

Supporting Information

for

A heteroditopic macrocycle as organocatalytic nanoreactor for pyrroloacridinone synthesis in water

Piyali Sarkar, Sayan Sarkar and Pradyut Ghosh

Beilstein J. Org. Chem. 2019, 15, 1505–1514. doi:10.3762/bjoc.15.152

Analytical data and copies of ¹H, ¹³C NMR and MS spectra

Table of Contents

General	S1
Synthesis of BATA-MC (Scheme S1)	S2
ESI-MS of [BATA-MC + 2 + $\mathbf{3a}$ + Na ⁺] (Figure S1)	S2
ESI-MS of $[BATA-MC + 1 + H^+]$ (Figure S2)	S3
Stability of macrocycle at high temperature up to 100 °C and stack plot of temperature dependent ¹ H NMR of the macrocycle (Figure S3)	S3
SEM image and TEM image of nano-ranged dispersive particles of macrocycle	
after five cycles (Figure S4)	S4
Spectral and analytical data of compounds $4a-p$ and $7a-c$	S4
¹ H and ¹³ C spectra of all the products (Figure S5 to Figure S42)	S 11
References	S30

General:

All starting materials were purchased from commercial sources such as Sigma Aldrich, Merck, Spectrochem and Alfa Aesar and are used as received without further purification. Melting points of all compounds were determined on a Labtronics digital auto melting/boiling point apparatus. Electrospray ionisation mass spectrometry (ESIMS) experiments were carried out on a Water's QtoF Model YA 263 spectrometer in the positive ion ESI mode. IR data were recorded on a SHIMADZU FTIR-8400S Infrared spectrophotometer. All NMR experiments were obtained on 400 MHz Bruker DPX. TEM images were captured using a JEOL JEM2010/11 (for high-resolution (HR)TEM) instrument by using 300 mesh carbon-coated copper TEM grid. SEM images were obtained with a JEOL JMS-6700F field-emission scanning electron microscope.

Single crystals of compound **4d** suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution of the compound. Single crystal X-ray diffraction data were collected using a Bruker APEX II, CCD area detector, MoK α , $\lambda = 0.7107$ Å). Data collection,

data reduction, structure solution and refinement were carried out using the software package of the corresponding diffractometer (SMART APEX-II).

Scheme S1: Synthesis of BATA-MC

Figure S1: ESIMS of [BATA-MC + $2 + 3a + Na^+$]

Figure S2: ESIMS peak for [BATA-MC + 1a + H⁺]

The stability of the macrocycle was tested at high temperature up to 100 °C by recording the ¹H NMR spectrum at 100 °C. The spectrum is given below. The high temperature spectrum exactly matches that recorded at room temperature, which reveals the stability of the macrocycle at high temperature.

Figure S3: Stack plot of temperature-dependent ¹H NMR of the macrocycle.

Figure S4: (a) SEM image and (b) TEM image of nano-ranged dispersive particles of the macrocycle after five cycles.

Spectral and analytical data of the products:

4,4-Dimethyl-2-p-tolyl-4,5-dihydropyrrolo[2,3,4-kl]acridin-1(2H)-one (4a)¹:

Yellow solid (88%), mp. 216 °C (EtOAc); IR (KBr, u cm⁻¹): 2956, 1706, 1483, 1344, 1078, 779, 684; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.32 (s, 6H), 2.43 (s, 3H), 3.21 (s, 2H), 5.59 (s, 1H), 7.36 (dd, 4H, J=10Hz, 8.4Hz), 7.64 (t, 1H, J=7.8Hz), 7.74 (t, 1H, J=8.0Hz), 8.17 (d, 1H, J=8.4Hz), 8.72 (d, 1H, J=7.6Hz); ¹³C NMR (100 MHz, CDCl₃): 21.3, 31.0, 37.2, 44.3, 118.3, 122.8, 124.4, 125.3, 126.4, 126.6, 127.9, 129.4, 129.6, 130.1, 132.2, 133.7, 137.6, 149.7, 154.6, 166.8; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for [C₂₅H₂₃N₂O₃]: 341.1641, Found 341.1645.

