Supporting Information

for

Borylation and rearrangement of alkynyloxiranes: a stereospecific route to substituted α-enynes

Ruben Pomar Fuentespina, José Luis Angel Garcia de la Cruz, Gabriel Durin, Victor Mamane, Jean-Marc Weibel and Patrick Pale

Experimental details and analytical data of all compounds
Experimental

General information. Proton (1H NMR) and carbon (13C NMR) nuclear magnetic resonance spectra were recorded on 300, 400 or 500 MHz instruments. The chemical shifts are given in parts per million (ppm) on the delta scale. The residual solvent peak was used as reference. For 1H NMR: CDCl$_3$ = 7.26 ppm; for 13C NMR: CDCl$_3$ = 77.16 ppm. Data are presented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, b = broad), coupling constants (J/Hz) and integration. High resolution mass spectra (HRMS) data were recorded on a microTOF spectrometer equipped with orthogonal electrospray interface (ESI). Analytical thin layer chromatography (TLC) was carried out on silica gel 60 F254 plates with visualization by ultraviolet light. Reagents and solvents were purified using standard procedures. Tetrahydrofuran (THF) was freshly distilled from sodium metal/benzophenone. Anhydrous reactions were carried out in flame-dried glassware and under an argon atmosphere. All other chemicals were used as received.

Synthesis of substrate 1a

![Synthesis of substrate 1a](image)

Triisopropyl(4-methylpent-3-en-1-yn-1-yl)silane (A). To a solution of 1-bromo-2-methylprop-1-ene (1.1 mL, 10.7 mmol) in degassed pyrrolidine (10 mL) at ambient temperature were successively added Pd(PPh$_3$)$_4$ (2 mol %, 205 mg, 0.178 mmol), CuI (10 mol %, 170 mg, 0.89 mmol) and ethynyltriisopropylsilane (2.0 mL, 8.9 mmol). The mixture was placed in a preheated bath at 65 °C and stirred for 1 h. After cooling to ambient temperature, a saturated solution of NH$_4$Cl (30 mL) was added. The mixture was extracted with Et$_2$O (3 × 30 mL). The organic phases were combined, washed with brine (30 mL), dried over Na$_2$SO$_4$, filtered and concentrated under vacuum. The crude was purified by flash chromatography on silica gel (petroleum ether) to give 1.64 g of a colorless liquid in 78% yield. 1H NMR (500 MHz, CDCl$_3$) δ 5.33 (m, 1H), 1.93 (s, 3H), 1.81 (d, J = 2.0 Hz, 3H), 1.10-1.07 (m, 21H). 13C NMR (126 MHz, CDCl$_3$) δ 150.1, 106.0, 105.3, 92.3, 25.0, 21.3, 18.8, 11.5.

((3,3-Dimethyloxiran-2-yl)ethyl)triisopropylsilane (1a). Compound A (675 mg, 2.86 mmol) was dissolved in dichloromethane (3 mL) and placed in an ice bath. A solution of m-CPBA (77% purity, 1.41 g, 6.29 mmol) in dichloromethane (16 mL) was added dropwise through an addition funnel over a period of 1 h. The ice bath was removed and the reaction mixture was stirred vigorously for 3 h. The reaction was quenched with 10% sodium thiosulfate (30 mL) and extracted with diethyl ether (3 × 30 mL). The combined organic layers were then washed with a saturated solution of sodium bicarbonate (3 × 30 mL). The organic phase was dried with sodium sulfate and concentrated under reduced pressure. The crude material was further purified using silica gel chromatography (petroleum ether/diethyl ether 95:5) to give 525 mg of a colorless liquid in 76% yield. 1H NMR (500 MHz, CDCl$_3$) δ 3.24 (s, 1H), 1.45 (s,
3H), 1.35 (s, 3H), 1.07 (s, 21H). 13C NMR (126 MHz, CDCl$_3$) δ 103.2, 87.2, 60.7, 52.3, 23.5, 20.4, 18.7, 11.3. HRMS (ESI-TOF) m/z [M + K]$^+$ Calcd for C$_{13}$H$_{28}$KOSi 291.1541; Found 291.1561.

Synthesis of substrate 1b-trans

(\textit{E})-3-Bromoacrylic acid (B).1 A solution of propargylic acid (5 g, 71.5 mmol) in aqueous HBr 48\% (20 mL) was heated at 95 °C and stirred for 2.5 h. After cooling to ambient temperature, the precipitate was filtered, washed with cold water (3 × 12 mL) and dried in air to give 5.85 g of white crystals in 55\% yield. \textit{^1}H NMR: (300 MHz, CDCl$_3$) δ 7.73 (1H, d, J = 13.8 Hz), 6.52 (1H, d, J = 13.8 Hz).

(\textit{E})-3-Bromoprop-2-en-1-ol @.1 To a suspension of LiAlH$_4$ (1.52 g, 40 mmol) in dry Et$_2$O (20 mL) at 0 °C was added B (3.02 g, 20 mmol) in small portions. After the end of the addition, the mixture was stirred at 0 °C for 2 h. The reaction was quenched at 0 °C by the successive addition of water (1.2 mL), NaOH 15\% (3 mL) and water (3.5 mL). The cooling bath was then removed and after 30 min, the mixture was filtered over Celite and washed with Et$_2$O (50 mL). The filtrate was dried over MgSO$_4$ then concentrated in vacuum to give 1.9 g of a greenish oil in 70\% yield. The product was used without further purification in the next step. \textit{^1}H NMR: (300 MHz, CDCl$_3$) δ 4.13 (2H, s), 6.38 (2H, m).

(\textit{E})-5-(Triisopropylsilyl)pent-2-en-4-yn-1-ol (D).2 In a round-bottomed flask were placed C (1.44 g, 10.51 mmol), triisopropylsilylecetylene (2.3 g, 12.61 mmol) and (iPr)$_2$NH (32 mL). Nitrogen was bubbled into the solution for 20 min. 2,6-Di-\textit{tert}-butyl-\textit{p}-cresol (BHT, 231 mg, 1.05 mmol), Pd(PPh$_3$)$_4$ (612 mg, 0.53 mmol) and CuI (200 mg, 1.05 mmol) were added and the mixture was stirred at room temperature for 2 h. Then, NH$_4$Cl sat. (20 mL) was added and the product was extracted with AcOEt (3 × 20 mL). The organic phases were combined, washed with NaCl sat. (3 × 20 mL), then dried over Na$_2$SO$_4$. After filtration and concentration under vacuum, the crude product was purified by flash chromatography on silica gel.

(cyclohexane/AcOEt 6:1) to give 1.76 g of a colorless oil in 70% yield. 1H NMR: (500 MHz, CDCl$_3$) δ 6.29 (dt, J = 16.0, 5.2 Hz, 1H), 5.78 (dt, J = 16.0, 1.8 Hz, 1H), 4.20 (ddd, J = 6.0, 5.2, 1.8 Hz, 2H), 1.06 (s, 21H). 13C NMR (126 MHz, CDCl$_3$) δ 142.6, 111.0, 104.9, 91.8, 63.1, 18.7, 11.4.

trans-3-((Triisopropylsilyl)ethyl)oxiran-2-yl)methanol (E).

