

Supporting Information

for

Multiple threading of a triple-calix[6]arene host

Veronica Iuliano, Roberta Ciao, Emanuele Vignola, Carmen Talotta, Patrizia lannece, Margherita De Rosa, Annunziata Soriente, Carmine Gaeta and Placido Neri

Beilstein J. Org. Chem. 2019, 15, 2092–2104. doi:10.3762/bjoc.15.207

¹H and ¹³C NMR spectra, ¹H qNMR spectra, 2D COSY and HSQC spectra of pseudorotaxanes

TABLE OF CONTENTS

Chart S1	3
¹ H NMR and ¹³ C NMR spectra of derivative 6	3
2D COSY spectrum of derivative 6	6
2D HSQC spectrum of derivative 6	6
¹ H NMR spectra of the mixtures of 7^+ ·TFPB ⁻ and 6	8
2D COSY spectrum of a 1:3 mixture of 6 and 7^+ TFPB ⁻ .	9
2D HSQC spectrum of a 1:3 mixture of 6 and 7^+ TFPB ⁻	10
¹ H NMR spectra of the mixtures of 4^+ ·TFPB ⁻ and 6	11
2D COSY spectrum of a 1:3 mixture of 6 and 4^+ TFPB ⁻	12
¹ H NMR spectra of the mixtures of 8^+ ·TFPB ⁻ and 6	13
2D COSY spectrum of a 1:3 mixture of 6 and 8^+ TFPB ⁻	14
2D HSQC spectrum of a 1:3 mixture of 6 and 8^+ TFPB ⁻	15
¹ H qNMR analysis for the determination of the K_{app} values of the complexes	16
Derivative 4 ⁺ TFPB ⁻	19
Derivative 7 ⁺ TFPB ⁻¹	19
Derivative 8 ⁺ TFPB ⁻¹	19

-

Chart S1. Derivative 6 and dialkylammonium axles 4⁺, 7⁺, and 8⁺ as TFPB⁻ salt.

¹H NMR and ¹³C NMR spectra of derivative 6

Figure S2. ¹³C NMR spectrum of derivative 6 (150 MHz, CDCl₃, 298 K).

Figure S3. 2D COSY spectrum of derivative 6 (600 MHz, CDCl₃, 298 K).

2D HSQC spectrum of derivative 6

Figure S4. 2D HSQC spectrum of derivative 6 (600 MHz, CDCl₃, 298 K).

Figure S5. (a) ¹H NMR spectra (600 MHz, CDCl₃, 298 K) of: (a) **6**; (b) 1:1 mixture of **6** and **7**⁺ • **TFPB**⁻ (c) 1:2 mixture of **6** and **7**⁺ • **TFPB**⁻ ; (d) 1:3 mixture of **6** and **7**⁺ • **TFPB**⁻.

2D COSY spectrum of a 1:3 mixture of 6 and 7⁺·TFPB⁻.

Figure S7. 2D COSY spectrum of a 1:3 mixture of 6 and 7⁺·TFPB⁻ (600 MHz, CDCl₃, 298 K).

Figure S8. 2D HSQC spectrum of a 1:3 mixture of 6 and 7⁺·TFPB⁻ (600 MHz, CDCl₃, 298 K).

Figure S9. (a) ¹H NMR spectra (600 MHz, $CDCI_3$, 298 K) of: (a) 6; (b) 1:1 mixture of 6 and 4⁺·TFPB⁻ (c) 1:2 mixture of 6 and 4⁺·TFPB⁻; (d) 1:3 mixture of 6 and 4⁺·TFPB⁻.

2D COSY spectrum of a 1:3 mixture of 6 and 4+.TFPB-

Figure S10. 2D COSY spectrum of a 1:3 mixture of 6 and 4+.TFPB⁻ (600 MHz, CDCI₃, 298 K).

Figure S11. (a) ¹H NMR spectra (600 MHz, CDCl₃, 298 K) of: (a) **6**; (b) 1:1 mixture of **6** and **8**⁺·TFPB⁻ (c) 1:2 mixture of **6** and **8**⁺·TFPB⁻; (d) 1:3 mixture of **6** and **8**⁺·TFPB⁻.

2D COSY spectrum of a 1:3 mixture of 6 and 8+.TFPB-

Figure S12. 2D COSY spectrum of a 1:3 mixture of 6 and 8+•TFPB⁻ (600 MHz, CDCl₃, 298 K).

2D HSQC spectrum of a 1:3 mixture of 6 and 8+.TFPB-

Figure S13. 2D HSQC spectrum of a 1:3 mixture of 6 and 8+•TFPB⁻ (600 MHz, CDCl₃, 298 K).

¹H qNMR analysis for the determination of the K_{app} values of the complexes

Figure S14 ¹H NMR spectra (600 MHz, CDCl₃, 298 K) of an equimolar solution (3.0 mM) of **6** and **7**⁺TFPB⁻ in 0.5 mL of CDCl₃ containing 1 μ L of 1,1,2,2-tetrachloroethane. The association constant K_a value was calculated by integration of signal of complex **7**⁺ \subset **6** (\blacktriangle) and 1,1,2,2-tetrachloroethane (\blacksquare).