2-(4-Ethylphenyl)-4,4-dimethyl-4,5-dihydropyrrolo[2,3,4-kl]acridin-1(2H)-one

(4b): Yellow solid (89%), mp. 204-206 °C (EtOAc) ; IR (KBr, γ cm⁻¹): 2967, 1705, 1581, 1492, 1222, 779; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.28-1.33 (m, 9H), 2.74 (q, 2H, J=8.0Hz), 3.28 (s, 2H), 5.64 (s, 1H), 7.36-7.42 (m, 4H), 7.69 (t, 1H, J=7.2Hz), 7.79 (t, 1H, J=8.0Hz), 8.26-8.27 (m, 1H), 8.75 (d, 1H, J=8.0Hz); ¹³C NMR (100 MHz, CDCl₃): 15.6, 28.7, 31.0, 37.2, 44.0, 118.6, 122.8, 124.5, 125.6, 126.4, 126.6, 128.1, 129.0,

129.1, 129.9, 132.3, 133.6, 143.9, 149.2, 154.6, 166.8; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for [C₂₄H₂₃N₂O]: 355.1797, Found 355.1794.

2-(4-Methoxyphenyl)-4,4-dimethyl-4,5-dihydropyrrolo[**2,3,4-***kI*]acridin-1(2*H*)-one (**4c**)²: Yellow solid (91%), mp. 190-192 °C (EtOAc); IR (KBr, υ cm⁻¹): 2934, 1709, 1605, 1456, 1224, 779; ¹H NMR (400 MHz, CDCl₃): δ 1.33 (s, 6H), 3.31 (s, 2H), 3.88 (s, 3H), 5.59 (s, 1H), 7.06 (d, 2H, J=8.8Hz), 7.40 (d, 2H, J=8.8Hz), 7.70 (t, 1H, J=7.4Hz), 7.80 (t, 1H, J=7.6Hz), 8.30 (d, 1H, J=7.6Hz), 8.75 (d, 1H, J=8.0Hz); ¹³C NMR (100 MHz, CDCl₃): 31.1, 37.3, 38.9, 55.7, 114.9, 118.7, 122.9, 124.5, 126.6, 127.3, 128.0, 128.4, 129.0, 130.4, 131.0, 132.6, 133.6, 133.7, 154.4, 159.2; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for [C₂₃H₂₁N₂O₂]: 357.1563, Found 357.1560.

2-(4-Bromo-3-methylphenyl)-4,4-dimethyl-4,5-dihydropyrrolo[2,3,4-k/]acridin-

1(2*H***)-one (4d):** Yellow solid (86%), mp. 188 °C (EtOAc); IR (KBr, u cm⁻¹): 2928, 1705, 1483, 1346, 1074, 781; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.33 (s, 6H), 2.49 (s, 3H), 3.24 (s, 2H), 5.61 (s, 1H), 7.18 (d, 1H, J=8.4Hz), 7.42 (s, 1H), 7.66-7.70 (m, 2H), 7.78 (t, 1H, J=7.8Hz), 8.21 (d, 1H, J=8.0Hz), 8.72 (d, 1H, J=8.0Hz); ¹³C NMR (100 MHz, CDCl₃): 23.3, 31.0, 37.3, 44.0, 118.7, 122.7, 124.0, 124.4, 125.3, 126.6, 128.2, 128.8, 129.2, 130.1, 133.2, 133.4, 133.9, 139.6, 149.2, 154.5, 166.6; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for [C₂₃H₂₀BrN₂O]: 419.0781, Found 419.0779.