To a solution of D (3.13 g, 13.1 mmol) in anhydrous DCM (70 mL) was added NaHCO$_3$ (1.67 g, 19.9 mmol) and mCPBA (77%, 6.4 g, 26 mmol) at 0 °C. After stirring for 2 h at 0 °C and 1 h at room temperature, Na$_2$S$_2$O$_3$ sat. (50 mL) was added. The mixture was washed with NaCl sat. (100 mL) and extracted with DCM (3 × 50 mL). The organic phases were combined and washed with K$_2$CO$_3$ sat. (2 × 50 mL) and dried over MgSO$_4$. After filtration and concentration, the crude product was used in the next step without further purification. 1H NMR (300 MHz, CDCl$_3$) δ 3.96 (dd, J = 13.0, 2.1 Hz, 1H), 3.71 (dd, J = 13.0, 3.3 Hz, 1H), 3.46 (d, J = 2.1 Hz, 1H), 3.31 (dt, J = 3.3, 2.1 Hz, 1H), 1.06 (m, 21H).

trans-Triisopropyl((3-(((4-methoxyphenyl)diphenylmethoxy)methyl)oxiran-2-yl)ethynyl)silane (trans-1b).

To a solution of D in DCM (35 mL) was added Hünig’s base (4.6 mL). The mixture was cooled to 0 °C and a solution of 4-methoxytriphenylmethyl chloride (MMTrCl, 0.8 equiv, 3.34 g, 10.49 mmol) in DCM (18 mL) was added during 30 min. Stirring was continued at 0 °C for 1 h, and at room temperature for 3 h. NaHCO$_3$ sat. (80 mL) was added and the phases were separated. The aqueous phase was extracted with DCM (3 × 35 mL). The organic phases were combined, dried over Na$_2$SO$_4$ and concentrated under vacuum. The crude was purified by flash chromatography on silica gel (cyclohexane/AcOEt/Et$_3$N 98:1:1) to give 2.85 g of a yellow syrup in 74% yield (2 steps). 1H NMR (300 MHz, CDCl$_3$) δ 7.47-7.41 (m, 4H), 7.34-7.18 (m, 8H), 6.83 (d, J = 9.0 Hz, 2H), 3.79 (s, 3H), 3.42-3.35 (m, 2H), 3.29 (dt, J = 4.8, 2.5 Hz, 1H), 3.14 (dd, J = 11.0, 4.5 Hz, 1H), 1.05 (m, 21H). 13C NMR (126 MHz, CDCl$_3$) δ 158.6, 144.5, 136.7, 135.9, 135.8, 130.4, 128.6, 128.5, 127.9, 127.8, 127.0, 126.2, 113.2, 108.2, 89.9, 86.9, 61.6, 55.3, 53.6, 18.8, 11.5. HRMS (ESI-TOF) m/z [M + Na]$^+$ Calcd for C$_{34}$H$_{42}$NaO$_3$Si 549.2795; Found 549.2796.

Synthesis of substrate 1b-cis

![Synthesis of substrate 1b-cis](image-url)
Ethyl (Z)-3-bromoacrylate (F).^{3} LiBr (3.3 g, 38 mmol) was dried at 120 °C under vacuum for 1 h. At room temperature, CH3CN (33 mL), ethyl propiolate (3 g, 31 mmol) and glacial acetic acid (2.3 g, 38 mmol) were successively added. The mixture was heated under reflux for 24 h. After cooling to rt, water (5 mL) was added and the mixture was neutralized by slow addition of solid K2CO3. The aqueous phase was extracted with Et2O (3 × 10 mL), the organic phases were combined and dried over Na2SO4. After filtration and concentration under vacuum, 4.3 g of an orange liquid was obtained (77% yield). The product was used in the next step without further purification. ^{1}H NMR (500 MHz, CDCl3) δ 6.97 (d, J = 8.4 Hz, 1H), 6.60 (d, J = 8.4 Hz, 1H), 4.23 (q, J = 7.1 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H).

Ethyl (Z)-5-(triisopropylsilyl)pent-2-en-4-ynoate (G). In a round-bottomed flask, at 0 °C, were successively added Et3N (45 mL), F (5.25 g, 29 mmol), triisopropylsilylecetylene (6.5 mL, 29 mmol), PdCl2(PPh3)2 (330 mg, 0.5 mmol) and CuI (95 mg, 0.5 mmol). The mixture was stirred at 0 °C for 4 h, then water (50 mL) was added. The crude was extracted with EtOAc (2 × 50 mL), washed with brine, dried over Na2SO4, filtered and concentrated in vacuum. After purification by chromatography on silica gel (cyclohexane/ethyl acetate 98:2), 6.6 g of an orange liquid were obtained (81% yield). ^{1}H NMR (300 MHz, CDCl3) δ 6.14 (d, J = 11.7 Hz, 1H), 6.05 (d, J = 11.7 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 1.27 (t, J = 7.1 Hz, 3H), 0.80-1.50 (m, 21H). ^{13}C NMR (126 MHz, CDCl3) δ 164.6, 129.4, 122.4, 105.1, 102.6, 60.5, 18.7, 14.4, 11.5. HRMS (ESI-TOF) m/z [M + Na]+ Calcd for C16H28NaO2Si 303.1751; Found 303.1764.

(Z)-5-(Triisopropylsilyl)pent-2-en-4-yn-1-ol (H). To a solution of G (3.0 g, 10.6 mmol) in DCM (60 mL) at −78 °C was slowly added Dibal−H (1.2 M in toluene, 20 mL, 24 mmol). The mixture was stirred 2 h at −78 °C and for 1 h at 0 °C. Then, NaOH (aq. 15%, 20 mL) was added at 0 °C and the two phases were separated. The aqueous phase was extracted with DCM (50 mL) and the organic phases were combined, washed with brine (50 mL) and dried over Na2SO4. After filtration and concentration, 2.54 g of a colorless oil was obtained (91% yield) which was used in the next step without further purification. ^{1}H NMR (500 MHz, CDCl3) δ 6.10 (dt, J = 11.1, 6.1 Hz, 1H), 5.62 (d, J = 11.0 Hz, 1H), 4.43 (dt, J = 6.1, 1.4 Hz, 2H), 2.34 (s, 1H), 1.11-1.02 (m, 21H). ^{13}C NMR (126 MHz, CDCl3) δ 142.6, 111.0, 102.4, 97.7, 61.4, 18.8, 11.3.

cis-(3-((Triisopropylsilyl)ethynyl)oxiran-2-yl) methanol (I). The same protocol was used as for the synthesis of E, starting from 10.7 mmol of H. Compound I was used in the next step without further purification. ^{1}H NMR (500 MHz, CDCl3) δ 4.01-3.81 (m, 2H), 3.54 (d, J = 4.1 Hz, 1H), 3.27 (dt, J = 6.3, 4.1 Hz, 1H), 1.05 (s, 21H). ^{13}C NMR (126 MHz, CDCl3) δ 101.1, 88.5, 62.5, 57.5, 44.5, 18.7, 11.2.

