

Supporting Information

for

Naphthalene diimides with improved solubility for visible light photoredox catalysis

Barbara Reiß and Hans-Achim Wagenknecht

Beilstein J. Org. Chem. 2019, 15, 2043-2051. doi:10.3762/bjoc.15.201

Synthetic protocols, copies of ¹H and ¹³C NMR spectra, mass spectra, and cyclic voltammetry data

Content

Materials and methods	S2
Synthetic procedures	S3
Images of ¹ H NMR spectra, ¹³ C NMR spectra and mass spectra	S9
Photoredox catalytic experiments	S21
Cyclic voltammetry	S24
References	S25

Materials and methods

Chemicals and dry solvents were purchased from commercial sources and were used without further purification unless otherwise stated. Solvents of purity grade p.a. were used for syntheses and photocatalyses. All inert gas syntheses and photocalyses were performed using argon (99.999%). The inert photoredox catalytic experiments were degassed by the freeze-pump-thaw technique. NMR spectroscopic data was recorded using the spectrometer Bruker Ascend 500 ¹H NMR (500 MHz), ¹³C NMR (126 MHz). Chemical shifts of the ¹H and ¹³C NMR spectra are reported in parts per million (ppm) relative to the solvent as an internal standard and was converted to the TMS-reference. Routine ¹³C NMR spectroscopy was recorded while applying broadband ¹H- decoupling. Coupling constants (*J*) are given in Hertz (Hz) and the multiplicity of signals are reported as followed: s (singlet), d (doublet), t (triplet), sext (sextet), m (multiplet), br (broad singlet), dt (doublet of triplets), td (triplet of doublets). Optical measurements were carried out using a Varian Cary 100 spectrometer at room temperature and a HORBIA-Scientific Fluoromax 4 spectrofluorometer with an AC 200 thermostat from Thermo Scientific and the FluoroEssence software V3.5 in semi-micro quartz glass cuvettes (width 1 cm, volume 1.4 mL) from Starna. The fluorescence quantum yields were determined by the Quantaurus QY C11347 from Hamatsu. The cyclic voltammetry measurements were carried out with complete exclusion of air and moisture. The working electrode and the counter electrode were made of platinum. Reference electrode serving as the potential zero point was made of silver. For the electrolysis solution, a 0.05 M solution of tetrabutylammonium hexafluorophosphate in dry CH₂Cl₂ was prepared.

Synthetic procedures

Syntheses of NDI 1, cNDI 8 and organocatalyst 15. NDI 1 was synthesized according to the literature [S1]. The intermediate cNDI 8 was synthesized according to the literature and used as crude material [S2]. The organocatalyst 15 was synthesized according to the literature [S3] and used after treatment with Ag(OTf) as triflate salt.

Synthesis of cNDI 9. cNDI 8 (1.47 mg, 3.45 mmol, 1.00 equiv) were suspended in CH₂Cl₂ (300 mL) and *n*-octylamine (1.21 mL, 946 mg; 7.32 mmol, 2.12 equiv) was added. The mixture was refluxed for 2 h. PBr₃ (0.97 mL, 2.80 g, 10.4 mmol, 3.00 equiv) was slowly and dropwise added. The mixture was refluxed for 1 h. After cooling down to rt, the mixture was poured into water (300 mL) and stored overnight. The aqueous phase was extracted two times with CH₂Cl₂. The combined organic phases were dried with Na₂SO₄. The solvent was removed under vacuum. The product was purified by column chromatography (SiO₂, hexane/CH₂Cl₂ 1:3, Ø 4 cm, 14 cm). 940 mg (1.45 mmol, 42%) of a light yellow solid material were isolated. The spectroscopic data of cNDI 9 was identical to the literature [S4].

Synthesis of cNDI 10. cNDI **8** (400 mg, 0.94 mmol, 1.00 equiv.) was suspended in CH₂Cl₂ (35 mL) and 5-methylhexane-2-amine (0.3 mL, 227 mg; 1.97 mmol, 2.12 equiv) was added. The mixture was refluxed for 2 h. PBr₃ (5.64 mL 1 M in CH₂Cl₂, 1.53 g, 5.64 mmol, 6.00 equiv) was slowly and dropwise added. The mixture was refluxed for 1 h. After cooling to rt, the mixture was poured into water (100 mL) and stored overnight. The aqueous phase was extracted two times with CH₂Cl₂. The combined organic phases were dried with Na₂SO₄. The solvent was removed under

vacuum. The product was purified by column chromatography (SiO₂, hexane/CH₂Cl₂ 1:3, Ø 4 cm, 14 cm). 81 mg (130 μmol, 14%) of a light yellow solid material were isolated. T.l.c. (hexane: CH₂Cl₂ 1:3): R_f = 0.52. ¹H-NMR (500 MHz, CDCl₃): δ [ppm]=8.96 (s, 2H, Ar H), 5.20 (dt, J= 8.1, 6.6 Hz, 2H, -NCH-), 2.11–2.03 (m, 2H, -CHCH₂-), 1.91–1.83 (m, 2H, -CHCH₂-), 1.53–1.45 (m, 8H, -CH(CH₂)₃, -NCHCH₃), 1.21–1.13 (m, 2H, -CHCH₂-), 1.04–0.97 (m, 2H, -CHCH₂-), 0.79 (t, J= 6.7 Hz, 12H, -CH₃). ¹³C-NMR (126 MHz, CDCl₃): δ [ppm]=161.4, 161.3, 139.2, 128.2, 127.8, 125.6, 124.4, 51.7, 36.3, 31.4, 28.1, 22.8, 22.7, 18.3. MS (FAB): m/z [%]=617.1 [47.0], 618.1 [39.1], 619.1 [100.0, M+], 620.1 [65.2], 621.1 [91.3], 622.1 [43.5]. HRMS (EI): found: m/z 619.0801 [M+], calcd: 619.0802.

