 1.54–1.48 (m, 3H), 1.42–1.34 (m, 1H), 1.27 (s, 3H); HRMS (EI, m/z) [M]⁺ Calcd. for C₁₀H₁₈O₂, 170.1307; found, 170.1307; [α]²⁵ $_{D} = +4.8$ (c 1.00, CHCl₃).

Synthesis of diol 2b from carbonate 1b

Conditions (b) in Scheme 3

Diol **2b** was synthesised in a similar manner to **2a**. Carbonate **1b** (103.3 mg, 0.5264 mmol) and LAH (41.2 mg, 1.09 mmol) were reacted to obtain **2b** (75.5 mg, 0.443 mmol) as a white solid in an 84% yield. The spectroscopic data were identical to those of a sample prepared from *cis*-LO and water.

2b: mp 72–73 °C (lit [6]; 69–71 °C, lit [7]; 68–70 °C); IR (KBr) v_{OH} 3330, v_{C-H} 2938, 2869 cm⁻¹; ¹H NMR (CDCl₃) δ 4.73 (s, 2H), 3.63 (t, J = 3.2 Hz, 1H), 2.26 (ddd, J = 11.8, 4.2 and 3.2Hz, 1H), 1.93 (ddd J = 13.7, 4.2 and 4.2 Hz, 1H), 1.78–1.72 (m, 1H), 1.73 (s, 3H), 1.66 (ddd, J = 13.7, 4.2 and 3.2 Hz, 1H), 1.60–1.50 (m, 3H), 1.26 (s, 3H); HRMS (EI, m/z) [M]⁺ Calcd. for C₁₀H₁₈O₂, 170.1307; found, 170.1302; [α]²⁵ _D = +25.8 (*c* 1.00, CHCl₃), (lit [6]; [α]¹⁸ _D = +27.2 (*c* 0.49, CHCl₃), lit [7]; [α]²⁰ _D = +18.1 (*c* 0.01, CHCl₃)).

Synthesis of diol 2c from carbonate 1c

Conditions (b) in Scheme 3

Diol **2c** was synthesised in a similar manner to **2a**. From **1c** (149.3 mg, 0.7608 mmol) and LAH (58.6 mg, 1.54 mmol), **2c** (122.4 mg, 0.7189 mmol) was obtained as a white solid in a 94% yield. The spectroscopic data were identical to those of a sample prepared from *trans*-LO and water.

2c: mp 73–74 °C (lit [7]; 74–76 °C, lit [8]; 71–73 °C); IR (KBr) v_{OH} 3363, v_{C-H} 2936, 2864 cm⁻¹; ¹H NMR (CDCl₃) δ 4.71 (s, 2H), 3.58 (dd, J = 11.4 and 4.1 Hz, 1H), 2.07 (dddd, J = 12.4, 12.4, 3.7 and 3.7 Hz, 1H), 1.95–1.89 (m, 1H), 1.80 (ddd, J = 12.8, 3.2 and 3.2 Hz, 1H), 1.73(s, 3H), 1.73–1.69 (m, 1H), 1.49 (ddd, J = 13.7, 12.8 and 4.6 Hz, 1H), 1.36–1.24 (m, 2H), 1.21 (s, 3H); HRMS (EI, m/z) [M]⁺ Calcd. for C₁₀H₁₈O₂, 170.1307; found, 170.1311; [α]²⁵ _D = -5.0 (*c* 1.00, CHCl₃), (lit[7]; [α]²⁰ _D = -5.5 (*c* 0.01, CHCl₃), lit [8]; [α]²⁰ _D = -6.6 (*c* 1.099, CHCl₃)).

Synthesis of diol 2d from carbonate 1d

Conditions (b) in Scheme 3

The synthesis was reported previously in ref.[2]. Though the mp and ¹H and ¹³C NMR were measured previously [2], their measurements were re-performed in this study for more detail characterization.

2d[2]: mp 46–47 °C (lit [2]; 48–49 °C); ¹H NMR (CDCl₃) δ 4.72 (m, 1H), 4.71 (m, 1H), 3.66 (t, *J* = 3.5Hz, 1H), 2.35 (dddd, *J* = 11.9, 11.9, 3.7 and 3.7 Hz, 1H), 1.93–1.88 (m, 1H), 1.87–1.80 (m, 1H), 1.72 (s, 3H), 1.74–1.68 (m, 1H), 1.58–1.51 (m, 2H), 1.30 (dddd, *J* = 13.3, 13.3, 11.9 and 3.7 Hz, 1H), 1.25 (s, 3H). The IR, HRMS data and the optical rotation value were reported previously [2].