cis-Triisopropyl(3-(((4-methoxyphenyl)diphenylmethoxy)methyl)oxiran-2-yl)ethyl)silane (cis-1b). The same protocol was used as for the synthesis of trans-1b, starting from 1.6 mmol of I. Yield = 67% (2 steps). ^{1}H NMR (500 MHz, CDCl3) δ 7.48-7.41 (m, 4H), 7.32 (d, J = 9.0 Hz, 2H), 7.29-7.25 (m, 4H), 7.22-7.16 (m, 2H), 6.80 (d, J = 9.0, 2H), 3.77 (s, 3H), 3.34-3.45 (m, 3H), 3.24 (dt, J = 6.6, 3.8 Hz, 1H), 1.15-0.95 (m, 21H). ^{13}C NMR (126 MHz,
CDCl$_3$ δ 158.7, 144.5, 144.3, 135.6, 130.5, 128.50, 128.00, 127.95, 127.05, 113.3, 101.4, 87.5, 86.9, 64.2, 56.9, 55.3, 43.8, 18.6, 11.1. HRMS (ESI-TOF) m/z [M + K]$^+$ Calcd for C$_{34}$H$_{42}$KO$_3$Si 565.2535; Found 565.2557.

Synthesis of substrate trans-1d

![Synthesis diagram](image)

trans-2-Ethynyl-3-phenyloxirane (M)

a) (E)-Cinnamaldehyde (5.28 g, 40 mmol) was dissolved in MeOH (100 mL) under nitrogen and the solution cooled to −5 °C. NaBH$_4$ (1.81 g, 48 mmol) was added portionwise while keeping the temperature below 0 °C. After the end of the addition, the mixture was stirred at 0 °C for 1 h. Water (20 mL) was slowly added and the temperature allowed to reach ambient temperature. Methanol was evaporated under vacuum and the residue was extracted with EtOAc (2 × 50 mL). The organic phases were combined and washed with brine (30 mL). After drying over Na$_2$SO$_4$, the solution was filtered and concentrated in vacuum to give pure alcohol J as colorless oil (5 g, 93% yield). 1H NMR (300 MHz, CDCl$_3$) δ 7.40-7.20 (m, 5H), 6.63 (dt, J = 15.9, 1.5 Hz, 1H), 6.37 (dt, J = 15.9, 5.7 Hz, 1H), 3.33 (dd, J = 5.7, 1.5 Hz, 2H).

b) Compound J (4.98 g, 37 mmol) was dissolved in DCM (185 mL) at room temperature. Water (18.5 mL), solid Na$_2$HPO$_4$ (12.6 g, 88.8 mmol) and mCPBA (77%, 10 g, 44.4 mmol) were successively added and the mixture was vigorously stirred for 4 h. A saturated solution of Na$_2$SO$_3$ (50 mL) was added and the phases was separated. The organic phase was washed with NaHCO$_3$ (2 × 50 mL), dried over Na$_2$SO$_4$, filtered and concentrated in vacuum to give pure epoxide K as yellow oil (4.5 g, 81% yield). 1H NMR (300 MHz, CDCl$_3$) δ 7.32-7.18 (m, 5H), 3.98 (dd, J = 12.9, 2.4 Hz, 1H), 3.86 (d, J = 2.4 Hz, 1H), 3.73 (dd, J = 12.9, 2.4 Hz), 3.16 (d, J = 3.9, 2.4 Hz, 1H).

c) Compound K (3.75 g, 25 mmol) was dissolved in dry DCM (250 mL) under nitrogen, Hünig's base (14.3 mL, 150 mmol) was added and the solution was cooled to −5 °C. A solution of SO$_3$·pyridine (11.93 g, 75 mmol) in dry DMSO (45 mL) was slowly added. The cooling bath was removed and stirring was continued for 2 h. A saturated solution of NH$_4$Cl (50 mL) was added and the phases was separated. The organic phase was washed with sat. NaHSO$_4$ (50 mL) then with sat. NaHCO$_3$ (2 × 50 mL) and dried over Na$_2$SO$_4$. After filtration and concentration, the crude mixture containing L (peak of aldehyde was observed in 1H NMR at 9.08 ppm in CDCl$_3$) was directly used in the next step.

d) Crude L was dissolved in MeOH (120 mL) and the solution was cooled to −5 °C. A solution of diazo compound (5.76 g, 30 mmol) in MeOH (30 mL) was added, followed by solid K₂CO₃ (6.9 g, 50 mmol). The cooling bath was removed and stirring was continued overnight. Methanol was evaporated under vacuum and the residue was extracted with EtOAc (2 × 100 mL). The organic phases were combined and washed with brine (50 mL). After drying over Na₂SO₄, the solution was filtered and concentrated. The crude product was purified by chromatography on silica gel (cyclohexane/EtOAc 95:5) to give compound M as colorless oil (1.33 g, 37% yield over two steps). ¹H NMR (500 MHz, CDCl₃) δ 7.40-7.32 (m, 3H), 7.30-7.25 (m, 2H), 4.06 (d, J = 1.8 Hz, 1H), 3.35 (t, J = 1.8 Hz, 1H), 2.41 (d, J = 1.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 135.5, 129.0, 128.8, 125.7, 80.0, 72.4, 59.9, 49.0.

trans-Triisopropyl((3-phenyloxiran-2-yl)ethynyl)silane (trans-1d). Compound M (770 mg, 5.35 mmol) was dissolved in THF (50 mL) under argon and the solution was cooled to −65 °C. n-BuLi (1.6 M in hexanes, 3.35 mL, 5.35 mmol) was added and stirring was continued at −65 °C for 5 min. TIPS-Cl (1.13 g, 5.9 mmol) was added and stirring was maintained for 1 h at the same temperature. A saturated solution of NH₄Cl (10 mL) was added and the mixture was extracted with EtOAc (3 × 20 mL). The organic phases were combined and washed with brine (20 mL). After drying over Na₂SO₄, the solution was filtered and concentrated. The crude product was purified by chromatography on silica gel (cyclohexane/EtOAc 98:2) to give compound trans-1d as colorless oil (1.16 g, 72% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.40-7.31 (m, 3H), 7.30-7.27 (m, 2H), 4.00 (d, J = 2.0 Hz, 1H), 3.38 (d, J = 2.0 Hz, 1H), 1.09 (s, 21H). ¹³C NMR (126 MHz, CDCl₃) δ 135.9, 128.8, 128.7, 125.7, 103.2, 86.3, 60.5, 49.9, 18.7, 11.2.

