

Supporting Information

for

Isolation of fungi using the diffusion chamber device FIND technology

Benjamin Libor, Henrik Harms, Stefan Kehraus, Ekaterina Egereva, Max Crüsemann and Gabriele M. König

Beilstein J. Org. Chem. 2019, 15, 2191–2203. doi:10.3762/bjoc.15.216

Genomic sequences of isolated fungi, data on bioactivity and halotolerance, spectroscopic data of compounds 1 and 2 from *Heydenia* cf. *alpina* strain 824

Table S1: Salinity dependency of the growth of <i>Cladosporium allicinum</i> on agar plates	S2
Table S2: Salinity dependency of the growth of Heydenia cf. alpina on agar plates	S2
Biological activities	S2
Table S3: Agar diffusion assay with extracts of fungal isolates from experiments 1-4	S3
Cytotoxicity assay	S4
Figure S3: CellTiter-Blue cell viability assay	S4
ITS sequences	S4
Alternaia armoraciae No. 830	S4
Auxarthron cf. umbrinum No. 825	S5
Cadophora sp. No. 829	S5
Chaetomium globosum No. 827	S6
Chrysosporium sp. No. 831	S6
Cladosporium allicinum No. 823	S7
Clonostachys rosea No. 821	S7
Heydenia cf. alpina No. 824	S7
Ilyonectria europaea No. 822	S8
Leucothecium sp. No. 828	S8
Metarhizium carneum No. 826	S8
Scopulariopsis brevicaulis No. 832	S9
Spectroscopic data of 1 and 2	S10
Figure S2: CD spectrum of heydenoic acid A (1) in MeOH	S10
Figure S3: CD spectrum of heydenoic acid B (2) in MeOH	S10
Table S4: ¹³ C NMR (75 MHz) and ¹ H NMR (300 MHz) data of heydenoic acid A (1) in MeOD.	S11
Table S5: ¹³ C NMR (75 MHz) and ¹ H NMR (300 MHz) data of heydenoic acid B (2) in MeOD.	S12
1D and 2D NMR spectra of heydenoic acid A (1)	S13
Figure S4: ¹ H NMR of heydenoic acid A (1) (300 MHz, in MeOD)	S13
Figure S5: ¹³ C NMR of heydenoic acid A (1) (75 MHz, in MeOD)	S14
Figure S6: ¹ H, ¹ H-COSY spectrum for heydenoic acid A (1) in MeOD	S15
Figure S7: HSQC spectrum for heydenoic acid A (1) in MeOD	S16
Figure S8: HMBC spectrum for heydenoic acid A (1) in MeOD	S17
Figure S9: NOESY spectrum for heydenoic acid A (1) in MeOD	S18
1D and 2D NMR spectra of heydenoic acid B (2)	S19
Figure S10: ¹ H NMR of heydenoic acid B (2) (300 MHz, in MeOD)	S19
Figure S11: ¹³ C NMR of heydenoic acid B (2) (75 MHz, in MeOD)	S20
Figure S12: ¹ H, ¹ H-COSY spectrum for heydenoic acid B (2) in MeOD	S21
Figure S13: HSQC spectrum for heydenoic acid B (2) in MeOD	S22
Figure S14: HMBC spectrum for heydenoic acid B (2) in MeOD	S23
Figure S15: NOESY spectrum for heydenoic acid B (2) in MeOD	S24

	colony dia	meter after 14	days [mm]			
Salinity	plate 1	plate 2	plate 3	x	σ^2	σ
0‰	55	53	54	54	1	±1
7‰	74	71	71	72	2	±1
14‰	90	87	89	89	2	±1
21‰	94	92	89	92	4	±2
28‰	106	106	108	106	1	±1
35‰	107	108	111	109	3	±2

Table S1: Salinity dependency of the growth of *Cladosporium allicinum* on agar plates

 σ = standard deviation

Table S2: Salinity dependency of the growth of Heydenia cf. alpina on agar plates

	colony dia	meter after 14	days [mm]			
Salinity	plate 1	plate 2	plate 3	x	σ^2	σ
0‰	68	66	67	67	1	±1
7‰	123	125	123	124	1	±1
14‰	130	130	130	130	0	± 0
21‰	130	130	130	130	0	±0
28‰	130	130	130	130	0	± 0
35‰	130	130	130	130	0	± 0

 σ = standard deviation

Biological activities

Both compounds (**1**,**2**) were tested for antimicrobial activities against *Staphylococcus aureus* 133, *Bacillus subtilis* 168, *Micrococcus luteus* 4698, *Arthrobacter crystallopoietes* DSM 20117, *Escherichia coli* I-11276b, and *Klebsiella pneumoniae* sp. *ozeanae* I-10910 using agar diffusion assays on Culture plates (5% sheep blood Columbia agar, BD) overlayed with growth suspension of the bacteria to be tested. None of the compounds showed antimicrobial effects at concentrations of up to 100 µM.