Synthesis of diol 2b from *cis*-LO

Conditions (e) in Scheme 3

A mixture of pure *cis*-LO (465.4 mg, 3.057 mmol) and water (2.66 g, 148 mmol) in a 15 mL test tube was stirred at 90 $^{\circ}$ C for 12 h. After cooling to ambient temperature, a white precipitate appeared and was collected by filtration (203.9 mg). The filtrate was extracted with diethyl ether (10 mL) twice. The organic layer was isolated and dried over anhydrous MgSO₄. After evaporation, the residue was purified using SiO₂ column chromatography (*n*-hexane/ethyl acetate, 2:1, v/v) to obtain a white solid (161.5 mg). This solid was combined with the filtered solid to obtain **2b** (365.4 mg, 2.146 mmol) as a white solid in a 70% yield overall.

Synthesis of diol 2c from trans-LO

Conditions (d) in Scheme 3

A mixture of pure *trans*-LO (468.2 mg, 3.076 mmol), water (1.34 g, 74.4 mmol) and 1,4-dioxane (1.34 mL) was sealed in a 10 mL pressure-resistant glass tube. This mixture was stirred at 120 °C for 72 h. After cooling, the pressure was released. Brine (10 mL) was added to the mixture, and it was extracted twice with ethyl acetate (15 mL). The organic layer was isolated and dried over anhydrous MgSO₄. The filtrate was evaporated and the residue was purified using SiO₂ column chromatography (*n*-hexane/ethyl acetate, 1:1, v/v). The diol **2c** (97.4 mg, 0.572 mmol) was isolated as a white solid in a 19% yield along with **2b** (305.0 mg, 58%).

3. Characteristic data

Some data have been already shown in the aforementioned experimental section of this Supporting Information and cited from ref.[2].

	compounds			
	1 a	1b	1c	1d
Melting point (°C)	35–37	35–36	34–36	40-41
IR absorption band (KBr) $v_{C=0} (cm^{-1})$	1794 ^c	1805	1806	1807 ^c
specific rotation $[\alpha]^{25}_{D}$ (c 1.00, CHCl ₃)	+53.7 ^c	-25.4	+3.3	-15.8 ^c
$R_{\rm f}$ on TLC ^a	0.35	0.35	0.35	0.35
Kovats retention index ^b	1618	1699	1665	1620

Table S1: Characteristic data of LM5CCs, 1a-d

^adeveloping with *n* -hexane/ethyl acetate = 5/1 (v/v). ^bdetermined by GC using hydrocarbon standards as reference samples. ^ccited from ref.[2]

	compounds			
	2a	2b	2c	2d
Melting point (°C)	75	72–73	73–74	46–47
IR absorption band (KBr) v_{OH} (cm ⁻¹) specific rotation $[\alpha]^{25}_{D}$ (c 1.00, CHCl ₃)	3348	3330	3363	3322 ^c
	+4.8	+25.8	-5.0	+28.3 ^c
$R_{\rm f}$ on TLC ^a	0.40	0.40	0.20	0.35
Kovats retention index ^b	1348	1363	1373	1359

Table S2: Characteristic data of LMdiols, 2a-d

^adeveloping with *n*-hexane/ethyl acetate = 1/1 (v/v). ^bdetermined by GC using hydrocarbon standards as reference samples. ^ccited from ref.[2]

¹H NMR spectrum of **1a** in CDCI₃.

(top) DEPT135 and (bottom) 13 C NMR spectra of **1a** in CDCl₃.

HETCOR spectra of **1a** in CDCl₃; (top) full range and (bottom) selected range.

¹H-¹H COSY spectra of **1a** in CDCl₃; (top) full range and (bottom) selected range.

 $^{1}\text{H-}^{1}\text{H}$ COSY spectra of **1a** in CDCl₃; selected range with (top) high sensitivity and (bottom) low sensitivity.

¹H NMR spectrum of **1b** in CDCI₃.

(top) DEPT135 and (bottom) ^{13}C NMR spectra of 1b in CDCl_3.

 1 H- 1 H COSY spectra of **1b** in CDCl₃; (top) full range and (bottom) selected range.

¹H-¹H COSY spectra of **1b** in CDCl₃; selected range with (top) high sensitivity and (bottom) low sensitivity.

¹H NMR spectrum of **1c** in CDCI₃.

(top) DEPT135 and (bottom) ^{13}C NMR spectra of 1c in CDCl_3.

HETCOR spectra of 1c in CDCl₃; (top) full range and (bottom) selected range.