Figure S15. ¹H NMR spectra (600 MHz, CDCl₃, 298 K) of an equimolar solution (3.0 mM) of **6** and **4**⁺TFPB⁻ in 0.5 mL of CDCl₃ containing 1 μ L of 1,1,2,2-tetrachloroethane. The association constant K_a value was calculated by integration of signal of complex **4**⁺ \subset **6** (\blacktriangle) and 1,1,2,2-tetrachloroethane (\blacksquare).

Figure S16. ¹H NMR spectra (600 MHz, CDCl₃, 298 K) of an equimolar solution (3.0 mM) of **6** and **8**⁺TFPB⁻ in 0.5 mL of CDCl₃ containing 1 μ L of 1,1,2,2-tetrachloroethane. The association constant K_a value was calculated by integration of signal of complex **8**⁺ \subset **6** (\blacktriangle) and 1,1,2,2-tetrachloroethane (\blacksquare).

Derivative 4⁺ TFPB⁻¹

¹H NMR (CD₃OD, 250 MHz, 298 K): δ 0.92 [broad, (CH₃CH₂CH₂CH₂CH₂)₂NH₂⁺, 6H], 1.37 [broad, (CH₃CH₂CH₂CH₂CH₂CH₂)₂NH₂⁺, 4H], 3.01 [m, (CH₃CH₂CH₂CH₂CH₂CH₂)₂NH₂⁺, 4H], 7.48 (s, ArH, 4H); 7.63 (s, ArH, 8H); ¹H NMR (CDCl₃, 250 MHz, 298 K): δ 0.84 (t, J = 7.5 Hz, 6H), 1.21-1.24 (overlapped, 8H), 1.49 (m, 4H), 2.91 (m, 4H), 5.29 [broad, (*n*-Pent)₂NH₂⁺, 2H], 7.55 (s, ArH, 4H), 7.68 (s, ArH, 8H); ¹³C NMR (CD₃OD, 62.8 MHz, 298 K): δ 14.2, 23.4, 27.1, 27.2, 52.4, 118.5, 119.3, 123.6, 127.9, 129.7, 130.3, 130.7, 130.9, 131.2, 132.2, 132.6, 135.8, 161.7, 162.5, 163.3, 164.1. Anal. Calcd for C₄₂H₃₆BF₂₄N: C, 49.38; H, 3.55; N, 1.37. Found: C, 49.39; H, 3.54; N, 1.36.

Derivative 7⁺ TFPB⁻¹

¹H NMR (CDCl₃, 250 MHz, 298 K): δ 4.14 (s, (PhC*H*₂)₂NH₂⁺, 4H), 7.18 (d, ArH*orto*, *J*= 7.5 Hz, 4 H), 7.40-7.48 (overlapping, ArH, 6H), 7.51 (br s, ArH, 4H), 7.69 (br s, ArH, 8H); ¹³C NMR (CD₃OD, 75.5 MHz, 298 K): δ 52.1, 118.5, 120.4, 127.6, 129.9, 130.3, 130.7, 131.0, 132.3, 135.8, 161.9, 162.6, 163.2, 163.9. Anal. Calcd for C₄₆H₂₈BF₂₄N: C, 52.05; H, 2.66; N, 1.32. Found: C, 52.04; H, 2.67; N, 1.33.

Derivative 8⁺ TFPB⁻¹

¹H NMR (CDCl₃, 400 MHz, 298 K): δ 0.85 (t, CH₃CH₂CH₂CH₂NH₂⁺Bn, *J*= 7.3 Hz, 3H), 1.27 (m, CH₃CH₂CH₂CH₂NH₂⁺Bn, 2H), 1.58 (m, CH₃CH₂CH₂CH₂NH₂⁺Bn, 2H), 3.10 (m, CH₃CH₂CH₂CH₂NH₂⁺Bn, 2H), 4.14 [t, (n-Bu)NH₂⁺CH₂Ph, J = 6.0 Hz, 2H], 5.52 [broad, (nBu)NH₂⁺Bn, 2H], 7.17 (d, ArH, J = 7.3 Hz, 2H), 7.41 (dd, ArH, J₁ = 7.4 Hz, J₂ = 7.3 Hz, 2H), 7.49 (d, ArH, J = 7.4 Hz, 1H), 7.53 (br s, ArH, 4H), 7.70 (br s, ArH, 8H); ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 13.1, 19.3, 28.4, 49.6, 117.3, 117.7, 118.0, 118.4, 120.7, 123.4, 126.1, 127.2, 128.7, 128.8, 129.0, 129.3, 129.6, 134.5, 135.0, 135.5, 161.1, 161.6, 162.1, 162.6. Anal. Calcd for C₄₃H₃₀BF₂₄N: C, 50.27; H, 2.94; N, 1.36. Found: C, 50.26; H, 2.93; N, 1.36.

¹<u>C. Gaeta</u>, F. Troisi, <u>P. Neri</u> *Org. Lett.*, 2010, 129, 2092-2095.