Both compounds were tested for cytotoxicity in HEK293 cells using CellTiter-Blue cell viability assay. None of the compounds showed cytotoxic effects at concentrations of up to 100μ M.

	Inhibition zone [mm]					
Extract/chemical	Escherichia	Bacillus	Eurotium	Microbotryum	Mycotypha	
1mg/mL	coli	megaterium	rubrum	violaceum	microspora	
Alternaria	n.n.	2	n.n.	n.n.	n.n.	
armoraciae						
Auxarthron	n.n.	1	n.n.	n.n.	n.n.	
umbrinum						
Chaetomium	n.n.	1,5	n.n.	n.n.	n.n.	
globosum						
Chrysosporium	n.n.	1	n.n.	n.n.	n.n.	
sp.						
Cladosporium	n.n.	4	n.n.	n.n.	n.n.	
allicinum						
Clonostachys	n.n.	5	n.n.	n.n.	n.n.	
rosea						
Cadophora sp.	n.n.	n.n	n.n.	n.n.	n.n.	
Heydenia cf.	n.n.	5	n.n.	n.n.	n.n.	
alpina						
Ilyonectria	n.n.	3	n.n.	3	n.n.	
europaea						
Leucothecium	n.n.	n.n	n.n.	n.n.	n.n.	
sp.						
Metarhizium	n.n.	n.n	n.n.	n.n.	n.n.	
carneum						
Scopulariopsis	n.n.	n.n	n.n.	n.n.	n.n.	
brevicaulis						
Benzylpenicillin	6	n.n.	n.n.	n.n.	n.n.	
Streptomycin	n.n.	10	n.n.	n.n.	n.n.	
Miconazole	n.n.	n.n	10	10	15	

Table S3: Agar diffusion assay with extracts of fungal isolates from experiments 1–4

n.n. = no inhibition

Cytotoxicity assay

Figure S1: CellTiter-Blue cell viability assay

ITS sequences

Alternaia armoraciae No. 830 >Z1828-4418AI

>Z1828-4418AEFCL

>Z1828-4418BI

Auxarthron cf. umbrinum No. 825 >Z1828-4420I

TCCGTAGGTGAACCTGCGGAAGGATCATTAAAGCGTCGAGCCTGCGCCTCCCGGCGTAGGTG AAACCCCACCCGTGACTACTACACCACATGTTGCTTTGGCGGGCCCGCCTCTGGCTGCCGGG GTTTCTCTGGATAGCGCCCGCCAAAGATACACTGAACTTCTGTGAAACTGGATGTCTGAGTTG ATATCAATCATTAAAACTTTCAACAATGGATCTCTTGGTTCCGGCATCGATGAAGAACGCAG CGAAATGCGATAAGTAATGTGAATTGCAGAATTCCGTGAATCATCGAATCTTTGAACGCACA TTGCGCCCTCTGGTATTCCGGAGGGCATGCCTGTCCGAGCGTCATTGCAACCTTCAAGCGCGG CTTGTGTGTGTGGGCCTCGTCCCCGTGGACGGGCCTCAAAGGCAGTGGCGGCGTCCGTTTGG TGCCCGAGCGTATGGGAATTCTATACCGCTTCAAGGCCGGCGGCGCGGCGCCCAAGACCAATT

Cadophora sp. No. 829

>Z1876-4467I

TCCGTAGGTGAACCTGCGGAAGGATCATTAATAGAGTAAGGGCGAAGCTGTAAAAGGCCGA GCTCTGACCTCCACCCTTGAATAAACTACCTTCGTTGCTTTGGCGGGTCGCCTCGTGCCAGCG GCTTCGGCTGTTGAGTACCCGCCAGAGGACCACAACTCTTGTTTTTAGTGATGTCTGAGTACT ATATAATAGTTAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGC GAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACAT TGCGCCCTCTGGTATTCCGGGGGGCATGCCTGTTCGAGCGTCATTATAACCACTCAAGCTCTC GCTTGGTATTGGGGTTCGCGTCTTCGCGGCCTCTAAAATCAGTGGCGGTGCCTGTCGGCTCTA CGCGTAGTAATACTCCTCGCGATTGAGTTCCGGTAGGTTTACTTGCCAACAACCCCAATCTT TTAAGGTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATTCAT

