Supporting Information

for

Multiple threading of a triple-calix[6]arene host

Veronica Iuliano, Roberta Ciao, Emanuele Vignola, Carmen Talotta, Patrizia Iannece, Margherita De Rosa, Annunziata Soriente, Carmine Gaeta and Placido Neri

1H and 13C NMR spectra, 1H qNMR spectra, 2D COSY and HSQC spectra of pseudorotaxanes
TABLE OF CONTENTS

Chart S1	3
1H NMR and 13C NMR spectra of derivative 6	3
2D COSY spectrum of derivative 6	6
2D HSQC spectrum of derivative 6	6
1H NMR spectra of the mixtures of 7−·TFPB− and 6	8
2D COSY spectrum of a 1:3 mixture of 6 and 7−·TFPB−	9
2D HSQC spectrum of a 1:3 mixture of 6 and 7−·TFPB−	10
1H NMR spectra of the mixtures of 4−·TFPB− and 6	11
2D COSY spectrum of a 1:3 mixture of 6 and 4−·TFPB−	12
1H NMR spectra of the mixtures of 8−·TFPB− and 6	13
2D COSY spectrum of a 1:3 mixture of 6 and 8−·TFPB−	14
2D HSQC spectrum of a 1:3 mixture of 6 and 8−·TFPB−	15
1H qNMR analysis for the determination of the K_{app} values of the complexes	16
Derivative 4− TFPB−	19
Derivative 7− TFPB−	19
Derivative 8− TFPB−	19
Chart S1. Derivative 6 and dialkylammonium axles 4+, 7+, and 8+ as TFPB− salt.
Figure S1. 1H NMR spectrum of derivative 6 (600 MHz, CDCl$_3$, 298 K).
Figure S2. 13C NMR spectrum of derivative 6 (150 MHz, CDCl$_3$, 298 K).
2D COSY spectrum of derivative 6

Figure S3. 2D COSY spectrum of derivative 6 (600 MHz, CDCl₃, 298 K).

2D HSQC spectrum of derivative 6
Figure S4. 2D HSQC spectrum of derivative 6 (600 MHz, CDCl₃, 298 K).
\(^1\text{H NMR spectra of the mixtures of 7⁻-TFPB⁻ and 6}\)

\[\text{Figure S5. (a) } ^1\text{H NMR spectra (600 MHz, CDCl}_3, 298 K) of: (a) 6; (b) 1:1 mixture of 6 and 7⁻-TFPB⁻; (c) 1:2 mixture of 6 and 7⁻-TFPB⁻; (d) 1:3 mixture of 6 and 7⁻-TFPB⁻.}\]
2D COSY spectrum of a 1:3 mixture of 6 and 7+-TFPB-.

Figure S7. 2D COSY spectrum of a 1:3 mixture of 6 and 7+-TFPB- (600 MHz, CDCl\textsubscript{3}, 298 K).
Figure S8. 2D HSQC spectrum of a 1:3 mixture of 6 and 7⁺·TFPB⁻ (600 MHz, CDCl₃, 298 K).
1H NMR spectra of the mixtures of 4$^+$-TFPB$^-$ and 6

Figure S9. (a) 1H NMR spectra (600 MHz, CDCl$_3$, 298 K) of: (a) 6; (b) 1:1 mixture of 6 and 4$^+$-TFPB$^-$; (c) 1:2 mixture of 6 and 4$^+$-TFPB$^-$; (d) 1:3 mixture of 6 and 4$^+$-TFPB$^-$.
Figure S10. 2D COSY spectrum of a 1:3 mixture of 6 and 4⁺·TFPB⁻ (600 MHz, CDCl₃, 298 K).
1H NMR spectra of the mixtures of $8^+\cdot$TFPB$^-$ and 6

Figure S11. (a) 1H NMR spectra (600 MHz, CDCl$_3$, 298 K) of: (a) 6; (b) 1:1 mixture of 6 and $8^+\cdot$TFPB$^-$; (c) 1:2 mixture of 6 and $8^+\cdot$TFPB$^-$; (d) 1:3 mixture of 6 and $8^+\cdot$TFPB$^-$.
Figure S12. 2D COSY spectrum of a 1:3 mixture of 6 and 8+·TFPB- (600 MHz, CDCl\textsubscript{3}, 298 K).
Figure S13. 2D HSQC spectrum of a 1:3 mixture of 6 and 8·TFPB− (600 MHz, CDCl₃, 298 K).
1H qNMR analysis for the determination of the K_{app} values of the complexes