Synthesis of substrate cis-1d

![Chemical structure](image)

cis-2-Ethynyl-3-phenyloxirane (O). It was obtained from allylalcohol N following the same procedure used for the synthesis of M (38% yield over 3 steps). ¹H NMR (500 MHz, CDCl₃) δ 7.45-7.32 (m, 5H), 4.12 (d, J = 4.0 Hz, 1H), 3.76 (dd, J = 4.0, 1.5 Hz, 1H), 2.33 (d, J = 1.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 133.9, 128.7, 128.1, 127.0, 78.12, 74.8, 58.7, 48.0.

cis-Triisopropyl(3-phenyloxiran-2-yl)ethynyl)silane (cis-1d). It was obtained from compound O following the same procedure used for the synthesis of trans-1d (45% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.44-7.38 (m, 2H), 7.36-7.28 (m, 3H), 4.12 (d, J = 4.2 Hz, 1H), 3.77

(d, J = 4.2 Hz, 1H), 0.94 (s, 21H). 13C NMR (126 MHz, CDCl$_3$) δ 134.3, 128.3, 127.9, 127.0, 101.2, 88.6, 59.2, 48.7, 18.5, 11.1.

Synthesis of substrate cis-1c

![Diagram of synthesis of cis-1c]

cis-2-Ethynyl-3-hexyloxirane (Q). It was obtained from allylalcohol P following the same procedure used for the synthesis of M (34% yield over 3 steps). Cis/trans ratio: 9/1. 1H NMR (500 MHz, CDCl$_3$) δ 3.41 (dd, J = 2.4, 1.2 Hz, 1H), 3.03 (td, J = 5.1, 2.4 Hz, 1H), 2.34 (d, J = 1.2 Hz, 1H), 1.69 (m, 2H), 1.49 (m, 2H), 1.40-1.20 (m, 6H), 0.88 (t, J = 4.2 Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 79.1, 73.7, 58.1, 44.9, 31.9, 29.4, 29.2, 26.0, 22.7, 14.2.

cis-Triisopropyl((3-hexyloxiran-2-yl)ethynyl)silane (cis-1c). It was obtained from compound Q following the same procedure used for the synthesis of trans-1d (66% yield). Cis/trans ratio: 9/1. 1H NMR (500 MHz, CDCl$_3$) δ 3.44 (d, J = 4.0 Hz, 1H), 3.02 (dt, J = 6.0, 4.0 Hz, 1H), 1.83-1.75 (m, 1H), 1.69-1.61 (m, 1H), 1.52-1.44 (m, 2H), 1.40-1.33 (m, 2H), 1.32-1.24 (m, 4H), 1.07 (s, 21H), 0.88 (t, J = 6.5 Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 102.4, 87.3, 58.4, 45.5, 31.9, 29.7, 29.4, 25.9, 22.7, 18.7, 14.2, 11.3.

Synthesis of substrate 1c-trans

![Diagram of synthesis of 1c-trans]

trans-2-Ethynyl-3-hexyloxirane (S). It was obtained from allylalcohol \(R^8 \) following the same procedure used for the synthesis of \(M \) (32% yield over 3 steps). Cis/trans ratio: 9/91. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 3.11-3.07 (m, 2H), 2.30 (d, \(J = 1.2 \) Hz, 1H), 1.55 (m, 2H), 1.39-1.23 (m, 8H), 0.88 (t, \(J = 4.2 \) Hz, 3H). \(^13\)C NMR (126 MHz, CDCl\(_3\)) \(\delta \) 80.8, 71.8, 60.6, 45.0, 31.8, 29.1, 27.1, 25.7, 22.7, 14.2.

trans-Triisopropyl((3-hexyloxiran-2-yl)ethynyl)silane (trans-1c). It was obtained from compound \(S \) following the same procedure used for the synthesis of trans-1d (44% yield). Cis/trans > 5/95. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 3.11 (d, \(J = 2.5 \) Hz, 1H), 3.07 (dt, \(J = 4.5, 2.5 \) Hz, 1H), 1.65-1.57 (m, 1H), 1.52-1.41 (m, 3H), 1.37-1.25 (m, 6H), 1.06 (m, 21H), 0.88 (t, \(J = 6.5 \) Hz, 3H). \(^13\)C NMR (126 MHz, CDCl\(_3\)) \(\delta \) 104.2, 85.4, 61.1, 45.7, 31.9, 29.1, 25.8, 18.7, 14.2, 11.2.

Synthesis of substrate cis-1e

\[\text{cis-2,3-Bis((triisopropylsilyl)ethynyl)oxirane (cis-1e).} \]

Synthesis of substrate 1e-trans

trans-((3-Ethynyloxiran-2-yl)ethynyl)triisopropylsilane \((U)\). It was obtained from compound \(E\) following the same procedure used for the synthesis of \(M\) (43% yield over 2 steps: oxidation and alkylation). \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 3.54 (d, \(J = 2.1\) Hz, 1H), 3.49 (dd, \(J = 2.1, 1.5\) Hz, 1H), 2.35 (d, \(J = 1.5\) Hz, 1H), 1.06 (s, 21H). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 101.6, 87.3, 79.0, 72.8, 47.24, 47.18, 18.6, 11.2. HRMS (ESI-TOF) \(m/z\) [M + H]\(^+\) Calcd for C\(_{15}\)H\(_{25}\)OSi 249.1669; Found 249.1660.

trans-2,3-Bis((triisopropylsilyl)ethynyl)oxirane (trans-1e). It was obtained from compound \(U\) following the same procedure used for the synthesis of *trans-1d* (58% yield). \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 3.50 (s, 2H), 1.06 (s, 42H). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 102.1, 86.9, 47.8, 18.6, 11.2. HRMS (ESI-TOF) \(m/z\) [M + H]\(^+\) Calcd for C\(_{24}\)H\(_{45}\)OSi 405.3003; Found 405.2997.

Synthesis of substrate trans-1f

trans-2-Ethyl-3-ethynyl-2-phenyloxirane \((W)\). It was obtained from compound \(V\) following the same procedure used for the synthesis of \(M\) (56% yield over 2 steps). \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.40-7.27 (m, 5H), 3.34 (d, \(J = 2.0\) Hz, 1H), 2.48 (d, \(J = 2.0\) Hz, 1H), 2.31 (sext, \(J = 7.5\) Hz, 1H), 2.00 (sext, \(J = 7.5\) Hz, 1H), 0.98 (t, \(J = 7.5\) Hz, 3H). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 138.5, 128.5, 128.0, 126.2, 79.2, 74.4, 66.7, 53.4, 26.1, 9.3.

trans-((3-Ethyl-3-phenyloxiran-2-yl)ethynyl)triisopropylsilane (trans-1f). It was obtained from compound \(W\) following the same procedure used for the synthesis of *trans-1d* (70% yield). \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.45-7.26 (m, 5H), 3.38 (s, 1H), 2.29 (s, \(J = 7.5\) Hz, 1H), 2.05 (sext, \(J = 7.5\) Hz, 1H), 1.10 (s, 21H), 0.99 (t, \(J = 7.5\) Hz, 3H). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 138.9, 128.5, 127.9, 126.3, 102.4, 88.2, 67.0, 54.0, 26.3, 18.7, 11.3, 9.5. HRMS (ESI-TOF) \(m/z\) [M + H]\(^+\) Calcd for C\(_{21}\)H\(_{33}\)OSi 329.2295; Found 329.2289.
Synthesis of substrate cis-1f

1H NMR (300 MHz, CDCl₃) δ 7.45-7.28 (m, 5H), 3.58 (d, J = 1.8 Hz, 1H), 2.25 (sext, J = 7.8 Hz, 1H), 2.10 (d, J = 1.8 Hz, 1H), 1.72 (sext, J = 7.8 Hz, 1H), 0.93 (t, J = 7.8 Hz, 3H).
13C NMR (126 MHz, CDCl₃) δ 137.0, 128.0, 127.8, 127.0, 79.1, 74.3, 67.8, 51.9, 29.5, 8.9.