 1 H- 1 H COSY spectra of **1c** in CDCI₃; (top) full range and (bottom) selected range.

 $^{1}\text{H-}^{1}\text{H}$ COSY spectra of **1c** in CDCl₃; selected range with (top) high sensitivity and (bottom) low sensitivity.

¹H NMR spectrum of $\mathbf{1d}$ in CDCl₃.

S28

HETCOR spectra of 1d in CDCl₃; (top) full range and (bottom) selected range.

 1 H- 1 H COSY spectra of **1d** in CDCI₃; (top) full range and (bottom) selected range.

 $^1\text{H-}^1\text{H}$ COSY spectra of 1d in CDCl_3; selected range with (top) high sensitivity and (bottom) low sensitivity.

¹H NMR spectra of four LM5CCs (1a-1d) in full scales in CDCl₃.

 ^{13}C NMR spectra of four LM5CCs (1a–1d) in full scales in CDCl₃.

¹H NMR spectrum of **2a** in CDCl₃.

(top) DEPT135 and (bottom) ^{13}C NMR spectra of 2a in CDCl_3

HETCOR spectra of **2a** in CDCl₃; (top) full range and (bottom) selected range.

 1 H- 1 H COSY spectra of **2a** in CDCI₃; (top) full range and (bottom) selected range.

¹H-¹H COSY spectra of **2a** in CDCl₃; selected range with (top) high sensitivity and (bottom) low sensitivity.

HMBC spectra of 2a in CDCI₃; (top) full range and (bottom) selected range. The marks (g^{*} and h^{*}) represent for side-band peaks.

1,1-ADEQUATE spectrum of 2a in CDCl₃.

S41

¹H NMR spectra of **2b** (top) in CD₃OD and (bottom) in benzene- d_6

(top) DEPT135 and (bottom) ^{13}C NMR spectra of 2b in CDCl_3.

HETCOR spectra of **2b** in CDCl₃; (top) full range and (bottom) selected range.

¹H-¹H COSY spectra of **2b** in CDCl₃; (top) full range and (bottom) selected range.

 $^{1}\text{H-}^{1}\text{H}$ COSY spectra of **2b** in CDCl₃; selected range with (top) high sensitivity and (bottom) low sensitivity.

HMBC spectra of **2b** in CDCl₃; (top) full range and (bottom) selected range. The marks (g^* and h^*) represent for side-band peaks.

1,1-ADEQUATE spectrum of $\mathbf{2b}$ in CDCl₃.

¹H NMR spectrum of **2c** in CDCl₃.

(top) DEPT135 and (bottom) 13 C NMR spectra of **2c** in CDCl₃.

¹H-¹H COSY spectra of **2c** in CDCl₃; (top) full range and (bottom) selected range.

 $^{1}\text{H-}^{1}\text{H}$ COSY spectra of **2c** in CDCl₃; selected range with (top) high sensitivity and (bottom) low sensitivity.

HMBC spectra of 2c in CDCl₃; (top) full range and (bottom) selected range. The marks (g^{*} and h^{*}) represent for side-band peaks.

(top) DEPT135 and (bottom) ¹³C NMR spectra of **2d** in CDCl₃.

HETCOR spectra of **2d** in CDCl₃; (top) full range and (bottom) selected range.

¹H-¹H COSY spectra of **2d** in CDCl₃; (top) full range and (bottom) selected range.

¹H-¹H COSY spectra of **2d** in CDCl₃; selected range with (top) high sensitivity and (bottom) low sensitivity.

HMBC spectra of ${\bf 2d}$ in CDCl_3; (top) full range and (bottom) selected range. The marks (g* and h*) represent for side-band peak

¹H NMR spectra of four LMdiols (**2a–2d**) in full scales in CDCl₃.

¹³C NMR spectra of four LMdiols (2a-2d) in full scales in CDCl₃.

S62

IR spectra for 1a, 1d, and 2d were reported in Supporting Information of ref.[2].

GC chart of compound 1a as a typical sample.

GC chart of mixed hydorocabon standards (C9 - C40).

GC chart of a mixed solution of hydorocabon standards (C9 - C40) and four carbonates, **1a-1d**.