Derivative $7^* < 6$

Figure S14 1H NMR spectra (600 MHz, CDCl$_3$, 298 K) of an equimolar solution (3.0 mM) of 6 and $7^* $TFPB$^-$ in 0.5 mL of CDCl$_3$ containing 1 μL of 1,1,2,2-tetrachloroethane. The association constant K_a value was calculated by integration of signal of complex $7^* < 6$ (▲) and 1,1,2,2-tetrachloroethane (■).
Figure S15. 1H NMR spectra (600 MHz, CDCl$_3$, 298 K) of an equimolar solution (3.0 mM) of 6 and 4^+TFPB^- in 0.5 mL of CDCl$_3$ containing 1 μL of 1,1,2,2-tetrachloroethane. The association constant K_a value was calculated by integration of signal of complex 4^+C6 (▲) and 1,1,2,2-tetrachloroethane (■).
Figure S16. 1H NMR spectra (600 MHz, CDCl$_3$, 298 K) of an equimolar solution (3.0 mM) of 6 and 8$^+$TFPB$^-$ in 0.5 mL of CDCl$_3$ containing 1 μL of 1,1,2,2-tetrachloroethane. The association constant K_a value was calculated by integration of signal of complex 8$^+$6 (▲) and 1,1,2,2-tetrachloroethane (■).
Derivative 4\(^+\) TFPB\(^-\) ¹

\(^1\)H NMR (CD\(_3\)OD, 250 MHz, 298 K): δ 0.92 [broad, (CH\(_3\)CH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)]NH\(^+\), 6H], 1.37 [broad, (CH\(_3\)CH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)]NH\(^+\), 8H], 1.70 [m, (CH\(_3\)CH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)]NH\(^+\), 4H], 3.01 [m, (CH\(_3\)CH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)]NH\(^+\), 4H], 7.48 (s, ArH, 4H); 7.63 (s, ArH, 8H); \(^1\)H NMR (CDCl\(_3\), 250 MHz, 298 K): δ 0.84 (t, J = 7.5 Hz, 6H), 1.21-1.24 (overlapped, 8H), 1.49 (m, 4H), 2.91 (m, 4H), 5.29 [broad, (n-Pent)]NH\(^+\), 2H], 7.55 (s, ArH, 4H), 7.68 (s, ArH, 8H); \(^13\)C NMR (CD\(_3\)OD, 62.8 MHz, 298 K): δ 14.2, 23.4, 27.1, 27.2, 52.4, 118.5, 123.6, 127.9, 129.7, 130.3, 130.7, 130.9, 131.2, 132.2, 132.6, 135.8, 161.7, 162.5, 163.3, 164.1. Anal. Calcd for C\(_{42}\)H\(_{36}\)BF\(_{24}\)N: C, 49.38; H, 3.55; N, 1.37. Found: C, 49.39; H, 3.54; N, 1.36.

Derivative 7\(^+\) TFPB\(^-\) ¹

\(^1\)H NMR (CDCl\(_3\), 250 MHz, 298 K): δ 4.14 (s, (PhCH\(_2\))[NH\(^+\), 4H], 7.18 (d, ArH, J = 7.5 Hz, 4H), 7.40-7.48 (overlapping, ArH, 6H), 7.51 (br s, ArH, 4H), 7.69 (br s, ArH, 8H); \(^13\)C NMR (CD\(_3\)OD, 75.5 MHz, 298 K): δ 52.1, 118.5, 120.4, 127.6, 129.9, 130.3, 130.7, 131.0, 132.3, 135.8, 161.9, 162.6, 163.2, 163.9. Anal. Calcd for C\(_{46}\)H\(_{28}\)BF\(_{24}\)N: C, 52.05; H, 2.66; N, 1.32. Found: C, 52.04; H, 2.67; N, 1.33.

Derivative 8\(^+\) TFPB\(^-\) ¹

\(^1\)H NMR (CDCl\(_3\), 400 MHz, 298 K): δ 0.85 (t, CH\(_3\)CH\(_2\)CH\(_2\)CH\(_2\)NH\(^+\)Bn, J = 7.3 Hz, 3H), 1.27 (m, CH\(_3\)CH\(_2\)CH\(_2\)CH\(_2\)NH\(^+\)Bn, 2H), 1.58 (m, CH\(_3\)CH\(_2\)CH\(_2\)CH\(_2\)NH\(^+\)Bn, 2H), 3.10 (m, CH\(_3\)CH\(_2\)CH\(_2\)CH\(_2\)NH\(^+\)Bn, 2H), 4.14 [t, (n-Bu)]NH\(^+\)CH\(_2\)Ph, J = 6.0 Hz, 2H], 5.52 [broad, (nBu)]NH\(^+\)Bn, 2H], 7.17 (d, ArH, J = 7.3 Hz, 2H), 7.41 (dd, ArH, J\(_1\) = 7.4 Hz, J\(_2\) = 7.3 Hz, 2H), 7.49 (d, ArH, J = 7.4 Hz, 1H), 7.53 (br s, ArH, 4H), 7.70 (br s, ArH, 8H); \(^13\)C NMR (CDCl\(_3\), 100 MHz, 298 K): δ 13.1, 19.3, 28.4, 49.6, 117.3, 117.7, 118.0, 118.4, 120.7, 123.4, 126.1, 127.2, 128.7, 128.8, 129.0, 129.3, 129.6, 134.5, 135.0, 135.5, 161.1, 161.6, 162.1, 162.6. Anal. Calcd for C\(_{43}\)H\(_{30}\)BF\(_{24}\)N: C, 50.27; H, 2.94; N, 1.36. Found: C, 50.26; H, 2.93; N, 1.36.