HRMS (ESI-TOF) m/z [M + H]⁺ Calcd for C₂₁H₃₃OSi 329.2295; Found 329.2290.

cis-2-Ethyl-3-ethynyl-2-phenyloxirane (Y). It was obtained from compound X following the same procedure used for the synthesis of M (36% yield over 2 steps). 1H NMR (300 MHz, CDCl₃) δ 7.45-7.28 (m, 5H), 3.58 (d, J = 1.8 Hz, 1H), 2.25 (sext, J = 7.8 Hz, 1H), 2.10 (d, J = 1.8 Hz, 1H), 1.72 (sext, J = 7.8 Hz, 1H), 0.93 (t, J = 7.8 Hz, 3H). 13C NMR (126 MHz, CDCl₃) δ 137.0, 128.0, 127.8, 127.0, 79.1, 74.3, 67.8, 51.9, 29.5, 8.9.

cis-((3-Ethyl-3-phenyloxiran-2-yl)ethynyl)triisopropylsilane (cis-1f). It was obtained from compound Y following the same procedure used for the synthesis of trans-1d (67% yield). 1H NMR (300 MHz, CDCl₃) δ 7.38 (d, J = 7.5 Hz, 2H), 7.30 (t, J = 7.5 Hz, 2H), 7.24 (t, J = 7.5 Hz, 1H), 3.57 (s, 1H), 2.26 (sext, J = 7.5 Hz, 1H), 1.70 (sext, J = 7.5 Hz, 1H), 0.91 (t, J = 7.5 Hz, 3H), 0.84 (s, 21H). 13C NMR (126 MHz, CDCl₃) δ 137.4, 128.0, 127.6, 127.1, 102.4, 87.8, 68.2, 52.6, 29.5, 18.5, 11.0, 9.0. HRMS (ESI-TOF) m/z [M + H]⁺ Calcd for C₂₁H₃₃OSi 329.2295; Found 329.2290.
General procedure for the synthesis of enynes
A solution of ethynylxirane 1 (0.38–0.5 mmol) in THF (0.125 M) was cooled to −92 °C (for trans-1) or −78 °C (for cis-1). A solution of n-BuLi (1.4 M in hexanes, 1.5 equiv) was slowly added and stirring was continued at the same temperature (60 min for trans-1 or 30 min for cis-1). A solution of boronic ester (1.5 equiv) in THF (0.25 M) was slowly added and stirring was continued at the same temperature (90 min for trans-1 or 20 min for cis-1). The mixture was slowly raised to rt and stirred for 1 h. A saturated solution of NH₄Cl (5 mL) was added and the mixture was extracted with EtOAc (2 × 15 mL). The organic phases were combined, washed with brine (20 mL) and dried over Na₂SO₄. After filtration and concentration under vacuum, the crude was purified by column chromatography on silica gel (cyclohexane/EtOAc 98:2).

Triisopropyl(4-methyl-3-phenylpent-3-en-1-yn-1-yl)silane (3). ¹H NMR (500 MHz, CDCl₃) δ 7.36–7.29 (m, 4H), 7.25–7.21 (m, 1H), 2.17 (s, 3H), 1.84 (s, 3H), 1.08 (s, 21H). ¹³C NMR (126 MHz, CDCl₃) δ 144.0, 139.4, 129.3, 128.0, 126.7, 119.7, 107.8, 93.1, 24.5, 21.8, 18.9, 11.5. HRMS (ESI-TOF) ml/z [M + K]⁺ Calcd for C₄₁H₃₃Si 655.3004; Found 655.3012.

(Z)-Triisopropyl(5-((4-methoxyphenyl)diphenylmethoxy)-3-phenylpent-3-en-1-yn-1-yl)silane ((Z)-4). ¹H NMR (500 MHz, CDCl₃) δ 7.61 (d, J = 7.5 Hz, 2H), 7.49 (d, J = 7.0 Hz, 4H), 7.40–7.20 (m, 11H), 6.83 (d, J = 9.0 Hz, 2H), 6.62 (t, J = 5.8 Hz, 1H), 4.19 (d, J = 5.8 Hz, 2H), 3.78 (s, 3H), 1.00 (m, 21H). ¹³C NMR (126 MHz, CDCl₃) δ 158.6, 144.7, 137.2, 136.1, 135.8, 130.5, 128.5, 128.4, 128.0, 127.9, 127.0, 126.1, 123.4, 113.3, 102.9, 98.7, 86.9, 64.6, 55.3, 18.8, 11.3. HRMS (ESI-TOF) ml/z [M + K]⁺ Calcd for C₄₀H₄₆KO₅Si 625.2899; Found 625.2889.

(E)-Triisopropyl(5-((4-methoxyphenyl)diphenylmethoxy)-3-phenylpent-3-en-1-yn-1-yl)silane ((E)-4). ¹H NMR (300 MHz, CDCl₃) δ 7.47–7.40 (m, 5H), 7.35–7.15 (m, 12H), 6.80 (d, J = 9.0 Hz, 2H), 6.37 (t, J = 6.9 Hz, 1H), 3.81 (d, J = 6.9 Hz, 2H), 3.78 (s, 3H), 1.10 (s, 21H). ¹³C NMR (126 MHz, CDCl₃) δ 158.6, 144.5, 136.7, 135.9, 135.8, 130.4, 128.6, 128.5, 127.9, 127.8, 127.0, 126.2, 113.2, 108.2, 89.9, 86.9, 61.6, 55.3, 18.7, 11.5. HRMS (ESI-TOF) ml/z [M + K]⁺ Calcd for C₄₀H₄₆KO₅Si 625.2925; Found 625.2925.

(Z)-Triisopropyl(3-(4-methoxyphenyl)-5-((4-methoxyphenyl)diphenylmethoxy)pent-3-en-1-yn-1-yl)silane ((Z)-5). ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, J = 9.0 Hz, 2H), 7.48 (d, J = 7.5 Hz, 4H), 7.35 (d, J = 8.5 Hz, 2H), 7.29 (t, J = 7.0 Hz, 4H), 7.21 (t, J = 7.5 Hz, 2H), 6.87 (d, J = 9.0 Hz, 2H), 6.82 (d, J = 9.0 Hz, 2H), 6.49 (t, J = 6.0 Hz, 1H), 4.16 (d, J = 6.0 Hz, 2H), 3.82 (s, 3H), 3.78 (s, 3H), 0.99 (s, 21H). ¹³C NMR (126 MHz, CDCl₃) δ 159.5, 158.6, 144.7, 135.9, 134.0, 130.5, 129.9, 128.5, 128.0, 127.3, 126.9, 122.9, 113.8, 113.3, 103.1, 98.3, 86.9, 64.6, 55.5, 55.3, 18.8, 11.3. HRMS (ESI-TOF) ml/z [M + K]⁺ Calcd for C₄₁H₄₈KO₅Si 655.3004; Found 655.3012.