2-(4-Bromophenyl)-4,4-dimethyl-4,5-dihydropyrrolo[2,3,4-kl]acridin-1(2H)-one

(4e)³: Yellow solid (82%), mp. 202 °C (EtOAc); IR (KBr, u cm⁻¹): 2958, 1704, 1481, 1345, 1082, 778; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.33 (s, 6H), 3.22 (s, 2H), 5.62 (s,1H), 7.40 (d, 2H, J=8.4Hz), 7.66-7.68 (m, 3H), 7.76 (t, 1H, J=8.0Hz), 8.18 (d, 1H, J=8.4Hz), 8.70 (d, 1H, J=8.0Hz); ¹³C NMR (100 MHz, CDCl₃): 31.0, 37.3, 44.0, 118.7, 121.3, 122.7, 124.3, 125.2, 126.6, 128.0, 128.2, 129.3, 130.0, 132.7, 133.1, 133.9,

149.4, 154.5, 166.5; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for [C₂₂H₁₈BrN₂O]: 405.0625, Found 405.0626.

2-(3-Bromophenyl)-4,4-dimethyl-4,5-dihydropyrrolo[**2,3,4-***k*/]acridin-1(2*H*)-one (**4f**): Yellow solid (80%), mp. 183 °C (EtOAc); IR (KBr, u cm⁻¹): 2957, 1705, 1483, 1339, 1078, 779, 685; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.33 (s, 6H), 3.21 (s, 2H), 5.64 (s, 1H), 7.38-7.46 (m, 2H), 7.53 (d, 1H, 7.6Hz), 7.64-7.69 (m, 2H), 7.75 (t, 1H, 7.8Hz), 8.17 (d, 1H, 8.4Hz), 8.69 (d, 1H, 8.0Hz); ¹³C NMR (100 MHz, CDCl₃): 30.9, 37.2, 44.2, 118.6, 122.6, 122.9, 124.3, 124.9, 125.1, 126.6, 128.1, 129.5, 129.5, 129.9, 130.7, 130.7, 133.1, 136.2, 149.7, 154.6, 166.6; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for [C₂₂H₁₈BrN₂O]: 405.0625, Found 405.0623.

2-(3-Methoxyphenyl)-4,4-dimethyl-4,5-dihydropyrrolo[**2,3,4-***k*/]acridin-1(2*H*)-one (**4g**)^{**2**}: Reddish yellow solid (80%), mp. 206 °C (EtOAc); IR (KBr, υ cm⁻¹): 2924, 1709, 1603, 1460, 1222, 777; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.33 (s, 6H), 3.24 (s, 2H), 3.87 (s, 3H), 5.67 (s, 1H), 6.95-6.97 (m, 1H), 7.07-7.08 (m, 2H), 7.45 (t, 1H, J=8.4Hz), 7.68 (t, 1H, J=7.4Hz), 7.77 (t, 1H, J=7.2Hz), 8.21 (d, 1H, J=8.4Hz), 8.74 (d, 1H, J=8.0Hz); ¹³C NMR (100 MHz, CDCl₃): 31.0, 37.3, 44.0, 55.7, 112.5, 113.4, 118.7, 118.9, 122.8, 124.4, 125.4, 126.6, 128.2, 129.2, 130.0, 130.2, 133.4, 135.9, 149.2, 154.6, 160.5, 166.6; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for [C₂₃H₂₁N₂O₂]: 357.1563, Found 357.1567.

2-(3,4-Dichlorophenyl)-4,4-dimethyl-4,5-dihydropyrrolo[2,3,4-k/]acridin-1(2H)-

one (4h): Yellow solid (78%), mp. 238 °C (EtOAc): IR (KBr, u cm⁻¹): 2954, 1705, 1589, 1481, 1344, 1078, 779, 684; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.34 (s, 6H), 3.23 (s, 2H), 5.64 (s, 1H), 7.39 (dd, 1H, J=8.8Hz, 2.4Hz), 7.62 (d, 1H, J=8.8Hz), 7.66-7.70 (m, 2H), 7.78 (t, 1H, J=7.8Hz), 8.20 (d, 1H, J=8.4Hz), 8.70 (d, 1H, J=8.0Hz); ¹³C NMR (100 MHz, CDCl₃): 31.0, 37.3, 44.0, 118.8, 122.6, 124.3, 125.0, 125.6, 126.6, 127.8,

128.3, 129.4, 130.1, 131.2, 131.7, 132.8, 133.5, 134.3, 149.5, 154.5, 166.4; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for [C₂₂H₁₇Cl₂N₂O]: 395.0703, Found 395.0700.