Synthesis of cNDI 11. cNDI **8** (400 mg, 0.94 mmol, 1.00 equiv) was suspended in CH₂Cl₂ (35 mL) and pentane-3-amine (0.23 mL, 173 mg, 1.98 mmol, 2.11 equiv) was added. The mixture was refluxed for 2 h. PBr₃ (5.64 mL 1 M in CH₂Cl₂, 1.53 g, 5.64 mmol, 6.00 equiv) was slowly and dropwise added. The mixture was refluxed for 1 h. After cooling to rt, the mixture was poured into water (100 mL) and stored overnight. The aqueous phase was extracted two times with CH₂Cl₂. The combined organic phases were dried with Na₂SO₄. The solvent was removed under vacuum. The product was purified by column chromatography (SiO₂, hexane/CH₂Cl₂ 1:3, \emptyset 4 cm, 14 cm). 124 mg (0.22 mmol, 24%) of a light yellow solid material were isolated. Column chromatography. T.I.c. (hexane: CH₂Cl₂ 1:1): R_f = 0.42. ¹H-NMR (500 MHz, CDCl₃): δ [ppm]=8.97 (s, 4H, Ar-H), 5.02 (tt, J = 9.3, 6,0 Hz, 2H, -NCH-), 2.25-2.13 (m, 4H, -NCHCH₂-), 2.01-1.87 (m, 4H, -NCHCH₂-), 0.89 (t, J = 7.4 Hz, 12H, -CH₃). Due to the very low solubility no ¹³C NMR and no MS data was obtained. The crude material was used for the synthesis of cNDI **6**.

Synthesis of cNDI 2. cNDI **9** (200 mg, 0.31 mmol, 1.00 equiv) was dissolved in *n*propylamine (5 mL. 60.9 mmol) and refluxed for 2 h at 55 °C in a pressure vial. The amine was removed under vacuum. The solid material was dissolved in CH₂Cl₂ (10 mL) and treated with 1 N aqueous HCl (10 mL). The aqueous phase was extracted two times with CH₂Cl₂ (each 10 mL). The combined organic phases were washed with water (20 mL) and dried with Na₂SO₄. The solvent was removed under vacuum. The product was purified by column chromatography (SiO₂, hexane/CH₂Cl₂ 3:1 \rightarrow 1:2, ø 4 cm, 12 cm). The final products were dissolved in benzene, lyophilized and dried under vacuum. 149 mg (0.24 mmol, 80%) of a blue-purple solid material were isolated. T.I.c. (hexane: $CH_2Cl_22:3$): $R_f = 0.28.$ ¹H NMR (500 MHz, CDCl₃): δ [ppm]=9.32 (t, J = 5.3 Hz, 2H, NH), 8.05 (s, 2H, Ar-H), 4.13 (t, J = 7.6 Hz, 4H, O=C-NCH₂-), 3.44 (td, J = 7.2, 5.1 Hz, 4H, Ar-NCH₂), 1.87– 1.79 (m, 4H, O=C-NCH₂C \mathbf{H}_2), 1.70 (tt, J = 8.2, 7.7 Hz, 4H, Ar-NCH₂C \mathbf{H}_2), 1.47-1.22 (m, 20H, CH₂), 1.11 (t, J = 7.4 Hz, 6H, NCH₂CH₂CH₃), 0.86 (t, J = 6.6 Hz, 6H, CH₃). ¹³C NMR (126 MHz, CDCl₃): δ (ppm)= 166.3, 163.1, 149.2, 125.8, 121.1, 118.3, 101.8, 45.0, 40.6, 32.0, 29.5, 29.4, 28.3, 27.4, 22.9, 22.8, 14.3, 11.9. MS (EI): m/z [%]=604.3 [100.0, M+], 605.3 [43.3], 606.3 [10.1]. HRMS (EI): found: m/z 604.3981 [M⁺], calcd: 604.3983.

Synthesis of cNDI 3. cNDI **10** (30 mg, 0.05 mmol, 1.00 equiv) was dissolved in *n*-propylamine (2 mL, 24.4 mmol) and refluxed for 2 h at 55 °C in a pressure vial. The amine was removed under vacuum. The solid material was dissolved in CH₂Cl₂ (4 mL) and treated with 1 N aqueous HCl (10 mL). The aqueous phase was extracted two times with CH₂Cl₂ (each 4 mL). The combined organic phases were washed with water (10 mL) and dried with Na₂SO₄. The solvent was removed under vacuum. The

product was purified by column chromatography (SiO₂, hexane/CH₂Cl₂ 2:1→3:2, \emptyset 4 cm, 12 cm). The final products were dissolved in benzene, lyophilized and dried under vacuum. 24 mg (0.04 mmol, 87%) of a blue-purple solid material were isolated. T.I.c. (hexane:CH₂Cl₂ 3:2): R_f = 0.46. ¹H-NMR (500 MHz, CDCl₃): δ [ppm]=9.34 (t, J = 5.4 Hz, 2H, -NH), 8.10 (s, 2H, Ar-H), 5.27-5.19 (m, 2H, -NCH-), 3.44 (dt, J = 7.1, 5.3 Hz, 4H, -NHCH₂-), 2.17-2.09 (m, 2H, -CHCH₂-), 1.93–1.86 (m, 2H, -CHCH₂-), 1.80 (sext, J = 7.3 Hz, 4H, -NCH₂CH₂-), 1.55–1.47 (m, 10H, -NCHCH₃, -CHCH₂-), 1.26–1.02 (m, 6H, -N(CH₂)₂CH₃), 0.82 (t, J = 6.9 Hz, 12H, -CH₃). ¹³C-NMR (126 MHz, CDCl₃): δ [ppm]=167.1, 149.4, 121.4, 45.1, 36.4, 31.6, 28.1, 22.9, 22.8, 22.7, 18.4, 11.8. MS (FAB): m/z [%]=573.4 [5.8], 574.4 [12.6], 575.4 [32.3], 576.4 [100.0, M⁺], 577.4[74.1], 578.4 [25.1], 579.4 [5.9]. HRMS (EI): found: m/z 576.3669 [M⁺], calcd: 576.3670.