(E)-Triisopropyl(3-(4-methoxyphenyl)-5-((4-methoxyphenyl)diphenylmethoxy)pent-3-en-1-yn-1-yl)silane ((E)-5). ¹H NMR (500 MHz, CDCl₃) δ 7.47–7.44 (m, 4H), 7.33 (d, J = 8.5 Hz, 2H), 7.28 (t, J = 7.5 Hz, 4H), 7.24–7.18 (m, 4H), 6.81 (d, J = 9.0 Hz, 2H), 6.73 (d, J = 9.0 Hz, 2H), 6.32 (t, J = 7.0 Hz, 1H), 3.82 (d, J = 7.0 Hz, 2H), 3.79 (s, 3H), 3.78 (s, 3H), 1.11 (s, 21H). ¹³C NMR (126 MHz, CDCl₃) δ 159.1, 158.6, 144.6, 135.8, 134.7, 130.4, 129.9, 129.2,
128.5, 128.0, 127.0, 125.8, 113.3, 113.2, 108.5, 89.6, 86.8, 61.7, 55.3, 18.8, 11.5. HRMS (ESI-TOF) ml/z [M + Na]+ Calcd for C_{41}H_{48}NaO_{3}Si 639.3265; Found 639.3225.

(Z)-(3-(4-Chlorophenyl)-5-((4-methoxyphenyl)diphenylmethoxy)pent-3-ene-1-yn-1-yl)triisopropylsilane ((Z)-6). ^1H NMR (500 MHz, CDCl_3) δ 7.52 (d, J = 8.5 Hz, 2H), 7.47 (d, J = 7.0 Hz, 4H), 7.35 (d, J = 9.0 Hz, 2H), 7.32-7.26 (m, 6H), 7.21 (t, J = 7.0 Hz, 2H), 6.82 (d, J = 9.0 Hz, 2H), 6.55 (t, J = 5.5 Hz, 1H), 4.18 (d, J = 5.5 Hz, 2H), 3.77 (s, 3H), 0.98 (s, 21H). ^13C NMR (126 MHz, CDCl_3) δ 158.7, 144.6, 136.5, 135.8, 133.7, 130.5, 128.6, 128.5, 128.0, 127.4, 127.0, 122.4, 113.3, 102.4, 99.2, 87.0, 64.6, 55.3, 18.8, 11.3. HRMS (ESI-TOF) ml/z [M + K]+ Calcd for C_{40}H_{45}KClO_{2}Si 659.2509; Found 659.2493.

(E)-(3-(4-Chlorophenyl)-5-((4-methoxyphenyl)diphenylmethoxy)pent-3-ene-1-yn-1-yl)triisopropylsilane ((E)-6). ^1H NMR (500 MHz, CDCl_3) δ 7.50-7.55 (m, 4H), 7.34-7.41 (m, 9H), 7.28-7.33 (m, 3H), 6.88-6.91 (m, 2H), 6.44 (t, J = 7.0 Hz, 1H), 3.89 (s, 3H), 3.85 (d, J = 7.0 Hz, 2H), 1.14-1.21 (m, 21H). ^13C NMR (126 MHz, CDCl_3) δ 158.7, 144.4, 136.2, 135.2, 135.6, 133.6, 130.4, 130.0, 128.4, 128.2, 128.0, 127.1, 125.4, 113.2, 107.7, 90.6, 86.9, 86.1, 55.4, 18.8, 11.4. HRMS (ESI-TOF) ml/z [M + K]+ Calcd for C_{40}H_{45}KClO_{2}Si 659.2509; Found 659.2569.

(Z)-(3-Benzyl-5-((4-methoxyphenyl)diphenylmethoxy)pent-3-ene-1-yn-1-yl)triisopropylsilane ((Z)-7). ^1H NMR (500 MHz, CDCl_3) δ 7.44 (d, J = 7.5 Hz, 4H), 7.31 (d, J = 8.5 Hz, 2H), 7.30-7.15 (m, 11H), 6.80 (d, J = 8.5 Hz, 2H), 6.00 (t, J = 6.0 Hz, 1H), 3.94 (d, J = 6.0 Hz, 2H), 3.78 (s, 3H), 3.43 (s, 2H), 0.87 (s, 21H). ^13C NMR (126 MHz, CDCl_3) δ 158.6, 144.8, 138.9, 136.05, 136.0, 130.4, 129.2, 128.5, 128.3, 127.9, 126.9, 126.4, 123.7, 113.2, 104.3, 97.2, 86.8, 64.0, 55.3, 43.5, 18.6, 11.2. HRMS (ESI-TOF) ml/z [M + K]+ Calcd for C_{41}H_{48}KO_{2}Si 639.3055; Found 639.3067.

(E)-(3-Benzyl-5-((4-methoxyphenyl)diphenylmethoxy)pent-3-ene-1-yn-1-yl)triisopropylsilane ((E)-7). ^1H NMR (500 MHz, CDCl_3) δ 7.46 (d, J = 7.5 Hz, 4H), 7.34 (d, J = 8.5 Hz, 2H), 7.29 (t, J = 7.5 Hz, 4H), 7.25-7.13 (m, 5H), 7.09 (d, J = 7.5 Hz, 2H), 6.83 (d, J = 8.5 Hz, 2H), 6.21 (t, J = 6.0 Hz, 1H), 3.79 (s, 3H), 3.78 (d, J = 6.0 Hz, 2H), 3.27 (s, 2H), 0.99 (s, 21H). ^13C NMR (126 MHz, CDCl_3) δ 158.7, 144.5, 138.8, 135.8, 135.1, 130.5, 128.9, 128.5, 128.0, 127.0, 126.3, 124.7, 113.3, 108.6, 89.8, 86.8, 60.8, 55.4, 37.8, 18.7, 11.4. HRMS (ESI-TOF) ml/z [M + K]+ Calcd for C_{41}H_{48}KO_{2}Si 639.3055; Found 639.3037.