>Z1876-4467VS

Chaetomium globosum No. 827

>Z1828-4417BT

>Z1828-4417RPB2

Chrysosporium sp. No. 831 >Z1876-4466I

TCCGTAGGTGAACCTGCGGAAGGATCATTACAGTGTCTGGAGGCCGACCGGCGGCGTTTCCC TCACGGGGAGCGTCGTGGCTCGTGCCCCCCCCCACACGTGTTTACTACACCCTGTTGCCTTGG TGGGTCTGCCCTTGTGGCTGCCGGGGGGTCACCGCGTGTGCCCCGGGCCCGTACCCACCGATG GACACCCTGAACTCTTTATGAATATAGTGTTGTCTGAGCGTTTAGCAAATTAAACAAAACTTT CAACAATGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGT GAATTGCAGAATTCCGTGAATCATCGAATCTTTGAACGCACATTGCGCCCTCTGGTATTCCGG *Cladosporium allicinum* No. 823 >Z1378-2864EF

>Z1378-2864ITS

TTACAAGAACGCCCGGGCTTCGGCCTGGTTATTCATAACCCTTTGTTGTCCGACTCTGTTGCC TCCGGGGCGACCCTGCCTTCGGGCGGGGGCTCCGGGGTGGACACTTCAAACTCTTGCGTAACT TTGCAGTCTGAGTAAACTTAATTAATAAATTAAAACTTTTAACAACGGATCTCTTGGTTCTGG CATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCAT CGAATCTTTGAACGCACATTGCGCCCCCTGGTATTCCGGGGGGGCATGCCTGTTCGAGCGTCAT TTCACCACTCAAGCCTCGCTTGGTATTGGGCAACGCGGTCCGCCGCGTGCCTCAAATCGTCCG GCTGGGTCTTCTGTCCCCTAAGCGTTGTGGGAAACTATTCGCTAAAGGGTGTTCGGGAGGCTAC GCCGTAAAACAACCCCATTTCTAAGGTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTT AAGCATATCATA

Clonostachys rosea No. 821

>Z2328-2172 ITS

Heydenia cf. alpina No. 824

>Z2259-3333ITS

TCCGTAGGTGAACCTGCGGAAGGATCATTAAAAAATATAGAATTAATCTTCTGTAAACCCAA TCTGCGTATTTCTACCTGTTGCTTTCGTGAGACTGTGAACGCAAGTTCCCTCTGGCGCTGTTTT TAGGAACAGCTGTTGGGGAGTGCTCACGGGAGGTAATTATAAACTCTGTTTTTTTGAATTTT GTCTGAATATTGTTTATACATAAACTTTAAAACTTTCAACAACGGATCTCTTGGTTCTCGCAT CGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCG AATCTTTGAACGCACATTGCGCCTCCTGGTATTCCGGGAGGCATGCCTGTTCGAGCGTCATTA AAATCACTCAAGCTTAGGTTTACCTATTGCTTGGTCTTGGAGATGGAAGCCAATTTATTGGAA TCCTCTTCGAAATTCAATGGCGAAGACCCTTGCTCTCCCAAGTGTAGTAATAACTTATGTCAC TGAAGGAAGCGAGAAATCTTCTGCCGTAACCCCCATATTTTCTATGATTGACCTCGGATCAG GTAGGGATACCCGCTGAACTTAAGCAT

Ilyonectria europaea No. 822 >Z2328-2173BL ITS

Leucothecium sp. No. 828 >Z1876-4468I

TCCGTAGGTGAACCTGCGGAAGGATCATTATCGAGCCGCCGACGCGGGCCCGCGGTACTTCG GTGCCGTTGGGTCCCGTAGGCAAATGGCCCAACCCTTGCTTCTTGACAACCATTGTCTCGGCG GTACCGCGCCTTTCGGGGCCAGCTGGATTCATTCCGGCTTGTGTCCGCCAGAGAAACCATTAA AAATCGTTTATCAGATCGTCTAAGAATGAAATAATTCAATAAAACTTTCAACAACGGATCTC TTGGTTCCGGCATCGATGAAGAACGCAGCGAAATGCGATAACTAATGTGAATTGCAGAATTC CGTGAATCATCGAGTCTTTGAACGCACGCACATTGCACCCTCTGGTATTCCGGGGGGGTATATCTGTC CGAGCGTCATTACAACCTTAAAGCACGGCTTTTTATTGGATTCTAGTTCTGCTTCGGCGGGAC AGGTCCGAAATGGATTAATGACGTCGCGATTACCACGGAATCGAGCGAATGGAATCATTAAC GCTCTGATTTGAAGTGGCCGACGGTCTTCTGAAGCGGTCCTTTTGGATCGTCTTTTAACGGT TGACCTCGG