Synthesis of cNDI 4. cNDI **8** (250 mg, 0.59 mmol, 1.00 equiv) was dissolved in 1-propylbutylamine (3 mL, 19.5 mmol) and refluxed for 2 h at 90 °C in a pressure vial. The amine was removed under vacuum. The solid material was dissolved in CH₂Cl₂ (10 mL) and treated with 1 N aqueous HCl (10 mL). The aqueous phase was extracted two times with CH₂Cl₂ (each 10 mL). The combined organic phases were washed with water (20 mL) and dried with Na₂SO₄. The solvent was removed under vacuum. The product was purified by column chromatography (SiO₂, hexane/CH₂Cl₂ 2:1 +10% toluene, Ø 3 cm, 16 cm). The final products were dissolved in benzene, lyophilized and dried under vacuum. 57 mg (0.08 mmol, 14%) of a blue-purple solid material were isolated. T.I.c. (hexane:CH₂Cl₂ 2:1 + 10% toluene): R_f = 0.54. ¹H-NMR (300 MHz, CDCl₃): δ [ppm]=9.35 (br, 2H, -NH-), 8.14 (s, 2H, Ar-H), 5.22 (tt, J = 9.2, 5.9 Hz, 2H, -(O=C)₂NCH-), 3.91–3.84 (m, 2H, -NHCH-), 2.27–2.14 (m, 4H, -(O=C)₂NCHCH₂-), 1.84–1.78 (m, 4H, -(O=C)₂NCHCH₂-), 1.68–1.61 (m,

8H, -NHCHC**H**₂-), 1.45–1.25 (m, 16H, -C**H**₂CH₃-), 0.97–0.88 (m, 24H, -CH₃). ¹³C-NMR (126 MHz, CDCl₃): δ [ppm] = 167.5, 167.1, 164.6, 163.5, 149.4.2, 126.5, 125.8, 121.4, 119.2, 118.4, 102.2, 101.5, 54.4, 53.4, 52.7, 37.6, 34.8, 34.5, 29.9, 22.9, 20.3, 19.3, 14.4, 14.2. MS (FAB): m/z (%)=685.5 [46.1], 686.5 [100], 687.5 [95.3], 688.9 [58.8], 689.5 [30.0, M⁺].

Synthesis of cNDI 5. cNDI 8 (250 mg, 0.59 mmol, 1.00 equiv) was dissolved in 3aminopentane (3 mL, 25.8 mmol) and refluxed for 2 h at 90 °C in a pressure vial. The amine was removed under vacuum. The solid material was dissolved in CH₂Cl₂ (10 mL) and treated with 1 N aqueous HCl (10 mL). The aqueous phase was extracted two times with CH₂Cl₂ (each 10 mL). The combined organic phases were washed with water (20 mL) and dried with Na₂SO₄. The solvent was removed under vacuum. The product was purified by column chromatography (SiO₂, hexane/CH₂Cl₂ 1:1, ø 1 cm, 12 cm). The final products were dissolved in benzene, lyophilized and dried under vacuum. 85 mg (0.15 mmol, 25%) of a blue-purple solid material were isolated Column chromatography. T.I.c. (Hexan/DCM 2:1): $R_f = 0.28$. ¹H-NMR (500 MHz, CDCl₃): δ [ppm] = 9.37 (d, J = 8.2 Hz, 2H, -NH-), 8.15 (s, 2H, Ar-H), 5.07 (tt, J = 9.5, 6.1 Hz, 2H, -(O=C)₂NCH-), 3.78–3.71 (m, 2H, -NHC**H**-), 2.27–2.18 (m, 4H, -(O=C)₂NCHCH₂-), 1.95–1.90 (m, 4H, -(O=C)₂NCHCH₂-), 1.79–1.65 (m, 8H, -NHCHCH₂-), 1.00 (t, J = 7.4 Hz, 12H, -NHCHCH₂CH₃), 0.89 (t, J = 7.5 Hz, 12H, -(O=C)₂NCHCH₂CH₃). ¹³C-NMR (126 MHz, CDCl₃): δ [ppm]=149.5, 131.1, 129.0, 121.5, 55.6, 45.1, 32.1, 29.9, 29.5, 27.5, 25.1, 22.9, 14.3, 11.9, 11.5, 10.4. MS (FAB): m/z [%] = 576.4 [100.0, M⁺], 577.4 [85.5], 575.4 [29.6]. HRMS (EI): found: m/z 576.3671 [M⁺], calcd: 576.3670.