(Z)-Triisopropyl(3-(2-((4-methoxyphenyl)diphenylmethoxy)ethylidene)hex-5-en-1-yn-1-yl)silane ((Z)-8). ^1H NMR (500 MHz, CDCl_3) δ 7.45 (d, J = 7.5 Hz, 4H), 7.33 (d, J = 9.0 Hz, 2H), 7.28 (t, J = 7.0 Hz, 4H), 7.21 (t, J = 7.0 Hz, 2H), 6.82 (d, J = 9.0 Hz, 2H), 5.95 (t, J = 6.0 Hz, 1H), 5.82 (dtt, J = 17.0, 10.0, 6.5 Hz, 1H), 5.10 (dd, J = 17.0, 1.5 Hz, 1H), 5.06 (dd, J = 10.0, 1.5 Hz, 1H), 3.95 (d, J = 6.0 Hz, 2H), 3.79 (s, 3H), 2.88 (d, J = 6.5 Hz, 2H), 1.00-0.90 (m, 21H). ^13C NMR (126 MHz, CDCl_3) δ 158.6, 144.8, 135.9, 135.6, 135.2, 130.4, 128.5, 127.9, 126.9, 122.6, 116.7, 113.2, 104.4, 96.6, 86.7, 63.9, 55.3, 41.4, 18.7, 11.2. HRMS (ESI-TOF) ml/z [M + K]+ Calcd for C_{37}H_{46}KO_{2}Si 589.2899; Found 589.2931.
(E)-Triisopropyl(3-(2-((4-methoxyphenyl)diphenylmethoxy)ethylidene)hex-5-en-1-yn-1-yl)silane ((E)-8). 1H NMR (500 MHz, CDCl$_3$) δ 7.45 (d, $J = 7.5$ Hz, 4H), 7.33 (d, $J = 8.8$ Hz, 2H), 7.29 (t, $J = 7.5$ Hz, 4H), 7.21 (t, $J = 7.5$ Hz, 2H), 6.83 (d, $J = 8.9$ Hz, 2H), 6.14 (t, $J = 6.5$ Hz, 1H), 5.71 (ddt, $J = 17.0$, 10.5, 6.5 Hz, 1H), 4.94 (dd, $J = 17.0$, 1.5 Hz, 1H), 4.93 (dd, $J = 10.5$, 1.5 Hz, 1H), 3.78 (s, 3H), 3.68 (d, $J = 6.5$ Hz, 2H), 2.69 (d, $J = 6.5$ Hz, 2H), 1.10-1.05 (m, 21H). 13C NMR (126 MHz, CDCl$_3$) δ 158.7, 144.5, 135.8, 135.1, 134.7, 130.4, 128.5, 128.0, 127.0, 123.3, 116.2, 113.2, 108.5, 89.2, 86.7, 60.6, 55.4, 36.3, 18.8, 11.4. HRMS (ESI-TOF) m/z [M + K]$^+$ Calcd for C$_{37}$H$_{46}$KO$_2$Si 589.2899; Found 589.2902.

(Z)-Triisopropyl(3-(2-((4-methoxyphenyl)diphenylmethoxy)ethylidene)hept-1-yn-1-yl)silane ((Z)-9). 1H NMR (500 MHz, CDCl$_3$) δ 7.47 (d, $J = 7.5$ Hz, 4H), 7.35 (d, $J = 9.0$ Hz, 2H), 7.29 (t, $J = 7.5$ Hz, 4H), 7.22 (t, $J = 7$ Hz, 2H), 6.83 (d, $J = 9.0$ Hz, 2H), 5.95 (t, $J = 6.0$ Hz, 1H), 3.94 (d, $J = 6.0$ Hz, 1H), 3.80 (s, 3H), 2.15 (t, $J = 7.0$ Hz, 2H), 1.53 (quint, $J = 7.0$ Hz, 2H), 1.35 (quint, $J = 7.0$ Hz, 2H), 0.98 (s, 21H), 0.92 (t, $J = 7.0$ Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 158.5, 144.8, 136.0, 134.9, 130.4, 128.5, 127.9, 126.9, 124.6, 113.2, 104.7, 96.1, 86.7, 63.9, 55.2, 36.7, 30.4, 22.1, 18.7, 14.1, 11.2. HRMS (ESI-TOF) m/z [M + Na]$^+$ Calcd for C$_{38}$H$_{50}$NaO$_2$Si 589.3472; Found 589.3466.

(E)-Triisopropyl(3-(2-((4-methoxyphenyl)diphenylmethoxy)ethylidene)hept-1-yn-1-yl)silane ((E)-9). 1H NMR (500 MHz, CDCl$_3$) δ 7.48 (d, $J = 7.5$ Hz, 4H), 7.36 (d, $J = 9.0$ Hz, 2H), 7.31 (t, $J = 7.5$ Hz, 4H), 7.24 (t, $J = 7$ Hz, 2H), 6.85 (d, $J = 9.0$ Hz, 2H), 6.13 (t, $J = 6.0$ Hz, 1H), 3.81 (s, 3H), 3.69 (d, $J = 6.0$ Hz, 1H), 1.95 (t, $J = 7.0$ Hz, 2H), 1.45 (quint, $J = 7.0$ Hz, 2H), 1.24 (quint, $J = 7.0$ Hz, 2H), 1.11 (s, 21H), 0.83 (t, $J = 7.0$ Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 158.6, 144.6, 135.8, 134.5, 130.4, 128.5, 127.9, 127.0, 125.8, 113.2, 108.8, 88.7, 86.6, 60.6, 55.3, 31.0, 30.4, 22.1, 18.8, 14.0, 11.4. HRMS (ESI-TOF) m/z [M + K]$^+$ Calcd for C$_{38}$H$_{50}$KO$_2$Si 605.3212; Found 605.3228.

(Z)-Triisopropyl(3-phenyldec-3-en-1-yn-1-yl)silane ((Z)-10). Z/E 9:1. 1H NMR (500 MHz, CDCl$_3$) δ 7.62 (d, $J = 7.5$ Hz, 2H), 7.33 (t, $J = 7.5$ Hz, 2H), 7.24 (t, $J = 7.5$ Hz, 1H), 6.48 (t, $J = 7.5$ Hz, 1H), 2.53 (q, $J = 7.5$ Hz, 2H), 1.50 (quint, $J = 7.5$ Hz, 2H), 1.37 (quint, $J = 7.5$ Hz, 2H), 1.33-1.24 (m, 4H), 1.14 (s, 21H), 0.89 (t, $J = 7.5$ Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 139.8, 138.2, 128.4, 127.4, 126.0, 123.9, 104.2, 96.6, 31.9, 31.7, 29.3, 29.2, 22.8, 18.9, 14.2, 11.5. HRMS (ESI-TOF) m/z [M + H]$^+$ Calcd for C$_{25}$H$_{44}$Si 369.2972; Found 369.2950.

(E)-Triisopropyl(3-phenyldec-3-en-1-yn-1-yl)silane ((E)-10). 1H NMR (500 MHz, CDCl$_3$) δ 7.39 (m, 2H), 7.34 (m, 2H), 7.26 (m, 1H), 6.24 (t, $J = 8.0$ Hz, 1H), 2.23 (q, $J = 7.5$ Hz, 2H), 1.42 (m, 2H), 1.33-1.17 (m, 6H), 1.08 (m, 21H), 0.86 (t, $J = 7.5$ Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 141.2, 137.7, 128.9, 128.1, 127.3, 123.7, 109.3, 87.7, 31.8, 29.9, 22.7, 18.8, 14.2, 11.5. HRMS (ESI-TOF) m/z [M + H]$^+$ Calcd for C$_{25}$H$_{44}$Si 369.2972; Found 369.2952.