2-(4-Acetylphenyl)-4,4-dimethyl-4,5-dihydropyrrolo[2,3,4-kl]acridin-1(2H)-one

(4i): Reddish yellow solid (74%), mp. 212 °C (EtOAc); IR (KBr, u cm⁻¹): 2924, 1709, 1682, 1599, 1462, 1267, 775; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.34 (s, 6H), 2.67 (s, 3H), 3.25 (s, 2H), 5.72 (s, 1H), 7.65-7.71 (m, 3H), 7.78 (t, 1H, J=7.6Hz), 8.14 (d, 2H, J=8.8Hz), 8.21 (d, 1H, J=8.4Hz), 8.72 (d, 1H, J=8.0Hz); ¹³C NMR (100 MHz, CDCl₃): 26.8, 30.9, 37.3, 43.9, 119.2, 122.6, 124.3, 125.1, 126.0, 126.7, 128.3, 129.3, 129.7, 130.1, 132.7, 135.7, 139.2, 149.3, 154.6, 166.4, 197.1; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for [C₂₄H₂₁N₂O₂]: 369.1563, Found 369.1561.

Ethyl 4-(4,4-dimethyl-1-oxo-4,5-dihydropyrrolo[2,3,4-*kI***]acridin-2(1***H***)yl)benzoate (4j): Yellow solid (75%), mp. 226 °C (EtOAc); IR (KBr, u cm⁻¹): 2924, 1717, 1605, 1271, 1103, 673; ¹H NMR (400 MHz, CDCl₃): ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.34 (s, 6H), 1.43 (t, 3H, J=7.2Hz), 3.25 (s, 2H), 4.42 (q, 2H, J=7.2Hz), 5.70 (s, 1H), 7.63 (d, 2H, J=8.4Hz), 7.69 (t, 1H, J=7.4Hz), 7.78 (t, 1H, J=7.2Hz), 8.20-8.24 (m, 3H), 8.73 (d, 1H, J=8.0Hz); ¹³C NMR (100 MHz, CDCl₃): 14.5, 31.0, 37.3, 44.0, 61.4, 119.1, 122.7, 124.4, 125.2, 125.8, 126.7, 128.3, 129.3, 130.1, 130.9, 132.8, 139.0, 154.6, 166.0, 166.4; HRMS (ESI-TOF)** *m/z***. [M + H]⁺ Calcd for [C₂₅H₂₃N₂O₃]: 399.1719, Found 399.1723.**

4,4-Dimethyl-2-pentyl-4,5-dihydropyrrolo[2,3,4-*kI***]acridin-1(***2H***)-one (4k):** Yellow solid (95%), mp. 138 °C (EtOAc); IR (KBr, u cm⁻¹): 2944, 1703, 1515, 1231, 1054, 778; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.87 (t, 3H, J=6.6Hz), 1.30-1.35 (m, 10H), 1.68-1.73 (m, 2H), 3.13 (s, 2H), 3.75 (t, 2H, J=7.2Hz), 5.49 (s, 1H), 7.58 (t, 1H, J=7.4Hz), 7.67 (t, 1H, J=7.0Hz), 8.10 (d, 1H, J=8.4Hz), 8.63 (d, 1H, J=7.6Hz); ¹³C NMR (100 MHz, CDCl₃): 14.0, 22.4, 28.8, 29.2, 31.1, 37.1, 40.2, 44.2, 116.7, 122.7, 124.2, 125.8,

S7

126.4, 127.6, 129.3, 129.4, 133.3, 149.6, 154.3, 167.5; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for [C₂₁H₂₅N₂O]: 321.1953, Found 321.1952.