Synthesis of cNDI 6. cNDI **11** (30 mg, 0.05 mmol, 1.00 equiv.) and *n*-propylamine (87 μL, 0.53 mmol, 10.0 equiv) were dissolved in DMF (1 mL) and refluxed for 2 h in a pressure vial. The amine was removed under vacuum. The solid material was dissolved in CH₂Cl₂ (2 mL) and treated with 1 N aqueous HCl (10 mL). The aqueous phase was extracted two times with CH₂Cl₂ (each 4 mL). The combined organic phases were washed with water (10 mL) and dried with Na₂SO₄. The solvent was removed under vacuum. The product was purified by column chromatography (SiO₂, hexane:CH₂Cl₂ 1:1, Ø 2 cm, 12 cm). The final products were dissolved in benzene, lyophilized and dried under vacuum. 16 mg (0.03 mmol, 58%) of a blue-purple solid material were isolated. T.I.c. (hexane:CH₂Cl₂ 1:1): $R_f = 0.52$. ¹H-NMR (300 MHz, CDCl₃): δ [ppm]=9.37 (t, J = 7.6 Hz, 2H, -NH), 8.15 (s, 2H, Ar-H), 5.13–5.03 (m, 2H, -NCH-), 3.47 (dt, J = 7.3, 5.4 Hz, 4H, -NCH₂-), 2.31–2.16 (m, 4H, -NCH₂CH₂-), 1.98–1.78 (m, 8H, -NCH₂CH₂-), 1.09 (t, J = 7.4 Hz, 6H, -N(CH₂)₂CH₃), 0.89 (t, J = 7.4 Hz, 12H, -CHCH₂CH₃). ¹³C-NMR (126 MHz, CDCl₃): δ [ppm]=149.9, 121.9, 100.5, 45.5, 30.3, 25.5, 23.4, 14.7, 12.3, 11.9. MS (FAB): m/z [%] = 520.3 [100.0, M⁺], 521.3 [88.0], 522.3 [28.1], 523.3 [6.7]. HRMS (EI): found: m/z 520.3042 [M⁺], calcd: 520.3044.

Images of ¹H NMR spectra, ¹³C NMR spectra and mass spectra

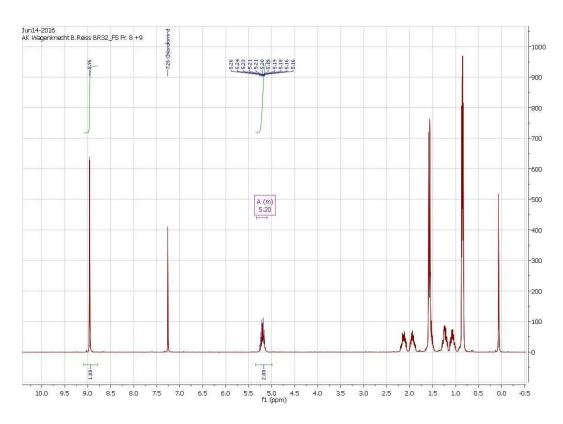


Figure S1. Image of ¹H NMR spectrum (500 MHz, CDCl₃).

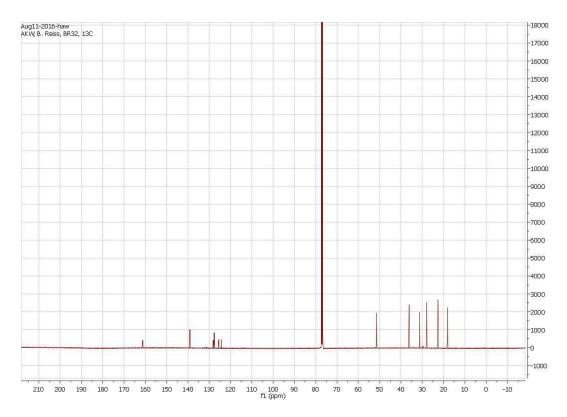


Figure S2. Image of ¹³C NMR spectrum (126 MHz, CDCl₃).

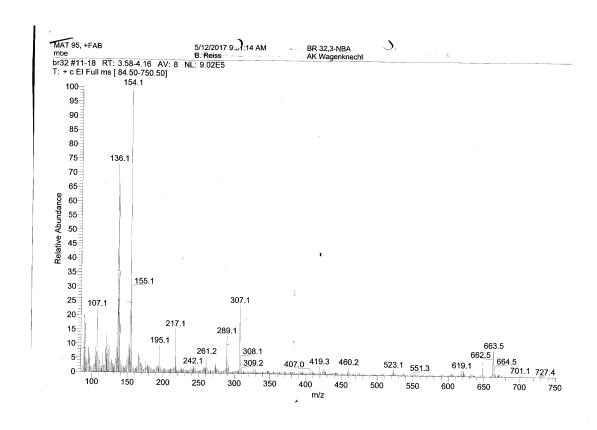


Figure S3. Image of mass spectrum (FAB).

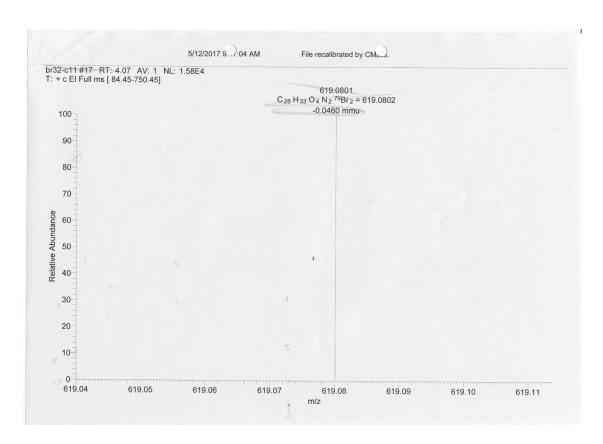


Figure S4. Image of HR mass spectrum (EI).