(Z)-(3,4-Diphenylbut-3-en-1-yn-1-yl)triisopropylsilane ((Z)-11). 9 1H NMR (500 MHz, CDCl$_3$) δ 8.08 (d, $J = 7.0$ Hz, 2H), 7.77 (d, $J = 7.0$ Hz, 2H), 7.44-7.28 (m, 6H), 7.19 (s, 1H),...

1.26-1.12 (m, 21H). 13C NMR (126 MHz, CDCl$_3$) δ 139.8, 136.6, 135.3, 129.4, 128.5, 128.3, 127.9, 126.6, 121.9, 105.6, 100.6, 18.9, 11.6.

(E)-(3,4-Diphenylbut-3-en-1-yn-1-yl)triisopropylsilane ((E)-11). 1H NMR (500 MHz, CDCl$_3$) δ 7.41-7.38 (m, 2H), 7.30-7.25 (m, 3H), 7.18-7.13 (m, 3H), 7.11-7.07 (m, 2H), 1.12 (s, 21H). 13C NMR (126 MHz, CDCl$_3$) δ 137.6, 136.9, 136.2, 129.5, 129.3, 128.4, 128.2, 127.9, 127.7, 124.6, 109.8, 91.1, 18.9, 11.5.

(Z)-(3-Phenylhexa-3-en-1,5-diyne-1,6-diyil)bis(triisopropylsilane) ((Z)-12). 1H NMR (500 MHz, CDCl$_3$) δ 7.65 (d, J = 7.0 Hz, 2H), 7.38-7.28 (m, 3H), 6.39 (s, 1H), 1.14-1.13 (m, 21H), 1.12 (s, 21H). 13C NMR (126 MHz, CDCl$_3$) δ 137.4, 133.1, 128.8, 128.5, 126.3, 114.5, 105.2, 104.1, 101.2, 100.9, 18.92, 18.88, 11.5. HRMS (ESI-TOF) m/z [M + H]$^+$ Calcd for C$_{30}$H$_{49}$Si$_2$ 465.3367; Found 465.3362.

(E)-(3-Phenylhexa-3-en-1,5-diyne-1,6-diyil)bis(triisopropylsilane) ((E)-12). 1H NMR (500 MHz, CDCl$_3$) δ 8.08 (d, J = 8.0 Hz, 2H), 7.38-7.27 (m, 3H), 6.27 (s, 1H), 1.13-1.09 (m, 21H), 1.08-1.04 (m, 21H). 13C NMR (126 MHz, CDCl$_3$) δ 136.1, 133.4, 128.8, 128.6, 127.9, 115.3, 107.7, 104.8, 103.3, 95.4, 18.8, 18.7, 11.4. HRMS (ESI-TOF) m/z [M + H]$^+$ Calcd for C$_{30}$H$_{49}$Si$_2$ 465.3367; Found 465.3388.

(Z)-(3,4-Diphenylhex-3-en-1-yn-1-yl)triisopropylsilane ((Z)-13). 1H NMR (500 MHz, CDCl$_3$) δ 7.46 (m, 4H), 7.41-7.24 (m, 6H), 2.51 (q, J = 7.5 Hz, 2H), 1.00-0.85 (m, 24H). 13C NMR (126 MHz, CDCl$_3$) δ 152.5, 141.8, 139.8, 129.0, 128.8, 128.2, 128.0, 127.3, 127.2, 121.1, 108.3, 93.4, 27.6, 18.7, 13.4, 11.4. HRMS (ESI-TOF) m/z [M + H]$^+$ Calcd for C$_{27}$H$_{37}$Si 389.2659; Found 389.2659.

(E)-(3,4-Diphenylhex-3-en-1-yn-1-yl)triisopropylsilane ((E)-13). 1H NMR (500 MHz, CDCl$_3$) δ 7.21-7.12 (m, 5H), 7.10-7.06 (m, 3H), 7.05-7.02 (m, 2H), 2.95 (q, J = 7.5 Hz, 2H), 1.14 (s, 21H), 1.07 (t, J = 7.5 Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 152.6, 140.9, 138.8, 130.0, 129.3, 128.1, 127.6, 127.0, 126.5, 120.5, 107.5, 95.1, 31.9, 18.9, 12.7, 11.6. HRMS (ESI-TOF) m/z [M + H]$^+$ Calcd for C$_{27}$H$_{37}$Si 389.2659; Found 389.2663.

Deuteration experiments at −78 °C

A solution of ethynylloxirane 1b (cis or trans, 0.2 mmol) in THF (1.6 mL) was cooled to −78 °C. A solution of n-BuLi (1.4 M in hexanes, 0.3 mmol, 0.21 mL) was slowly added and stirring was continued at the same temperature for 30 min. D$_2$O was slowly added and stirring was maintained at the same temperature for 20 min. The mixture was slowly raised to rt and a saturated solution of NH$_4$Cl (3 mL) was added and the mixture was extracted with EtOAc (2 × 10 mL). The organic phases were combined, washed with brine (15 mL) and dried over Na$_2$SO$_4$. After filtration and concentration under vacuum, the crude was purified by column chromatography on silica gel (cyclohexane/EtOAc 95:5).

cis-1b-d. 1H NMR (300 MHz, CDCl$_3$) δ 7.48-7.41 (m, 4H), 7.32 (d, $J = 9.0$ Hz, 2H), 7.29-7.25 (m, 4H), 7.22-7.16 (m, 2H), 6.80 (d, $J = 9.0$, 2H), 3.77 (s, 3H), 3.42 (d, $J = 3.8$ Hz, 1H), 3.40 (d, $J = 6.0$ Hz, 1H), 3.24 (dd, $J = 6.0$, 3.9 Hz, 1H), 1.15-0.95 (m, 21H).

trans-1b-d. 1H NMR (300 MHz, CDCl$_3$) δ 7.47-7.41 (m, 4H), 7.34-7.18 (m, 8H), 6.83 (d, $J = 9.0$ Hz, 2H), 3.79 (s, 3H), 3.39 (dd, $J = 11.0$, 2.5 Hz, 1H), 3.30 (dd, $J = 4.5$, 2.5 Hz, 1H), 3.14 (dd, $J = 11.0$, 4.5 Hz, 1H), 1.05 (m, 21H).

1-((4-Methoxyphenyl)diphenylmethoxy)-5-(triisopropylsilyl)pent-4-yn-2-one (14). 1H NMR (500 MHz, CDCl$_3$) δ 7.44 (d, $J = 7.5$ Hz, 4H), 7.35-7.27 (d, 6H), 7.25-7.21 (m, 2H), 6.83 (d, $J = 9.0$ Hz, 2H), 4.02 (s, 2H), 3.79 (s, 3H), 3.43 (s, 2H), 1.15-0.95 (m, 21H). 13C NMR (126 MHz, CDCl$_3$) δ 201.4, 158.9, 143.8, 134.8, 130.5, 128.4, 128.2, 127.3, 113.4, 99.1, 87.3, 86.1, 68.9, 55.4, 32.9, 18.7, 11.3. HRMS (ESI-TOF) m/z [M + H]$^+$ Calcd for C$_{34}$H$_{42}$NaO$_3$Si 549.2795; Found 549.2780.