2-Hexyl-4,4-dimethyl-4,5-dihydropyrrolo[2,3,4-*kI***]acridin-1(2***H***)-one (4I): Yellow solid (94%), mp. 148-150 °C (EtOAc); IR (KBr, u cm⁻¹): 2939, 1706, 1497, 1213, 1047, 783; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.86 (t, 3H, J=7.0Hz), 1.32 (brs, 12H), 1.67-1.74 (m, 2H), 3.14 (s, 2H), 3.77 (t, 2H, J=7.4Hz), 5.50 (s, 1H), 7.60 (t, 1H, J=7.4Hz), 7.70 (t, 1H, J=7.0Hz), 8.12 (d, 1H, J=8.4Hz), 8.65 (d, 1H, J=8.0Hz); ¹³C NMR (100 MHz, CDCl₃): 14.1, 22.6, 26.7, 29.2, 31.1, 31.6, 37.1, 40.3, 44.2, 116.7, 122.7, 124.3, 125.9, 126.5, 127.6, 129.3, 129.4, 133.4, 149.6, 154.4, 167.5; HRMS (ESI-TOF)** *m/z***: [M + H]⁺ Calcd for [C₂₂H₂₇N₂O]: 335.2109, Found 335.2111.**

9-Chloro-2-(4-ethylphenyl)-4,4-dimethyl-4,5-dihydropyrrolo[2,3,4-k/]acridin-

1(2*H***)-one (4m):** Yellow solid (84%), mp. 198 °C (EtOAc); IR (KBr, u cm⁻¹): 2935, 1708, 1509, 1305, 786; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.30-1.32 (m, 9H), 2.73 (q, 2H, J=7.5Hz), 3.19 (s, 2H), 5.65 (s, 1H), 7.35-7.40 (m, 4H), 7.67 (d, 1H, J=8.8Hz), 8.08 (d, 1H, J=9.2Hz), 8.69 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): 15.6, 28.7, 31.0, 37.3, 44.1, 119.2, 123.4, 123.4, 124.5, 126.0, 126.4, 127.1, 129.0, 129.2, 130.5, 130.8, 132.2, 133.4, 134.0, 144.0, 147.9, 155.0, 166.3; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for [C₂₄H₂₂ClN₂O]: 389.1406, Found 389.1403.

2-(4-Bromo-3-methylphenyl)-9-chloro-4,4-dimethyl-4,5-dihydropyrrolo[2,3,4-

*kI*Jacridin-1(2*H*)-one (4n): Yellow solid (85%), mp. 174-176 °C (EtOAc); IR (KBr, u cm⁻¹): 2942, 1705, 1603, 1456, 1231, 1042, 780; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.32 (s, 6H), 2.48 (s, 3H), 3.20 (s, 2H), 5.63 (s, 1H), 7.16 (d, 1H, J=8.4Hz), 7.39 (s, 1H), 7.67-7.70 (m, 2H), 8.09 (d, 1H, J=9.2Hz), 8.66 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): 23.3, 31.0, 37.3, 44.0, 119.5, 123.2, 123.4, 124.1, 124.3, 125.2, 127.1, 128.7,

130.0, 130.7, 133.1, 133.4, 133.8, 134.3, 139.6, 147.8, 154.9, 166.1; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for [C₂₃H₁₉BrCIN₂O]: 453.0391, Found 453.0393.

9-Bromo-2-(3-methoxyphenyl)-4,4-dimethyl-4,5-dihydropyrrolo[2,3,4-*kl***]acridin-1(2***H***)-one (4o)²:** Reddish yellow solid (83%), mp. 175 °C (EtOAc); IR (KBr, υ cm⁻¹): 2938, 1706, 1599, 1461, 1204, 875, 768; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.32 (s, 6H), 3.18 (s, 2H), 3.86 (s, 3H), 5.70 (s, 1H), 6.95 (d, 1H, J=9.6Hz), 7.06 (brs, 2H), 7.44 (t, 1H, J=8.4Hz), 7.80 (d, 1H, J=11Hz), 8.00 (d, 1H, J=9.2Hz), 8.85 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): 31.0, 37.3, 44.1, 55.6, 112.3, 113.5, 118.6, 119.6, 122.3, 123.7, 124.1, 126.6, 127.0, 130.2, 130.9, 133.1, 135.8, 148.2, 155.1, 160.5, 166.2; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for [C₂₃H₂₀BrN₂O₂]: 435.0703, Found 435.0700.