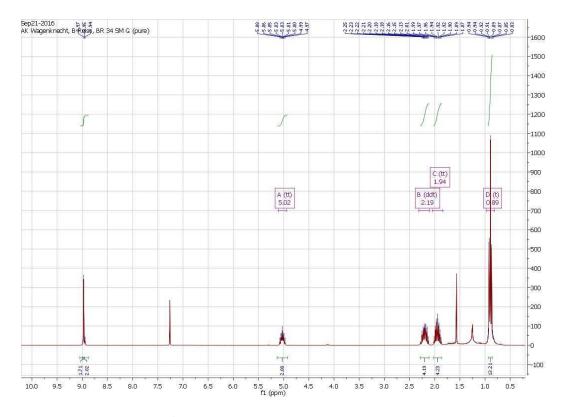


Figure S5. Image of ¹H NMR spectrum (500 MHz, CDCl₃).

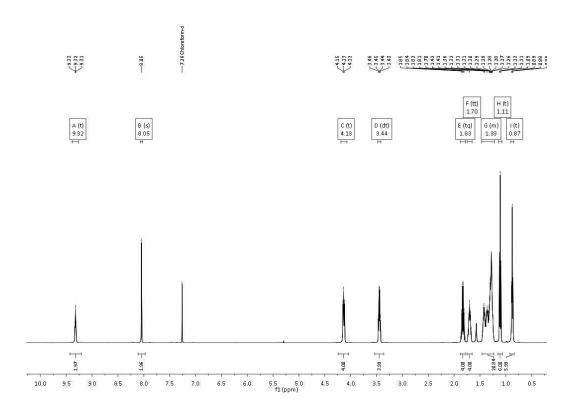


Figure S6. Image of ¹H NMR spectrum (500 MHz, CDCI₃).

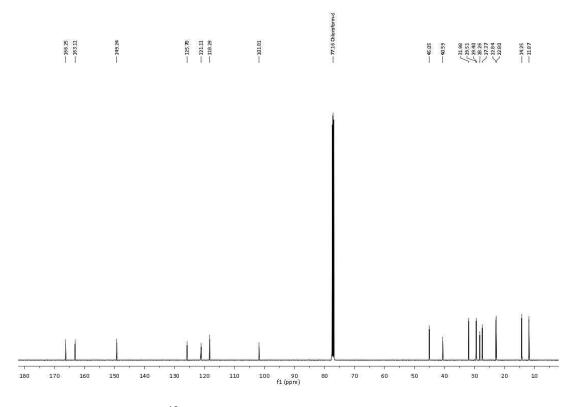


Figure S7. Image of ¹³C NMR spectrum (126 MHz, CDCl₃).

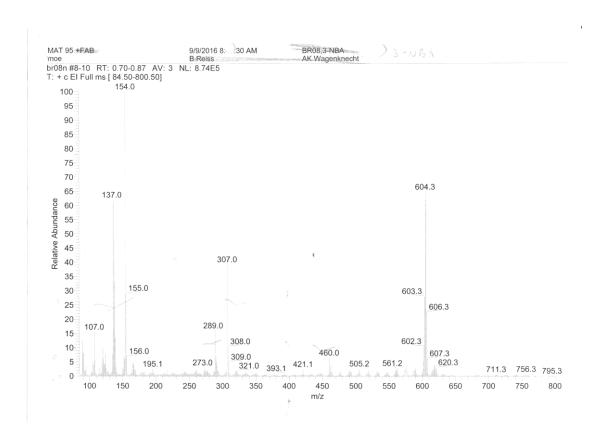


Figure S8. Image of mass spectrum (FAB).

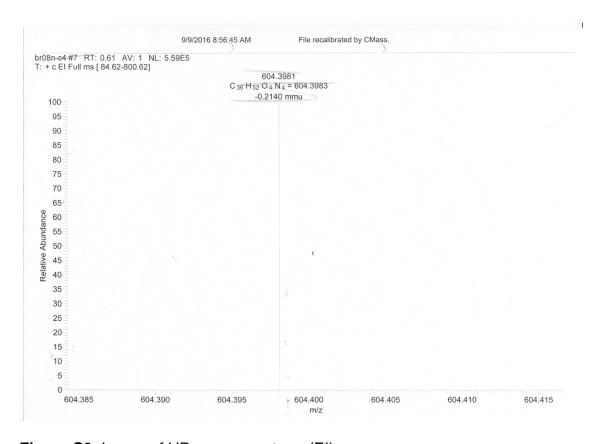


Figure S9. Image of HR mass spectrum (EI).

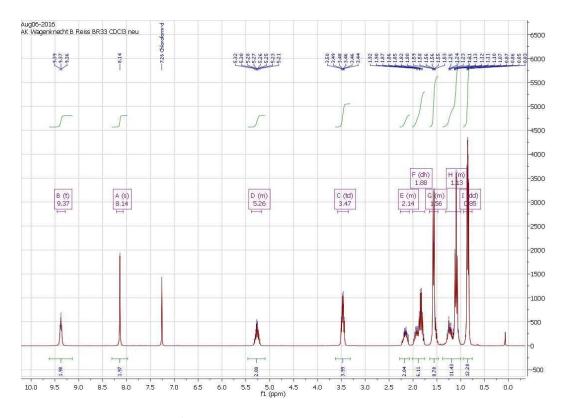


Figure S10. Image of ¹H NMR spectrum (500 MHz, CDCl₃).

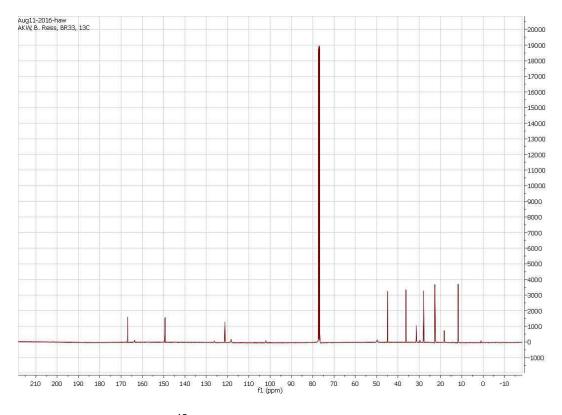


Figure S11. Image of ¹³C NMR spectrum (126 MHz, CDCl₃).