** CALCUL	ATION REPORT	**					
CH PKNO	TIME	AREA	HEIGHT	MK	IDNO	CONC	NAME
1 1	2.441	26859224	8218307			29.3974	
2	2.829	63648556	25347168	V		69.6634	
3	3.094	3671	810	V		0.004	
4	3.213	16846	63/6	V		0.0184	
5	3.332	4039	1725	V		0.0044	
6	3.818	899	4081			0.0001	
6	3.900	201	4001			0.0002	
0	4.274	4551	2201			0.005	
10	5.165	1718	627			0.0019	
11	5.516	4890	2406			0.0054	
12	6.322	5059	2598			0.0055	
14	6.846	247	98			0.0003	
15	6.992	343	111	V		0.0004	
16	7.098	5648	2795	V		0.0062	
17	7.492	201	32			0.0002	
19	7.835	5870	2895	V		0.0064	
21	8.011	178	71	V		0.0002	
22	8.185	335	93			0.0004	
23	8.534	6332	3013			0.0069	
24	8.629	43421	15306	V		0.0475	
25	8.929	284.50	11958	N N		0.0311	
20	9.149	27985	8441	e		0.0010	
20	9.247	7453	3405	3		0.0019	
30	10 425	8365	3858			0.0002	
32	10.827	579	110	V		0.0006	
33	10.999	21013	9441	V		0.023	
34	11.549	12206	5467			0.0134	
35	11.708	185	28	V		0.0002	
36	11.942	791	143			0.0009	
37	12.078	15989	6818	V		0.0175	
38	12.25	252	45	V		0.0003	
39	12.425	283	55			0.0003	
40	12.59	18113	7736	V		0.0198	
41	13.003	3358	785	V		0.0037	
42	13.104	22859	9385	V		0.025	
43	13.325	1255	129	V		0.0015	
44	13.004	22484	5041	V		0.0279	
45	13.05	2908	182	v		0.0009	
40	14.099	27446	10405	v		0.03	
48	14.358	2574	193	V		0.0028	
49	14.483	1326	175	V		0.0015	
50	14.604	29046	11104	V		0.0318	
51	14.717	598	135	V		0.0007	
52	14.8	457	106	V		0.0005	
53	14.9	607	89	V		0.0007	
54	15.008	372	68	V		0.0004	
55	15.133	30534	11128	V		0.0334	
56	15.702	30870	11096			0.0338	
27	15.911	6 40 25	21221			0.0001	
28	10.329	326.03	10173			0.0701	
62	17.829	32181	9041			0.0352	
63	18,749	31673	7934			0.0347	
64	19,822	31611	7037			0.0346	
65	19.945	23926	5397	V		0.0262	
66	21.075	29731	5781			0.0325	
67	22.554	38418	5130			0.042	
68	24.305	28518	4112			0.0312	
69	26.385	28093	3415			0.0307	
70	28.855	27387	2745			0.03	
71	31.822	53162	4376			0.0582	

References

1. Steiner, D.; Ivison, L.; Goralski, C. T.; Appell, R. B.; Gojkovic, J. R.; Singaram, B.

Tetrahedron: Asymmetry 2002, 13, 2359–2363.

doi:org/10.1016/S0957-4166(02)00646-8

2. Morikawa, H.; Minamoto, M.; Gorou, Y.; Yamaguchi, J.; Morinaga, H.; Motokucho,

S. Bull. Chem. Soc. Jpn. 2018, 91, 92–94. doi:org/10.1246/bcsj.20170300

doi:org/10.1007/s00289-015-1546-6

3. Kováts, E. Helv. Chim. Acta. 1958, 41, 1915–1932.

- doi:org/10.1002/hlca.19580410703
- 4. Martínez, J.; Fernández-Baeza, J.; Sánchez-Barba, L. F.; Castro-Osma, J. A.;

Lara-Sánchez, A.; Otero, A. ChemSusChem 2017, 10, 2886–2890.

- doi:org/10.1002/cssc.201700898
- 5. Fiorani, G.; Stuck, M.; Martín, C.; Belmonte, M. M.; Martin, E.; Escudero-Adán, E.
- C.; Kleij, A. W. ChemSusChem 2016, 9, 1304–1311.
- doi:org/10.1002/cssc.201600238
- 6. Plummer, C. M.; Kraft, P.; Froese, J.; Hudlický, T.; Rook, T. J.; Jones, O. A. H.;
- Hügel, H. M. Asian J. Org. Chem. 2015, 4, 1075–1084.
- doi:org/10.1002/ajoc.201500233
- 7. Blair, M.; Andrews, P. C.; Fraser, B. H.; Forsyth, C. M.; Junk, P. C.; Massi, M.;
- Tuck, K. L. Synthesis 2007, 1523–1527. doi:10.1055/s-2007-966033
- 8. Leung, A. E.; Rubbiani, R.; Gasser, G.; Tuck, K. L. Org. Biomol. Chem. 2014, 12,

8239-8246. doi:10.1039/C4OB01662A