2-(4-Bromo-3-methylphenyl)-4,4,9-trimethyl-4,5-dihydropyrrolo[2,3,4-*kl***]acridin-1(2***H***)-one (4p):** Yellow solid (86%), mp. 184 °C (EtOAc); IR (KBr, u cm⁻¹): 2946, 1706, 1569, 1326, 1044, 769; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.32 (s, 6H), 2.49 (s, 3H), 2.59 (s, 3H), 3.21 (s, 2H), 5.59 (s, 1H), 7.18 (d, 1H, J=8.4Hz), 7.41 (s, 1H), 7.59 (d, 1H, J=8.4Hz), 7.68 (d, 1H, J=8.4Hz), 8.08 (d, 1H, J=8.4Hz), 8.49 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): 21.9, 23.3, 31.0, 37.2, 43.8, 118.5, 122.7, 123.4, 123.9, 125.2, 126.6, 128.8, 132.2, 133.3, 134.0, 138.7, 139.5, 153.4, 166.7; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for [C₂₄H₂₂BrN₂O]: 433.0938, Found 433.0933.

2-(4-Ethylphenyl)pyrrolo[2,3,4-*kI***]acridin-1(2***H***)-one (7a): Yellow solid (85%), mp. 234 °C (EtOAc); IR (KBr, u cm⁻¹): 2934, 1705, 1601, 1224, 777; ¹H NMR (300 MHz, CDCl₃): ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.32 (t, 3H, J=7.6Hz), 2.76 (q, 2H, J=7.6Hz), 6.98 (d, 1H, J=6.8Hz), 7.41 (d, 2H, J=8.0Hz), 7.53 (d, 2H, J=8.0Hz), 7.68 (t, 1H, J=8.0Hz), 7.80 (t, 1H, J=7.6Hz), 7.87-7.94 (m, 2H), 8.45 (d, 1H, J=8.8Hz), 8.91 (d, 1H, J=8.4Hz); ¹³C NMR (100 MHz, CDCl₃): 15.6, 28.8, 106.1, 119.9, 122.5, 123.2, 124.3, 125.9, 128.1, 129.2, 129.3, 130.7, 130.9, 132.4, 133.1, 140.5, 144.1, 146.4,**

S9

167.3; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for [C₂₂H₁₇N₂O]: 325.1328, Found 325.1326.

2-(4-Bromo-3-methylphenyl)pyrrolo[2,3,4-*kI***]acridin-1(***2H***)-one (7b):** Yellow solid (86%), mp. 198 °C (EtOAc); IR (KBr, u cm⁻¹): 2950, 1707, 1589, 1302, 1114, 775; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 2.51 (s, 3H), 6.99 (d, 1H, J=6.8Hz), 7.32-7.34 (m, 1H), 7.52 (s, 1H), 7.68-7.74 (m, 2H), 7.81 (q, 1H, J=8.0Hz), 7.91-7.96 (m, 2H), 8.47 (d, 1H, J=8.4Hz), 8.89 (d, 1H, J=8.0Hz); ¹³C NMR (100 MHz, CDCl₃): 23.3, 106.2, 119.9, 122.6, 123.1, 124.0, 124.2, 124.7, 128.2, 129.6, 130.0, 130.6, 131.2, 133.2, 133.6, 134.0, 139.8, 139.9, 167.0; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for [C₂₁H₁₄BrN₂O]: 389.0311, Found 389.0307.