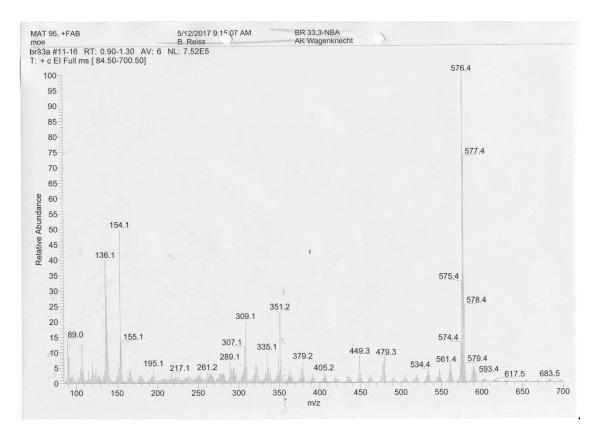


Figure S12. Image of mass spectrum (FAB).

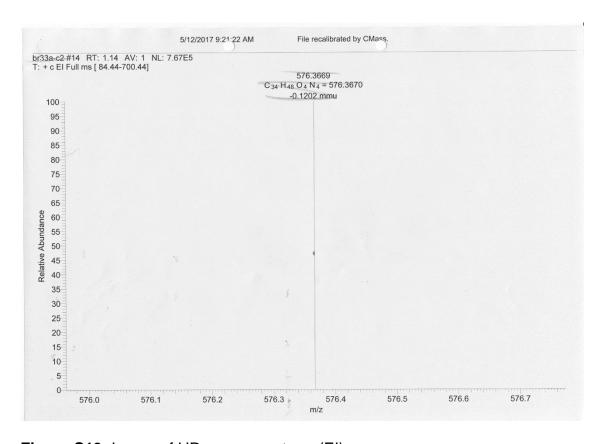


Figure S13. Image of HR mass spectrum (EI).

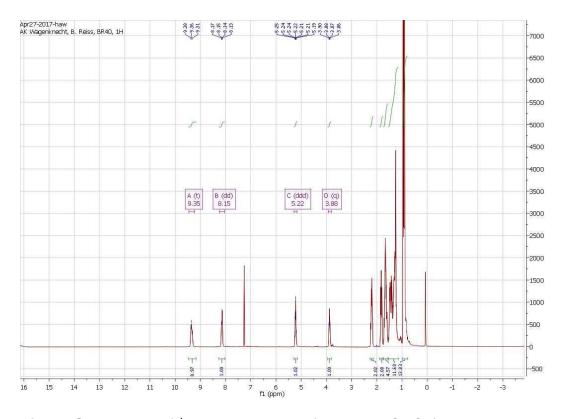


Figure S14. Image of ¹H NMR spectrum (500 MHz, CDCl₃).

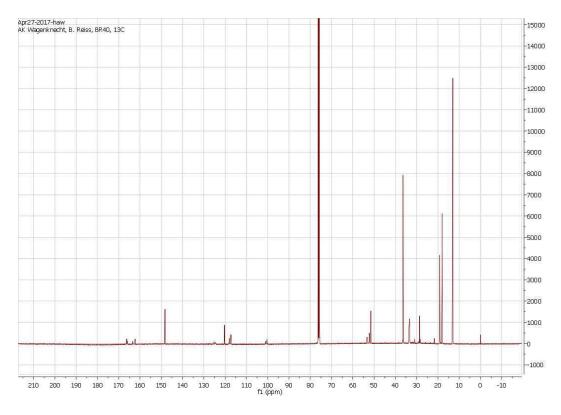


Figure S15. Image of ¹³C NMR spectrum (126 MHz, CDCl₃).

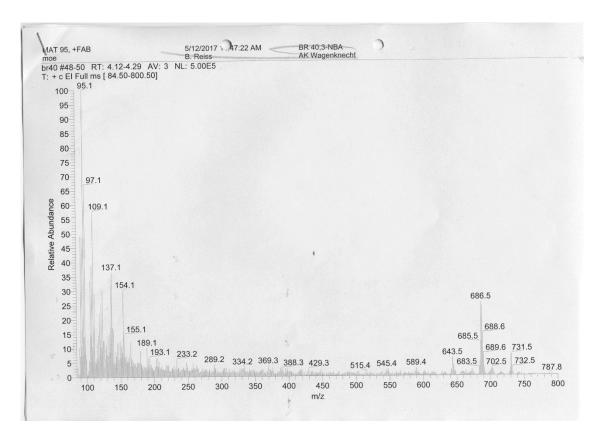


Figure \$16. Image of mass spectrum (FAB).

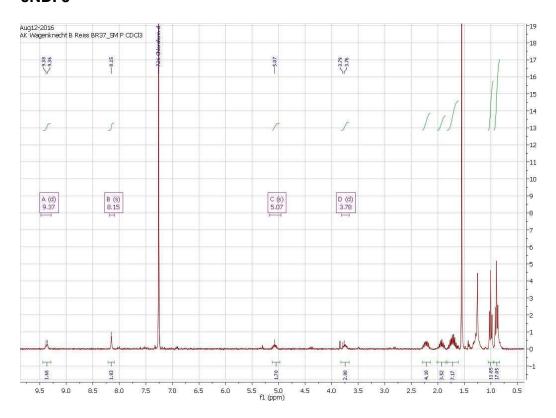


Figure S17. Image of ¹H NMR spectrum (500 MHz, CDCl₃).