Metarhizium carneum No. 826

>Z1876-4469I

Scopulariopsis brevicaulis No. 832 >Z1828-4419I

>Z1828-4419EF2

Spectroscopic data of compounds 1 and 2

Figure S2: CD spectrum of heydenoic acid A (1) in MeOH

Figure S3: CD spectrum of heydenoic acid B (2) in MeOH

С δ_{H} δ_{C} COSY HMBC NOE 1 a: 2.12, m 41.9, CH₂ 2, 3, 5, 6, 7, 14 1b 1b b: 2.93, dt (10.0, 6.0) 1a, 2, 6 2, 3, 5, 6, 7 1a, 2, 6, 8 2 2.65, t (6.0) 49.8, CH 1b, 4, 6 3, 4, 6, 7, 15 1b, 8, 14, 15 3 174.1, qC 4 5.78, q (1.3) 122.1, CH 2, 6, 15 15 2, 6, 15 5 206.6, qC 6 2.73, t (6.0) 57.2, CH 1b, 4 2, 4, 5, 7 1b, 8, 14 7 58.6, qC 8 2.07, m 38.2, CH₂ 9 7, 9, 14 1b, 6, 14 9 2.32, m 25.0, CH₂ 8,10 7, 8, 10, 11 13, 14 10 6.86, t (7.6) 143.0, CH 9, 13 12, 13 8,9 11 129.5, qC 12 177.8, qC 10, 11, 12 9 13 1.89, s 12.5, CH₃ 10 14 1.07, s 19.2, CH₃ 2, 6, 7, 8 8, 15 15 2.10, d (1.3) 23.6, CH₃ 4 2, 3, 4 2, 4, 14

Table S4: ¹³C NMR (75 MHz) and ¹H NMR (300 MHz) data of heydenoic acid A (1) in MeOD

С	$\delta_{\rm H}$, (J in Hz)	$\delta_{\rm C}$, mult	COSY	HMBC	NOE
1	a: 2.10, m	41.9, CH ₂	1b	2, 3, 5, 6, 7, 14	1b
	b: 2.89, dt (9.0, 5.6)		1a, 2, 6	2, 3, 5, 6, 7	1a, 2, 6, 8
2	2.59, t (5.6)	49.7, CH	1b, 4, 6	1, 3, 4, 6, 7, 8, 15	1b, 8, 14, 15
3		174.2, qC			
4	5.77, q (1.3)	122.0, CH	2, 6, 15	2, 6, 15	15
5		206.9, qC			
6	2.67, t (5.6)	57.3, CH	1b, 2, 4	1, 2, 4, 5, 7, 8	1b, 8, 14
7		58.8, qC			
8	1.94, m	39.4, CH ₂	9	2, 6, 7, 9, 10, 14	1b, 2, 6, 14
9	1.37, m	23.4, CH ₂	8, 10	7, 8, 10	
10	a: 1.49, m	35.5, CH ₂	9, 10b, 11	9, 12	10b, 13
	b: 1.73, m		9, 10a, 11	9, 11, 13	10a
11	2.50, m	40.7, CH	10a, 10b, 13	9, 10, 12, 13	10a, 13
12		180.8, qC			
13	1.21, d (7.0)	17.8, CH ₃	11	10, 11, 12	10a, 11
14	1.01, s	19.3, CH ₃		2, 6, 7, 8	8
15	2.09, d (1.3)	23.6, CH ₃	4	2, 3, 4	2, 4, 14

Table S5: ¹³ C NMR ((75 MHz) and	¹ H NMR	(300 MHz)	data of her	vdenoic acid B	(2) in MeOD

Figure S4: ¹H NMR of heydenoic acid A (1) (300 MHz, in MeOD)

Figure S5: ¹³C NMR of heydenoic acid A (1) (75 MHz, in MeOD)

Figure S6: ¹H, ¹H-COSY spectrum for heydenoic acid A (1) in MeOD

Figure S7: HSQC spectrum for heydenoic acid A (1) in MeOD

Figure S8: HMBC spectrum for heydenoic acid A (1) in MeOD

Figure S9: NOESY spectrum for heydenoic acid A (1) in MeOD

1D and 2D NMR spectra of heydenoic acid B (2)

Figure S10: ¹H NMR of heydenoic acid B (2) (300 MHz, in MeOD)

Figure S11: ¹³C NMR of heydenoic acid B (2) (75 MHz, in MeOD)

Figure S12: ¹H, ¹H-COSY spectrum for heydenoic acid B (2) in MeOD

Figure S13: HSQC spectrum for heydenoic acid B (2) in MeOD

Figure S14: HMBC spectrum for heydenoic acid B (2) in MeOD

Figure S15: NOESY spectrum for heydenoic acid B (2) in MeOD