2-(4-Ethylphenyl)-4-phenylpyrrolo[2,3,4-*kl***]acridin-1(2***H***)-one (7c): Orange solid (88%), mp. 240-242 °C (EtOAc); IR (KBr, u cm⁻¹): 2942, 1705, 1599, 1205, 1044, 777; ¹H NMR (300 MHz, CDCl₃): δ (ppm) 1.33 (t, 3H, J=7.6 Hz), 2.77 (q, 2H, J=7.5 Hz), 7.23 (s, 1H), 7.43 (d, 3H, J=8.0 Hz), 7.50 (t, 2H, J=7.2 Hz), 7.56 (d, 2H, J=8.0 Hz), 7.71 (d, 2H, J=7.6 Hz), 7.79 (t, 1H, J=7.6 Hz), 7.92 (t, 1H, J=7.6 Hz), 8.05 (s, 1H), 8.43 (d, 1H, J=8.8 Hz), 8.90 (d, 1H, J=8.4 Hz); ¹³C NMR (100 MHz, CDCl₃) 15.6, 28.8, 106.9, 119.5, 120.1, 123.1, 124.4, 126.1, 127.6, 127.8, 128.6, 129.2, 129.2, 130.8, 130.9, 132.4, 140.8, 141.1, 144.2, 146.7, 146.8, 152.5, 167.6; HRMS (ESI-TOF)** *m/z***: [M + H]⁺ Calcd for [C₂₈H₂₁N₂O]: 401.1643, Found 401.1645.**

S10

Figure S5: 400 MHz ¹H NMR spectrum of compound 4a in CDCl₃

Figure S6: 100 MHz ¹³C NMR spectrum of compound 4a in CDCl₃

Figure S8: 100 MHz ¹³C NMR spectrum of compound 4b in CDCl₃

Figure S9: 400 MHz ¹H NMR spectrum of compound 4c in CDCl₃

Figure S10: 100 MHz ¹³C NMR spectrum of compound 4c in CDCl₃

Figure S12: 100 MHz ¹³C NMR spectrum of compound 4d in CDCl₃

Figure S14: 100 MHz ¹³C NMR spectrum of compound 4e in CDCl₃

Figure S16: 100 MHz ¹³C NMR spectrum of compound 4f in CDCl₃

Figure S18: 100 MHz ¹³C NMR spectrum of compound 4g in CDCl₃

Figure S20: 100 MHz ¹³C NMR spectrum of compound 4h in CDCl₃

Figure S22: 100 MHz ¹³C NMR spectrum of compound 4i in CDCl₃

Figure S24: 100 MHz ¹³C NMR spectrum of compound 4j in CDCl₃

Figure S26: 100 MHz ¹³C NMR spectrum of compound 4k in CDCl₃

Figure S28: 100 MHz ¹³C NMR spectrum of compound 4l in CDCl₃

Figure S30: 100 MHz ¹³C NMR spectrum of compound 4m in CDCl₃

Figure S32: 100 MHz ¹³C NMR spectrum of compound 4n in CDCl₃

Figure S34: 100 MHz ¹³C NMR spectrum of compound 40 in CDCl₃

Figure S36: 100 MHz ¹³C NMR spectrum of compound 4p in CDCl₃

Figure S38: 100 MHz ¹³C NMR spectrum of compound 7a in CDCl₃

Figure S40: 100 MHz ¹³C NMR spectrum of compound 7b in CDCl₃

Figure S42: 100 MHz ¹³C NMR spectrum of compound 7c in CDCl₃

References

 Sarkar, P.; Mukhopadhyay, C. *Green Chem.*, **2015**, *17*, 3452–3465. DOI: 10.1039/c5gc00156k.
Ray, S.; Bhaumik, A.; Pramanik, M.; Mukhopadhyay, C., *RSC Adv.*, **2014**, *4*, 15441– 15450. DOI: 10.1039/c4ra01287a.
Wang, H.; Li, L.; Lin, W.; Xu, P.; Huang, Z.; Shi, D. *Org. Lett.*, **2012**, *14*, 4598-4601. DOI 10.1021/ol302058g.