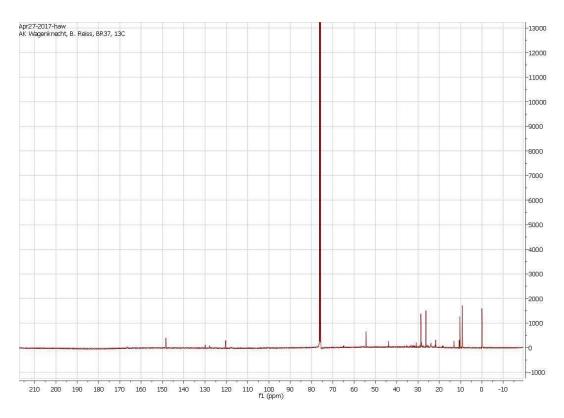


Figure S18. Image of ¹³C NMR spectrum (126 MHz, CDCl₃).

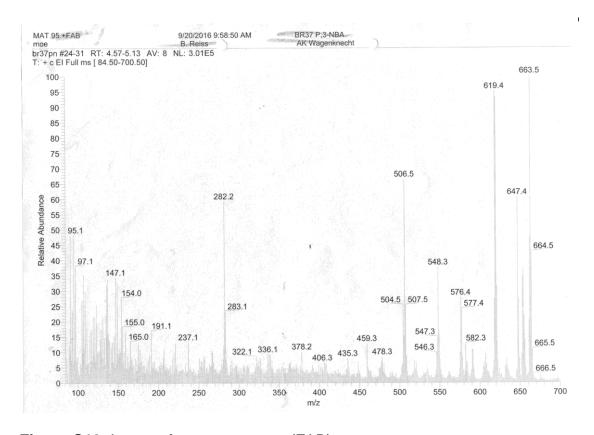


Figure S19. Image of mass spectrum (FAB).

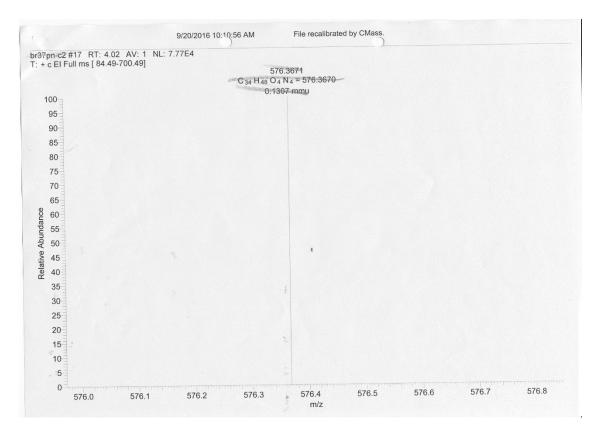


Figure S20. Image of HR mass spectrum (EI).

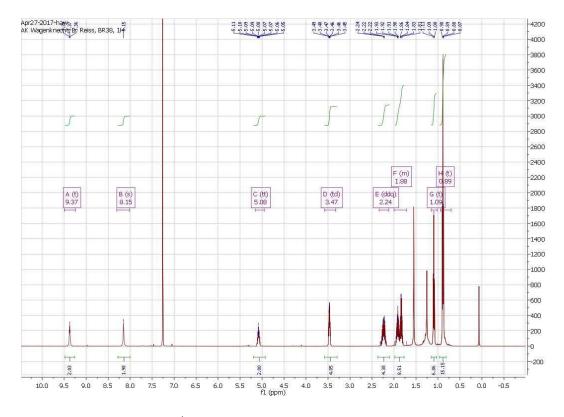


Figure S21. Image of ¹H NMR spectrum (500 MHz, CDCl₃).

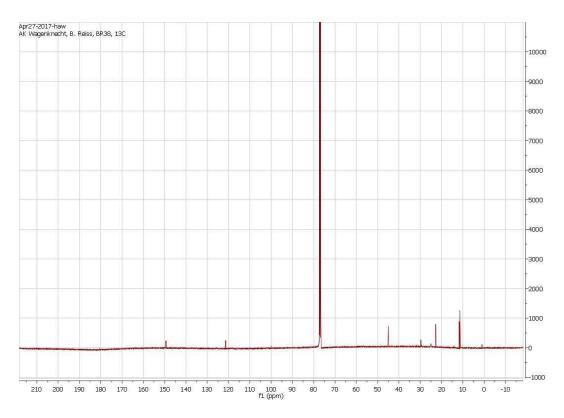


Figure S22. Image of ¹³C NMR spectrum (126 MHz, CDCl₃).

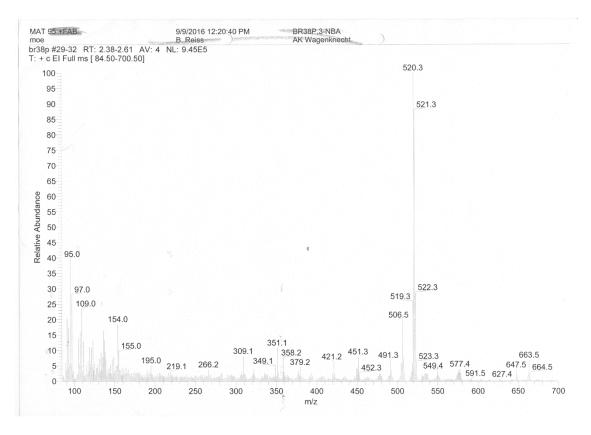


Figure S23. Image of mass spectrum (FAB).

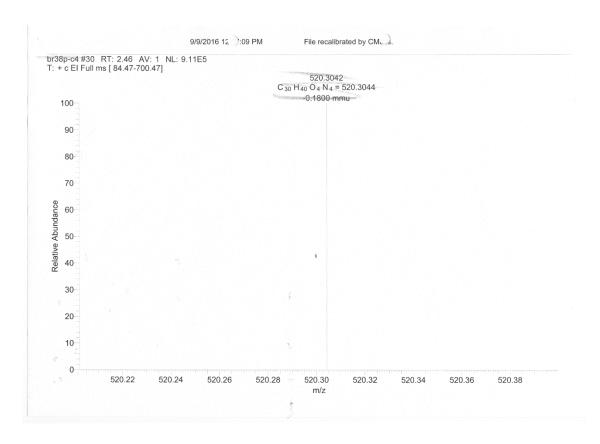


Figure S24. Image of HR mass spectrum (EI).


Photoredox catalytic experiments

Irradiation of the photochemical reaction was carried out using a setup which was designed and manufactured by the University of Regensburg and the workshop of the Institute for Physical Chemistry at KIT Karlsruhe (Figure S25). We warmly thank Dieter Waltz and Klaus Stree for their kind support with manufacturing the irradiation hardware. High-and low-power LEDs were used (Table S1). The photoreactions were irradiated from both sides. The temperature during the reaction time was controlled by cooling. For exact concentrations in the samples, see Tables and Figures in the main article. Organocatalyst 15 and the respective photoredox catalyst were dissolved. 1-Octanal (12), diethyl 2-bromomalonate (13), and 2,6-lutidine were added. The sample was degassed three times by the freeze-pump-thaw method. The

conversion of substrate **13** and the yield of product **14** were determined by ¹H NMR using the ratio of the singlets at 4.82 ppm (for **13**) and of the dublet at 3.73 ppm (for **14**). The debrominated diethyl malonate as side product has a characteristic singlet at 3.36 ppm.

The enantiomeric excess was determined after the following procedure (Scheme S1). After irradiation, the reaction mixtures was diluted with Et₂O and washed with water. The aqueous phase was extracted three times by Et₂O. The combined organic phases were washed by saturated aqueous solutions of 1) NH₄Cl, 2) NaHCO₃, 3) NaCl, dried over Na₂SO₄. The solvent was removed under vacuum. The crude product was purified by column chromatographie (SiO₂, hexane/Et₂O 25:2). The product 14 (20 mg, 69.8 µmol, 1.00 equiv) was dissolved in CH₂Cl₂ (1 mL). A mixture of (2S,4S)-(+)-pentanediol (>99% ee, 8.5 mg, 81.6 µmol, 1.17 equiv) and *p*-toluene sulfonic acid·H₂O 1.5 mg (7.88 µmol, 0.11 equiv) was added. The reaction was stirred at rt for 3 h. The solvent was removed under vacuum. The enantiomeric excess was determined by the ratio of the product integrals of the two dubletts at 3.70 ppm (acetale 16 from the (*S*)-enantiomer) and at 3.66 ppm (acetal 16 from the (*R*)-enantiomer).

Scheme S1. Diastereomeric acetals **16** after reaction of product **14** with (2*S*,4*S*)-(+)-pentanediol for the determination of the enantiomeric excess.

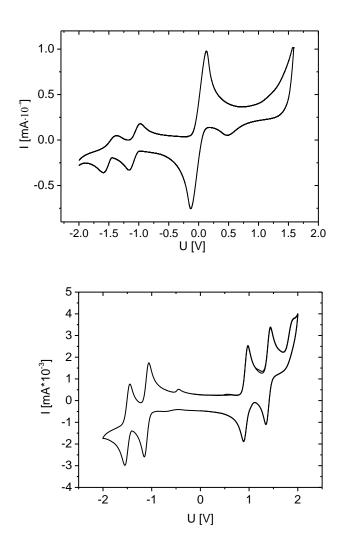


Figure S25. Images of the photoirradiation setup used for photoredox catalytic reactions

 Table S1. Applied LEDs for irradiation.

Manufacture	Typo	$\lambda_{nominal}$	λ_{max}	Radiant power/
<u>r</u>	Туре	[nm]	[nm]	Current
NICHIA	UV NCSU034B	385	387	540 mW (500 mA)
NICHIA	NCSB119 32 lm	470	468	32 lm (350 mA)
NICHIA	NCSG119 130 lm	530	520	130 lm (350 mA)
NICHIA	NCSA119 80 lm	590	597	80 lm (350 mA)
NICHIA	NCSG119 53 lm	620	638	53 lm (350 mA)
OSRAM	Oslon SSL	680	683	355 mW (350 mA)

Cyclic voltammetry

Figure S25. CVs of NDI **1** (top) and cNDI **2** (bottom) in CH_2C_{12} (with 0.1 M NBu₄PF₆), scanning speed 100 mV/s. CVs were referenced by ferrocene and are given vs. SCE [S5].

References

- S1. Hasharoni, K.; Levanon, H.; Greenfield, S. R.; Gosztola, D. J.; Svec, W. A.; Wasielewski. M. R. *J. Am. Chem. Soc.*, **1995**, 117, 8055-8056.
- S2. Sasikumar, M.; Suseela, Y. V.; Govindaraju, T. Asian *J. Org. Chem.*, **2013**, *2*, 779-785.
- S3. Graham, T. H.; Horning, B. D.; MacMillan, D. W. C. Org. Synth., 2011, 88, 42-54.
- S4. Chaignon, F.; Falkenstrom, M.; Karlsson, S.; Blart, E.; Odobel, F.; Hammarstrom, L. *Chem. Commun.*, **2007**, 64-66.
- S5. Pavlishchuk, V. V.; Addison, A. W. Inorg. Chim. Acta, 2000, 298, 97-102.